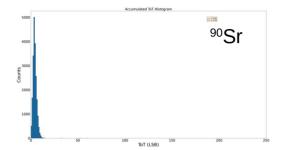
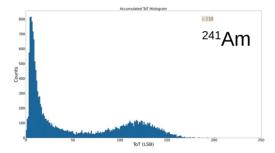


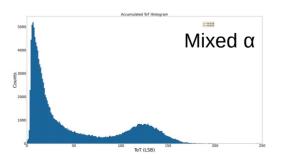
RD50 HV-CMOS Meeting

RD50-MPW4

Update 15/02/2024

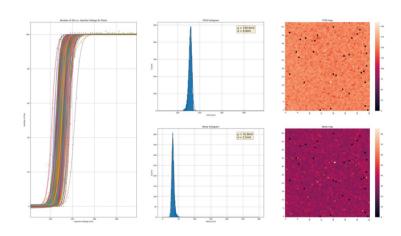

Bernhard Pilsl





Radioactive Sources

- Recorded spectra of various radioactive sources
 - 1) ⁹⁰Sr β
 - 2) ²⁴¹Am α 5.4MeV
 - 3) Mixed Alpha source
 - ²⁴¹Am α 5.4MeV
 - 244Cm α 5.9MeV
 - ²³⁹Pu α 5.1MeV
- α sources directed to front-side in close proximity O(mm) without plastic protection box
- · No difference between 2) and 3) observed
- All sources show main peak at low ToT values (~5 LSB)
- α sources show secondary peak at ~120 LSB
 - Possible explanation:
 - 5 LSB peak \rightarrow signal just makes it over threshold \rightarrow charge sharing effects with neighboring pixels
 - 120 LSB peak corresponds to charge deposited in one pixel
 - · Cluster (-charge) analysis needed and to be done
- Not seeing anything with ⁵⁵Fe (neither front nor backside)



Auto threshold calibration implemented

- Peary got new "makeSensitive" routine
 - 1) Mask most noisy single pixels
 - Reduce threshold until noise gets significant (~20Hz)
 - 3) Perform S-curve scan (for a few randomly chosen pixels) → set-point for trimDAC tuning
 - 4) Tune trimDACs
 - 5) Reduce threshold with masking
- Lowest possible threshold: 920mV (at 900 mV baseline) ~ 2600e⁻
 - Masked ~40 pixels
 - Masking even more gets us down to ~915mV
 - Instable (gets noisy when chip gets warm)

