

Run 3 multiboson measurements at CMS

Multiboson 2024 Sergio Blanco Fernandez on behalf of the CMS Collaboration IFCA (CSIC – University of Cantabria) 25/09/2024

Research supported by PID2020-113304RB-100

1

Yesterday we were here!

Introduction

Run 3 has exceeded Run 2 in a lot of aspects:

- Integrated luminosity (>160 fb⁻¹)
- Data quality: stable physics performance
- Push trigger beyond limits: Parking (3.5 KHz) and Scouting (20 KHz) programs

CMS multiboson results using Run3 data

- Many measurements have already been performed with Run 3 data (Top, EWK, EXO, ...)
- Today, we focus on 4 multiboson analyses

CMS-SMP-24-001	CMS-SMP-24-005	CMS-HIG-23-014	$\frac{\text{CMS-HIG-24-013}}{\text{pp}} \rightarrow \text{H} \rightarrow \text{ZZ}$		
$pp \rightarrow W^+W^-$	$\mathbf{p}\mathbf{p} ightarrow \mathbf{W}^{\pm} \mathbf{Z}$	$pp \to H \to \gamma\gamma$			
Available on the CERN CDS information server CMS PAS SMP-24-001	Available on the CERN CDS information server CMS PAS SMP-24-005	Available on the CERN CDS information server CMS PAS HIG-23-014	Available on the CERN CDS information server CMS PAS HIG-24-013		
CMS Physics Analysis Summary	CMS Physics Analysis Summary	CMS Physics Analysis Summary	CMS Physics Analysis Summary		
Contact: cms-pag-conveners-smp@cern.ch 2024/03/22	Contact: cms-pag-conveners-smp@cern.ch 2024/07/19	Contact: cms-pag-conveners-higgs@cern.ch 2024/07/18	Contact: cms-pag-conveners-higgs@cern.ch 2024/07/19		
Measurement of W ⁺ W ⁻ inclusive and differential cross sections in pp collisions at $\sqrt{s} = 13.6$ TeV with the CMS detector	Measurement of the inclusive WZ production cross section in pp collisions at $\sqrt{s} = 13.6$ TeV with the CMS experiment	Measurements of inclusive and differential Higgs boson production cross sections at 13.6 TeV in the H $\rightarrow \gamma\gamma$ decay channel	Measurements of Higgs boson production cross sections in the four-lepton final state at 13.6 TeV		
The CMS Collaboration	The CMS Collaboration	The CMS Collaboration	The CMS Collaboration		

Measurements <u>WW CMS-SMP-24-001</u>

- First Run 3 di-boson measurement with the CMS detector
- It demonstrates the capacity of CMS to release analysis with complex topologies: Muons, electrons, jets, b-jets, MET
- Some updates wrt 2016 measurement and comparable luminosity but overall better sensitivity
- Inclusive and fiducial results using 2022 data: 34.7 fb⁻¹
- Targets the different flavour leptonic decay channel

 $pp \rightarrow W^+W^- \rightarrow e^{\pm}\mu^{\mp}\nu_e\nu_\mu$

Several updates with respect to the 2016 analysis

- More control regions introduced in the fit: Top (2 regions), DY, Same-sign, WZ, and ZZ
- Object optimization → lower uncertainties

Data-driven estimation of the non-prompt lepton contamination

Quantity	WW	One/two b tags	$Z\to\tau\tau$	Same-sign		
Number of tight leptons		Strictly	Strictly 2			
Additional loose leptons		0				
Lepton charges		Opposite		Same		
$p_{\mathrm{T}}^{\ell\mathrm{max}}$		>25 Ge	eV			
$p_{\rm T}^{\hat{\ell}\min}$		>20 Ge	eV			
$m_{\ell\ell}$	>85 GeV	>85 GeV	< 85 GeV	>85 GeV		
$p_{\mathrm{T}}^{\ell\ell}$		_	<30 GeV			
Number of b-tagged jets	0	1/2	0	0		
Nj		0/1/2/	≥ 3			
Variable	WZ		ZZ			
Number of tight leptons	Strictly	y 3	Strictly 4	/		
Additional loose leptons		0				
Lepton $p_{\rm T}$	>25/10/2	20 GeV >25/20/2	10/10GeV ($p_{\rm T}$ ordered)		
$ m_{\ell\ell} - m_Z $	<15 G	eV <15	GeV (both	pairs)		
$m_{3\ell}$	>100 C	GeV				
$m_{4\ell}$			>150 GeV			
$p_{ m T}^{ m miss}$	>30 G	eV	/ _			
Number of b-tagged jets		0				

Several updates with respect to the 2016 analysis

- More control regions introduced in the fit: Top (2 regions), DY, Same-sign, WZ, and ZZ
- Object optimization → lower uncertainties

Data-driven estimation of the non-prompt lepton contamination

Quantity	WW	One/two b tags	$Z \to \tau\tau$	Same-sign	
Number of tight leptons	Strictly 2				
Additional loose leptons		0			
Lepton charges		Opposite		Same	
$p_{\mathrm{T}}^{\ell\mathrm{max}}$		>25 Ge	eV		
$p_{\rm T}^{\hat{\ell}\min}$		$>20\mathrm{Ge}$	eV		
$m_{\ell\ell}$	>85 GeV	>85 GeV	<85 GeV	>85 GeV	
$p_{ extsf{T}}^{\ell \ell}$			< 30 GeV		
Number of b-tagged jets	0	1/2	0	0	
N _j		0/1/2/	≥ 3		
Variable	WZ		ZZ		
Number of tight leptons	Strictly	· 3	Strictly 4	/	
Additional loose leptons)	0			
Lepton $p_{\rm T}$	>25/10/2	0GeV >25/20/2	10/10GeV ($p_{\rm T}$ ordered)	
$ m_{\ell\ell}-m_Z $	<15 Ge	eV <15	GeV (both	pairs)	
$m_{3\ell}$	>100 G	eV	_		
$m_{4\ell}$	—		>150 GeV		
$p_{ m T}^{ m miss}$	>30 Ge	VeV	_		
Number of b-tagged jets		0			

Several updates with respect to the 2016 analysis

- More control regions introduced in the fit: Top (2 regions), DY, Same-sign, WZ, and ZZ
- Object optimization → lower uncertainties

Data-driven estimation of the non-prompt lepton contamination

Quantity	WW	One/two b tags	$Z \to \tau\tau$	Same-sign
Number of tight leptons		Strictly	2	
Additional loose leptons		0		
Lepton charges		Opposite		Same
$p_{\mathrm{T}}^{\ell \max}$		>25 Ge	eV	
$p_{T}^{\hat{\ell}}$ min		>20 Ge	eV	
$m_{\ell\ell}$	>85 GeV	>85 GeV	< 85 GeV	>85 GeV
$p_{\mathrm{T}}^{\ell\ell}$		_	< 30 GeV	
Number of b-tagged jets	0	1/2	0	0
N _j		0/1/2/	\geq 3	
Variable	1 47 7		77	
		2		
Number of tight leptons	Strictl	y 3	Strictly 4	
Additional loose leptons		0		
Lepton $p_{\rm T}$	>25/10/2	20 GeV > 25/20/2	10/10 GeV ($p_{\rm T}$ ordered)
$ m_{\ell\ell}-m_Z $	<15 G	eV <15	GeV (both	pairs)
$m_{3\ell}$	$>100 \mathrm{C}$	GeV	_	
$m_{4\ell}$	—	^ \ \	>150 GeV	
$p_{\mathrm{T}}^{\mathrm{miss}}$	>30 G	eV	/ _	
Number of b-tagged jets		0		

W⁺W⁻ Measurement

Good agreement is found in all the jet bins

Results provided as a function of the number of jets: 0, 1, or ≥ 2

Data compared with **different MC generators**, MiNNLO provided the best agreement

Results are also provided as a function of the centre-of-mass energy

Inclusive result

 $\sigma^{WW}_{Inc} = 125.7 \pm 5.6$ pb

25% lower uncertainty wrt 2016

No particularly dominant uncertainty

Uncertainty source	$\Delta \mu$
Integrated luminosity	0.014
Lepton experimental	0.019
Jet experimental	0.008
b tagging	0.012
Nonprompt background	0.010
Limited sample size	0.017
Background normalization	0.018
Theory	0.011
Statistical	0.018
Total	0.044

- Measurement of the WZ production in the leptonic final state: μμμ, μμε, μεε, and eee
- Data from 2022 period is used: 34.7 fb⁻¹
- Inclusive and fiducial results are reported

- Measurement of the WZ production in the leptonic final state: μμμ, μμe, μee, and eee
- An MVA approach is performed to improve the lepton identification
- Three control regions are used to estimate the background contributions from data
 - ZZ
 - $\circ t\bar{t}Z$
 - *V*γ

Region	N_ℓ	$p_{\mathrm{T}}\{\ell_{Z}^{1},\ell_{Z}^{2},\ell_{\mathrm{W}}\}$	$N_{\rm OSSF}$	$ m(\ell_Z^1,\ell_Z^2)-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	$N_{\rm b \ tag}$	$\min(m(\ell,\ell'))$	$m(\ell_Z^1,\ell_Z^2,\ell_W)$
		(GeV)		(GeV)	(GeV)	C	(GeV)	(GeV)
SR	=3	>{25,15,25}	≥ 1	<15	>35	=0	>4	>100
ZZ CR	=4	>{25,15,25,15}	≥ 1	<15	-	=0	>4	>100
tīZ CR	=3	>{25,15,25}	≥ 1	<15	>35	>0	$>\!\!4$	>100
$X + \gamma CR$	=3	>{25,15,25}	≥ 1	-	\leq 35	=0	$>\!\!4$	<100

- Measurement of the WZ production in the leptonic final state: *µµµ*, *µµe*, *µee*, and *eee*
- An MVA approach is performed to improve the lepton ٠ identification
- Three control regions are used to estimate the • background contributions from data
 - $\circ ZZ$ ∘ *t*t*̄*Z

 - Vγ Ο

Region	N_ℓ	$p_{\mathrm{T}}\{\ell_Z^1,\ell_Z^2,\ell_W\}$	$N_{\rm OSSF}$	$ m(\ell_Z^1,\ell_Z^2)-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	$N_{ m b \ tag}$	$\min(m(\ell,\ell'))$	$m(\ell_Z^1,\ell_Z^2,\ell_W)$
		(GeV)		(GeV)	(GeV)	C C	(GeV)	(GeV)
SR	=3	>{25,15,25}	≥ 1	<15	>35	=0	>4	>100
ZZ CR	=4	>{25,15,25,15}	≥ 1	<15	-	=0	>4	>100
tīZ CR	=3	>{25,15,25}	≥ 1	<15	>35	>0	>4	>100
$X + \gamma CR$	=3	>{25,15,25}	≥ 1	-	\leq 35	=0	>4	<100

- Measurement of the WZ production in the leptonic final state: μμμ, μμε, μεε, and eee
- An MVA approach is performed to improve the lepton identification
- Three control regions are used to estimate the background contributions from data

• **ZZ**

- $\circ t\bar{t}Z$
- *V*γ

Region	N_ℓ	$p_{\mathrm{T}}\{\ell_Z^1,\ell_Z^2,\ell_W\}$	$N_{\rm OSSF}$	$ m(\ell_Z^1,\ell_Z^2)-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	$N_{\rm b \ tag}$	$\min(m(\ell,\ell'))$	$m(\ell_Z^1,\ell_Z^2,\ell_W)$
		(GeV)		(GeV)	(GeV)	0	(GeV)	(GeV)
SR	=3	>{25,15,25}	≥ 1	<15	>35	=0	>4	>100
ZZ CR	=4	>{25,15,25,15}	≥ 1	<15	-	=0	>4	>100
tīZ CR	=3	>{25, 15, 25}	≥ 1	<15	>35	>0	$>\!\!4$	>100
$X + \gamma CR$	=3	>{25,15,25}	≥ 1	-	\leq 35	=0	$>\!\!4$	<100

- Measurement of the WZ production in the leptonic final state: μμμ, μμe, μee, and eee
- The agreement is found to be **excellent** in all the flavour categories
- Different generators are checked: **Powheg, MATRIX**

μμμ

1.5

0.7

0.1

0.4

0.7

_

-

1.2

0.7

0.4

0.1

0.5

0.5

0.2

0.2

0.3

0.2

0.9

3.3

4.2

μµe

1.4

1.0

0.1

0.2

1.1

1.1

1.1

0.0

0.8

0.7

0.4

0.1

0.5

0.4

0.4

0.1

0.4

0.2

1.0

3.8

5.0

W[±]Z Measurement

•

Inclusive Source Measurement of the WZ production in the eee eeµ Integrated luminosity 1.5 1.5 1.4 leptonic final state: $\mu\mu\mu$, $\mu\mu e$, $\mu e e$, and e e e**Trigger efficiencies** 0.5 1.0 1.0 b tagging 0.1 0.1 0.1 Pileup 0.4 0.6 0.8 Fit performed in both flavour exclusive and Jet energy scales 0.9 1.3 0.7 **Electron ID efficiencies** 0.7 3.6 2.4 inclusive regions Electron reconstruction 4.0 2.9 1.2 Electron energy scale 0.1 0.1 0.1 Muon efficiencies 0.7 0.3 _ Breakdown of systematic uncertainties per Nonprompt normalization 0.7 1.6 0.5 flavour VVV normalization 0.4 0.4 0.4 tZq normalization 0.1 0.1 0.1 ZZ normalization 0.3 0.7 0.8 $t\bar{t}Z$ normalization 0.3 0.7 0.6 Dominated by statistical uncertainty $X + \gamma$ normalization 0.2 0.70.3 **VH** normalization 0.2 0.2 0.2 ISR/FSR 0.3 0.5 0.2 WZ theo (μ_R , μ_F , PDF) 0.2 0.2 0.2 The picture may change with future datasets: MC statistical 0.5 1.9 0.9 2023, 2024, 2025,... Statistical 2.0 5.3 4.6 Total 3.3 8.4 6.4

- Measurement of the WZ production in the leptonic final state: μμμ, μμε, μεε, and eee
- Similarly to the WW analysis, results are compared with previous CMS measurements

 $\sigma_{Inc}^{WZ} = 55.2 \pm 1.2(stat) \pm 1.2(syst) \pm 0.8(lumi) \pm 0.1(theo)$ pb

Measurements HGG CMS-HIG-23-014

- Measurement of inclusive and differential production cross sections
- Clean final state topology, even with a low branching ratio. The invariant mass can be precisely reconstructed
- Overall similar strategy than Full Run 2 result
- Again, data from 2022 is used: 34.7 fb⁻¹

Fiducial phase space
$\sqrt{p_T^{\gamma_1} p_T^{\gamma_2}} / m_{\gamma\gamma} > 1/3$
$p_T^{\gamma_2}/m_{\gamma\gamma} > 1/4$
I < 10 GeV
$ \eta < 2.5$

$H \rightarrow \gamma \gamma$ Measurement

- Photon resolution improved with a BDT
- Photon identification improved with a BDT \rightarrow reduce the non-prompt photon contamination
- The bad modelling of some photon reconstruction variables in MC is corrected using normalizing flows.
- Data-driven estimation of the background shape and normalization
- **Categorization** of the signal regions based on the di-photon resolution

$H \rightarrow \gamma \gamma$ Measurement

- Photon resolution improved with a BDT
- Photon identification improved with a BDT → reduce the non-prompt photon contamination
- The bad modelling of some photon reconstruction variables in MC is corrected using normalizing flows.
- Data-driven estimation of the background shape and normalization
- Categorization of the signal regions based on the di-photon resolution

Photon identification BDT score

Data

 $\pm 1\sigma$

 $\pm 2 \sigma$

160

S+B fit

$H \rightarrow \gamma \gamma$ Measurement

×10³ CMS Preliminary 34.7 fb⁻¹ (13.6 TeV) **Results in agreement with the SM expectation** S/(S+B) Weighted Events / GeV $H \rightarrow \gamma \gamma$, $m_{_{H}} = 125.38 \text{ GeV}$ 18 **All Categories** $\sigma_{fid} = 78 \pm 11(stat)^{+6}_{-5}(syst) = 78^{+13}_{-12}$ fb S/(S+B) weighted 16 14 **CMS** *Preliminary* 34.7 fb⁻¹ (13.6 TeV) 12 ····· B component ך ^{2.25} 1 µ עוע 2.00 MG5_aMC@NLO, NNLOPS 10 1.75 1.50 1.25 800 1.00 B component subtracted 600 F 0.75 400 200 0.50 -200 0.25 120 130 150 140 100 110 0.00 65 70 75 80 85 90 95 σ_{fid} (fb)

180

170

 $m_{\gamma\gamma}$ (GeV)

Differential results provided as a function of p_T^H , $|y_H|$, N_{jets}

Results dominated by the statistical uncertainties

Within the **systematics**, the **photon scale and resolution** dominates

The results are compared with different MC generators

Room for improvement with more Run 3 data

Systematic uncertainty	Magnitude
Photon energy scale and resolution group	+5.8%/-4.9%
Category migration from energy resolution	+3.5%/-3.9%
Integrated luminosity	$\pm 1.4\%$
Photon preselection efficiency	$\pm 1.4\%$
Energy scale non-linearity	+0.8%/-1.6%
Photon identification efficiency	$\pm 1.0\%$
Pileup reweighting	$\pm 0.8\%$

Differential results provided as a function of p_T^H , $|y_H|$, N_{jets}

Results dominated by the statistical uncertainties

Within the **systematics**, the **photon scale and resolution** dominates

The results are compared with different MC generators

Room for improvement with more Run 3 data

Systematic uncertainty	Magnitude
Photon energy scale and resolution group	+5.8%/-4.9%
Category migration from energy resolution	+3.5%/-3.9%
Integrated luminosity	$\pm 1.4\%$
Photon preselection efficiency	$\pm 1.4\%$
Energy scale non-linearity	+0.8%/-1.6%
Photon identification efficiency	$\pm 1.0\%$
Pileup reweighting	$\pm 0.8\%$

Differential results provided as a function of p_T^H , $|y_H|$, N_{jets}

Results dominated by the statistical uncertainties

Within the **systematics**, the **photon scale and resolution** dominates

The results are compared with different MC generators

Room for improvement with more Run 3 data

Systematic uncertainty	Magnitude
Photon energy scale and resolution group	+5.8%/-4.9%
Category migration from energy resolution	+3.5%/-3.9%
Integrated luminosity	$\pm 1.4\%$
Photon preselection efficiency	$\pm 1.4\%$
Energy scale non-linearity	+0.8%/-1.6%
Photon identification efficiency	$\pm 1.0\%$
Pileup reweighting	$\pm 0.8\%$

$H \rightarrow ZZ$ Measurement

- Measurement of inclusive fiducial cross section
- Clean final state topology. The invariant mass can be precisely reconstructed
- Irreducible background from qqZZ process
- Overall similar strategy than Full Run 2 result
- Again, data from 2022 is used: 34.7 fb⁻¹

Requirements for the H $ ightarrow 4\ell$ fiducial phase space				
Lepton kinematics and isolatio	n			
leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20~\mathrm{GeV}$			
next-to-leading lepton $p_{\rm T}$	$p_{ m T} > 10~{ m GeV}$			
additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5)~{ m GeV}$			
pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$			
$p_{\rm T}$ sum of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$			
Event topology				
existence of at least two SFOS lepton pairs, where leptons s	atisfy criteria above			
inv. mass of the Z_1 candidate	$40 { m GeV} < m(Z_1) < 120 { m GeV}$			
inv. mass of the Z_2 candidate	$12 \text{GeV} < m(Z_2) < 120 \text{GeV}$			
distance between selected four leptons	$\Delta R(\ell_i \ell_j) > 0.02$ for any $i \neq j$			
inv. mass of any opposite sign lepton pair	$m(\ell^+\ell'^-) > 4{ m GeV}$			
inv. mass of the selected four leptons	$105{\rm GeV} < m_{4\ell} < 160{\rm GeV}$			
the selected four leptons must originate from the H $ ightarrow 4\ell$ d	ecay			

$H \rightarrow ZZ \text{ Measurement}$

- Measurement of **inclusive** fiducial cross section
- Dedicated BDT for electron identification
- Results in agreement with the SM

 $\begin{array}{l} \mbox{Fit range} \\ 105 < m_{4l} < 160 \; {\rm GeV} \end{array}$

$H \rightarrow ZZ$ Measurement

- Results given as a function of the lepton flavor
- Among the systematics, the 4 muon channel is the most precise one
- And as a function of the center-of-mass energy

 $\sigma_{fid} = 2.94^{+0.53}_{-0.49}(stat)^{+0.29}_{-0.22}(syst)$ fb

29

$H \rightarrow ZZ$ Measurement

- Differential cross section measurements are provided as a function of p_T^H , $|y_H|$
- Results statistically dominated, more precise results may come with larger datasets

- The Run 3 data-taking period is in good shape, today we have >160 fb⁻¹
- The interest is slowly switching to Run 3 analysis, so we expect more results to come out soon
- Today, 4 nice Multiboson results have been shown
- Stay tuned for more experimental measurements!

BACKUP

W⁺W⁻ Measurement (2016 / 2022)

Signal/control region yields

	WW SR	Same-sign CR	$Z \rightarrow \tau \tau CR$	One b-tag CR	Two b-tag CR		WZ CR	ZZ CR
WW	16220 ± 650	81.7 ± 9.5	2662 ± 94	$\textbf{2220} \pm \textbf{180}$	248 ± 54	WZ	3470 ± 130	0.9 ± 0.1
Top quark	19760 ± 480	87.3 ± 8.4	1126 ± 34	63340 ± 750	55610 ± 620	ZZ	270 ± 29	599 ± 25
Z ightarrow au au	2124 ± 72	57.0 ± 9.3	45630 ± 590	227 ± 27	19.6 ± 7.9	Nonprompt	820 ± 120	< 1
WZ	487 ± 21	512 ± 24	97.6 ± 4.9	96.9 ± 6.3	11.8 ± 1.7	VVV	604 ± 37	54 ± 03
ZZ	37.1 ± 1.7	33.6 ± 1.7	66.0 ± 3.9	6.9 ± 0.5	1.0 ± 0.1	tVx	25.7 ± 3.1	2.1 ± 0.0 2.3 ± 0.2
Nonprompt	4860 ± 320	2390 ± 130	6550 ± 440	2630 ± 270	1640 ± 220	Licas	25.7 ± 5.1	2.5 ± 0.2
VVV	75.9 ± 3.7	25.8 ± 1.3	4.7 ± 0.4	33.7 ± 2.1	8.7 ± 0.8	niggs	33.4 ± 0.0	2.3 ± 0.9
tVx	10.7 ± 1.5	8.7 ± 2.7	0.7 ± 0.1	44.1 ± 3.2	52.1 ± 3.3	$\mathbf{v}\gamma$	28.3 ± 3.1	< 1
$V\gamma$	225 ± 18	232 ± 19	69.2 ± 7.6	43.2 ± 9.5	3.1 ± 0.9	Total	4732 ± 78	610 ± 25
Higgs	90 ± 14	27.5 ± 5.2	344 ± 52	29.3 ± 4.8	20.7 ± 3.2	Data	4732	610
Total	43890 ± 410	3460 ± 130	56550 ± 420	68670 ± 560	57610 ± 490			
Data	43898	3456	56551	68656	57617			

W⁺W⁻ Measurement (2016 / 2022)

Fiducial cross section per N-jets

Table 7: Inclusive fiducial cross sections and normalized cross sections obtained in the analysis. The uncertainty listed is the total uncertainty obtained from the fit to the yields. The expected predictions are obtained from POWHEG+PYTHIA. In brackets, the split of systematic and statistical uncertainties are reported.

Observable	Expected	Observed
Cross section (fb)	$812 \pm 34(31, 15)$	$813 \pm 35(32, 15)$
0-jet fraction	$0.648 \pm 0.015 (0.012, 0.009)$	$0.640 \pm 0.016(0.013, 0.009)$
1-jet fraction	$0.256 \pm 0.013 (0.008, 0.010)$	$0.243 \pm 0.013 (0.009, 0.010)$
\geq 2-jet fraction	$0.096 \pm 0.011(0.008, 0.008)$	$0.119 \pm 0.011 (0.008, 0.008)$

W⁺W⁻ Measurement (2016 / 2022)

Uncertainty source	(%)
Statistical	1.2
tt normalization	2.0
Drell–Yan normalization	1.4
W γ^* normalization	0.4
Nonprompt leptons normalization	1.9
Lepton efficiencies	2.1
b tagging (b/c)	0.4
Mistag rate (q/g)	1.0
Jet energy scale and resolution	2.3
Pileup	0.4
Simulation and data control regions sample size	1.0
Total experimental systematic	4.6
QCD factorization and renormalization scales	0.4
Higher-order QCD corrections and p_{T}^{WW} distribution	1.4
PDF and $\alpha_{\rm S}$	0.4
Underlying event modeling	0.5
Total theoretical systematic	1.6
Integrated luminosity	2.7
Total	5.7

Uncertainty source	$\Delta \mu$
Integrated luminosity	0.014
Lepton experimental	0.019
Jet experimental	0.008
b tagging	0.012
Nonprompt background	0.010
Limited sample size	0.017
Background normalization	0.018
Theory	0.011
Statistical	0.018
Total	0.044

W⁺W⁻ Measurement (2016 / 2022)

Signal region yields

Process	eee	eeµ	μµe	μμμ	Inclusive
Non prompt	25 ± 7	13 ± 5	24 ± 7	30 ± 10	93 ± 15
ZZ	25 ± 2	37 ± 1	49 ± 3	75 ± 3	186 ± 5
$X + \gamma$	12 ± 2	2 ± 0	24 ± 2	3 ± 0	41 ± 3
tīX	8 ± 1	11 ± 1	14 ± 1	21 ± 2	54 ± 3
VVV	4 ± 1	5 ± 2	7 ± 3	10 ± 4	27 ± 5
VH	3 ± 1	4 ± 1	5 ± 1	9 ± 2	20 ± 2
tZq	4 ± 1	5 ± 1	8 ± 1	11 ± 1	28 ± 2
Background	82 ± 8	78 ± 5	130 ± 9	160 ± 11	450 ± 17
ΨZ	410 ± 10	556 ± 12	768 ± 14	1096 ± 22	2830 ± 31
Data	491	643	869	1276	3279

Category	Accuracy	Fiducial cross section (fb)
eee	POWHEG MATRIX, NNLO QCD MATRIX, NNLO QCD × NLO EWK Measured	$\begin{array}{c} 68.0^{+2.3}_{-2.1}(\text{scale})\pm1.0(\text{PDF})\\ 77.0^{+1.8}_{-1.7}(\text{scale})\\ 75.4^{+1.7}_{-1.6}(\text{scale})\\ 72.0\pm6.1(\text{stat})\pm6.1(\text{syst})\pm4.0(\text{lumi})\pm0.5(\text{theo})\\ \end{array}$
eeµ	POWHEG MATRIX, NNLO QCD MATRIX, NNLO QCD × NLO EWK Measured	$\begin{array}{c} 68.0^{+2.3}_{-2.1}(\text{scale})\pm1.0(\text{PDF})\\ 75.0^{+1.8}_{-1.6}(\text{scale})\\ 73.4^{+1.7}_{-1.5}(\text{scale})\\ 73.9\pm3.5(\text{stat})\pm3.1(\text{syst})\pm1.1(\text{lumi})\pm0.3(\text{theo})\\ \end{array}$
μμε	POWHEG MATRIX, NNLO QCD MATRIX, NNLO QCD × NLO EWK Measured	$\begin{array}{c} 68.0^{+2.3}_{-2.1}(\text{scale})\pm1.0(\text{PDF})\\ 75.0^{+1.8}_{-1.6}(\text{scale})\\ 73.4^{+1.7}_{-1.5}(\text{scale})\\ \end{array}$ $71.2\pm2.9(\text{stat})\pm2.0(\text{syst})\pm1.0(\text{lumi})\pm0.1(\text{theo})\end{array}$
μμμ	POWHEG MATRIX, NNLO QCD MATRIX, NNLO QCD × NLO EWK Measured	$\begin{array}{c} 68.0^{+2.3}_{-2.1}(\text{scale})\pm1.0(\text{PDF})\\ 77.0^{+1.8}_{-1.7}(\text{scale})\\ 75.4^{+1.7}_{-1.6}(\text{scale})\\ 75.3\pm2.5(\text{stat})\pm1.5(\text{syst})\pm1.1(\text{lumi})\pm0.1(\text{theo})\\ \end{array}$
Inclusive	POWHEG MATRIX, NNLO QCD MATRIX, NNLO QCD × NLO EWK Measured	$\begin{array}{c} 271.9^{+9.0}_{-8.5}(\text{scale})\pm3.8(\text{PDF})\\ 304.0^{+7.1}_{-6.6}(\text{scale})\\ 298.1^{+6.9}_{-6.3}(\text{scale})\\ 297.6\pm6.4(\text{stat})\pm6.4(\text{syst})\pm4.2(\text{lumi})\pm0.5(\text{theo})\\ \end{array}$

W⁺Z Measurement (Run 2 / Run 3)

Accuracy	Total cross section (pb)
POWHEG	$50.5^{+2.6}_{-2.1}$ (scale) \pm 1.1 (PDF)
MATRIX, NNLO QCD	$55.0^{+1.2}_{-1.1}$ (scale)
MATRIX, NNLO QCD \times NLO EWK	54.7 $^{+\tilde{1}.\tilde{2}}_{-1.1}$ (scale)
eee (Measured)	$53.4\pm3.0(\mathrm{stat})\pm3.3(\mathrm{syst})\pm0.8(\mathrm{lumi})\pm0.2(\mathrm{theo})$
$ee\mu$ (Measured)	$54.8\pm2.6(ext{stat})\pm2.3(ext{syst})\pm0.8(ext{lumi})\pm0.2(ext{theo})$
$\mu\mu e$ (Measured)	$52.9\pm2.1(ext{stat})\pm1.4(ext{syst})\pm0.7(ext{lumi})\pm0.1(ext{theo})$
$\mu\mu\mu$ (Measured)	$55.9\pm1.9(ext{stat})\pm1.1(ext{syst})\pm0.8(ext{lumi})\pm0.1(ext{theo})$
Inclusive (Measured)	$55.2\pm1.2(ext{stat})\pm1.2(ext{syst})\pm0.8(ext{lumi})\pm0.1(ext{theo})$

Category or source	Total cross section
POWHEG	$42.5^{+1.6}_{-1.4}(ext{scale})\pm0.6(ext{PDF}) ext{pb}$
MATRIX, NNLO QCD	$51.2^{+1.2}_{-1.0}$ (scale) pb
MATRIX, NNLO QCD \times NLO EWK	$50.7^{+1.1}_{-1.0}$ (scale) pb
eee (Measured)	$53.2\pm2.7(\mathrm{stat})\pm2.3(\mathrm{syst})\pm1.1(\mathrm{lumi})\pm0.5(\mathrm{theo})\mathrm{pb}$
$ee\mu$ (Measured)	$48.1\pm1.7(\mathrm{stat})\pm1.8(\mathrm{syst})\pm1.1(\mathrm{lumi})\pm0.4(\mathrm{theo})\mathrm{pb}$
$\mu\mu e$ (Measured)	50.6 ± 1.3 (stat) ± 1.5 (syst) ± 1.1 (lumi) ± 0.5 (theo) pb
$\mu\mu\mu$ (Measured)	$50.8 \pm 1.0 (\text{stat}) \pm 1.5 (\text{syst}) \pm 1.1 (\text{lumi}) \pm 0.5 (\text{theo}) \text{pb}$
Combined (Measured)	$50.6\pm0.8(\mathrm{stat})\pm1.5(\mathrm{syst})\pm1.1(\mathrm{lumi})\pm0.5(\mathrm{theo})\mathrm{pb}$

Run 3

W⁺Z Measurement (Run 2 / Run 3)

Run	2
-----	---

Source	Combined	eee	eeµ	μμе	μμμ
Electron efficiency	0.6	3.2	1.8	0.9	
Muon efficiency	1.2		0.5	1.0	1.5
Electron energy scale	0.1	0.3	0.1	0.1	0.0
Muon energy scale	0.1	0.0	0.0	0.1	0.1
Trigger efficiency	0.7	0.7	0.8	0.7	0.7
Jet energy scale	0.9	0.8	0.7	1.0	0.9
b tagging	1.6	1.8	1.7	1.8	1.6
Pileup	0.9	1.0	1.2	0.8	0.7
ISR	0.2	0.2	0.2	0.2	0.2
Nonprompt normalization	0.6	0.7	0.8	0.6	0.7
Nonprompt shape	1.0	1.2	1.0	0.9	0.9
VVV normalization	0.5	0.6	0.5	0.5	0.5
VH normalization	0.2	0.1	0.2	0.2	0.2
WZ EWK normalization	0.2	0.2	0.2	0.2	0.2
ZZ normalization	0.3	0.3	0.3	0.3	0.3
$t\bar{t}Z$ normalization	0.3	0.4	0.4	0.4	0.3
tZq normalization	0.4	0.4	0.4	0.4	0.4
$X\gamma$ normalization	0.2	0.5	0.1	0.5	0.1
Total systematic uncertainties	2.8	4.3	3.7	3.0	3.0
Integrated luminosity	2.1	2.2	2.2	2.1	2.1
Statistical uncertainty	1.5	5.0	3.4	2.5	2.0
PDF+scale	0.9	0.9	0.9	0.9	0.9

	Run 3				
Source	Inclusive	eee	eeµ	μµe	μμμ
Integrated luminosity	1.5	1.5	1.4	1.4	1.5
Trigger efficiencies	0.5	1.0	1.0	1.0	0.7
b tagging	0.1	0.1	0.1	0.1	0.1
Pileup	0.4	0.6	0.8	0.2	0.4
Jet energy scales	0.9	1.3	0.7	1.1	0.7
Electron ID efficiencies	0.7	3.6	2.4	1.1	-
Electron reconstruction	1.2	4.0	2.9	1.1	-
Electron energy scale	0.1	0.1	0.1	0.0	-
Muon efficiencies	0.7	-	0.3	0.8	1.2
Nonprompt normalization	0.7	1.6	0.5	0.7	0.7
VVV normalization	0.4	0.4	0.4	0.4	0.4
tZq normalization	0.1	0.1	0.1	0.1	0.1
ZZ normalization	0.3	0.8	0.7	0.5	0.5
t $\overline{t}Z$ normalization	0.3	0.7	0.6	0.4	0.5
$X + \gamma$ normalization	0.2	0.7	0.3	0.4	0.2
VH normalization	0.2	0.2	0.2	0.1	0.2
ISR/FSR	0.3	0.5	0.2	0.4	0.3
WZ theo (μ_R , μ_F , PDF)	0.2	0.2	0.2	0.2	0.2
MC statistical	0.5	1.9	0.9	1.0	0.9
Statistical	2.0	5.3	4.6	3.8	3.3
Total	3.3	8.4	6.4	5.0	4.2

- The photon BDT regresses the parameters of the double-sided crystal ball function with the optimal energy resolution
- It improves the resolution to up to 1% in the barrel and 2.4% in the end-caps
- The CMS water leak during the 2022 datataking period (solved issue) reduced the signal efficiency by 1.5%
- The mass resolution estimator is decorrelated to the invariant mass of the di-photon system using a quantile morphing algorithm

$H \rightarrow \gamma \gamma$ Measurement

The resulting bin $\frac{\sigma_m}{m}$ categories are [0, 0.01), [0.01, 0.014) and [0.014, ∞).

44

$H \rightarrow ZZ$ Measurement

	σ_{fid} (fb)		
2e2µ (fb)	$1.63^{+0.37}_{-0.33}$ (stat.) $^{+0.14}_{-0.12}$ (syst.)		
4μ (fb)	$0.46^{+0.18}_{-0.15}$ (stat.) $^{+0.03}_{-0.02}$ (syst.)		
4e (fb)	$0.83^{+0.34}_{-0.29}$ (stat.) $^{+0.16}_{-0.10}$ (syst.)		
Inclusive (fb)	$2.94^{+0.53}_{-0.49}$ (stat.) $^{+0.29}_{-0.22}$ (syst.)		

Process	4 <i>e</i>	4μ	2e2µ	4ℓ
Signal(<i>m_H</i> =125.38 GeV)	$10.79\substack{+0.81 \\ -1.44}$	$11.74\substack{+0.21 \\ -0.26}$	$30.54\substack{+1.56 \\ -2.63}$	$53.07^{+2.38}_{-4.14}$
nonfid	$0.35\substack{+0.03 \\ -0.05}$	$0.26\substack{+0.00\\-0.01}$	$0.32\substack{+0.02\\-0.03}$	$0.93\substack{+0.04 \\ -0.08}$
nonres	$0.11\substack{+0.01 \\ -0.02}$	$0.22\substack{+0.00\\-0.00}$	$0.33\substack{+0.02 \\ -0.03}$	$0.65\substack{+0.03 \\ -0.05}$
Total signal	$11.25\substack{+0.85 \\ -1.50}$	$12.22\substack{+0.22\\-0.27}$	$31.19\substack{+1.59 \\ -2.69}$	$54.65^{+2.45}_{-4.26}$
qqZZ	$13.25^{+1.06}_{-1.96}$	$33.13^{+1.80}_{-1.78}$	$38.70^{+2.41}_{-4.06}$	$85.07^{+4.59}_{-7.20}$
ggZZ	$1.89\substack{+0.22\\-0.34}$	$3.90\substack{+0.46 \\ -0.40}$	$3.95\substack{+0.44 \\ -0.56}$	$9.74\substack{+1.08 \\ -1.24}$
ZX	$4.34\substack{+1.20 \\ -1.54}$	$14.23^{+6.49}_{-2.22}$	$17.16\substack{+3.27 \\ -3.60}$	$35.73^{+7.61}_{-4.35}$
Sum of backgrounds	$19.48^{+1.47}_{-2.97}$	$51.26^{+7.65}_{-2.30}$	$59.80^{+3.89}_{-5.84}$	$130.54\substack{+9.38\\-8.27}$
Total expected	$30.72^{+2.10}_{-4.29}$	$63.48^{+7.73}_{-2.36}$	$90.99\substack{+4.67 \\ -8.03}$	$185.19\substack{+9.66\\-11.91}$

$H \rightarrow ZZ$ Measurement

46