

EW Sudakov Logarithms in EW Vector-Boson Production

Ansgar Denner, Würzburg

Multi-Boson Interactions 2024 Toulouse, September 25–27, 2024

Introduction

- 2 Logarithmic approximation of EW corrections
- 3 Automation of leading virtual EW logarithms
- 4 Sample results for specific processes involving weak bosons

Introduction

- 2 Logarithmic approximation of EW corrections
- 3 Automation of leading virtual EW logarithms
- 4 Sample results for specific processes involving weak bosons

5 Conclusion

- With increasing experimental precision EW corrections become more and more important
- automated tools for NLO EW corrections exist (GOSAM, MADGRAPH5_AMC@NLO, NLOX, OPENLOOPS, RECOLA)
- full EW NLO corrections for multiboson processes demanding
- EW NLO corrections not included in standard tool chains of LHC experiments
- dominant EW corrections at high energies result from enhanced logarithms
 ⇒ Sudakov logarithms
- Idea: use logarithmic EW corrections
 - as approximation to full NLO corrections
 - to resum leading corrections beyond NLO

Leading EW corrections for energies $Q \lesssim 300 \, \text{GeV}$:

- corrections originating from soft photons or collinear massless fermion-antifermion or (anti)fermion-photon pairs $\propto \alpha \ln(m_f/Q)$ QED corrections: typical size $\mathcal{O}(10\%)$
 - YFS resummation (Yennie-Frautschi-Suura)
 - electromagnetic parton showers
- corrections related to the running of the electromagnetic coupling $\alpha(Q) \propto \alpha \ln(m_f/Q)$, typical size $\sim 6\%$

\Rightarrow incorporated by suitable choice of renormalisation of α

- $\alpha(0)$ for external isolated photons
- $\alpha(M_{\rm Z})$ or $\alpha_{G_{\mu}}$ otherwise

$$\alpha_{G_{\mu}} = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathrm{W}}^2 \left(1 - \frac{M_{\mathrm{W}}^2}{M_Z^2} \right)$$

• top-mass corrections $\propto \alpha m_{\rm t}^2/(M_{\rm W}^2 s_{\rm w}^2)$, typical size $\sim 3\%$ \Rightarrow (partially) incorporated by using $\alpha_{G_{\mu}}$ UNIVERSITÄT Origin of leading EW corrections

AP2

For energies $Q \gtrsim 300 \, {\rm GeV}$ in addition:

• logarithmic EW corrections involving $\alpha \ln(Q/M_W)$ and $\alpha \ln^2(Q/M_W)$ typical size of double logarithms (always negative)

$$\frac{\alpha}{4\pi s_{\rm w}^2}\ln^2\frac{s}{M_{\rm W}^2}=6.6\%~(18\%)~@\,1\,{\rm TeV}~(5\,{\rm TeV})$$

typical size of single logarithms (in general positive, larger coefficients)

$$\frac{\alpha}{4\pi s_{\rm w}^2} \ln \frac{s}{M_{\rm W}^2} = 1.3\% \ (2.1\%) \ @1\,{\rm TeV} \ (5\,{\rm TeV})$$

double and single EW logarithms dominant in TeV range

beware:

- typically cancellations between leading and subleading logarithms
- additional sources of large logarithms for ratios of invariants $\alpha \ln(s/t)$ and $\alpha \ln^2(s/t)$ in specific regions of phase space

Introduction

2 Logarithmic approximation of EW corrections

Automation of leading virtual EW logarithms

4 Sample results for specific processes involving weak bosons

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- Large EW corrections in tails of distributions realised since the 1990ies Kuroda, Moultaka, Schildknecht 1991; Beenakker et al. 1993; Denner et al. hep-ph/9503442, hep-ph/9612390; Beccaria et al. hep-ph/9805250
- resummation of EW double logarithms Fadin et al. hep-ph/9910338
- resummation of subleading logarithms using infrared evolution equations Kühn et al. hep-ph9912503, hep-ph/0106298; ... Melles hep-ph/0104232, ...
- Bloch–Nordsieck violation of EW corrections M. Ciafaloni, P. Ciafaloni, Comelli, hep-ph/0001142
- general framework for one-loop virtual EW logarithms Denner, Pozzorini, hep-ph/0010201, hep-ph/00104127
- results EW two-loop Sudakov logarithms Hori et al. hep-ph/0007329; Beenakker, Werthenbach hep-ph/0120030; Denner et al. hep-ph/0301241; Jantzen et al. hep-ph/0504111, ...
- EW Sudakov corrections using Soft Collinear Effective Theory (SCET) Chiu, Golf, Kelley, Manohar 0709.2377, 0806.1240, ...

Bloch-Nordsieck violation of EW logarithms

Initial states carry non-abelian charges (weak isospin) ⇒ EW Sudakov double logarithms do not cancel in inclusive observables! M. Ciafaloni, P. Ciafaloni, Comelli, hep-ph/0001142

example: ${\rm W}$ emission from incoming electron

 \Rightarrow different hard matrix elements in real and virtual corrections

$$\Delta \sigma_{\mathrm{e^+e^-}} \propto (|\mathcal{M}_0(\mathrm{e^+}\nu_{\mathrm{e}})|^2 - |\mathcal{M}_0(\mathrm{e^+e^-})|^2)$$

result

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

$$\Delta \sigma^{\mathrm{LL}}_{\mathrm{e^+e^-}} = (\sigma^{\mathrm{LL}}_{\mathrm{e^+}\nu_{\mathrm{e}}} - \sigma^{\mathrm{LL}}_{\mathrm{e^+e^-}}) \frac{\alpha}{4\pi s^2_{\mathrm{w}}} \ln^2 \frac{s}{M^2_{\mathrm{W}}} = -\Delta \sigma^{\mathrm{LL}}_{\mathrm{e^+}\nu_{\mathrm{e}}}$$

cancellation recovered by summing over complete multiplets (colour average in QCD!)

Toulouse, Multi-Boson Interactions, 25. September, 2024

General framework for all mass-singular EW logarithms in the Sudakov limit: $r_{kl} = (p_k + p_l)^2 \gg M_W^2$ for all k, l for arbitrary non-mass-suppressed virtual matrix elements Denner, Pozzorini hep-ph/0010201

Soft-collinear logarithms

 $k, l = 1, \dots n$ external legs

eikonal approximation, high-energy limit \Rightarrow

$$\delta \mathcal{M}^{i_1 \dots i_n} = \frac{\alpha}{4\pi} \frac{1}{2} \sum_{k=1}^n \sum_{l \neq k} \sum_{V = \gamma, Z, W^{\pm}} I^V_{i'_k i_k}(k) I^V_{i'_l i_l}(l) \mathcal{M}^{i_1 \dots i'_k \dots i'_l \dots i_n}_0 \ln^2 \frac{-r_{kl} - i\epsilon}{M_V^2}$$

with gauge coupling matrices $I^V_{i'_k,i_k}$

$$\frac{\phi_{i_k} \phi_{i'_k}}{\langle V_{\mu} \rangle}$$

UNIVERSITAT General formalism for one-loop EW logarithms (cont.)

split soft-collinear logarithms in universal and angular-dependent part

leading soft-collinear logarithms

• gauge invariance \Rightarrow single sum over external legs

subleading soft-collinear logarithms

- given by sum over pairs of external legs
- angular-dependent $\left(\ln \frac{|r_{kl}|}{s} = \ln \frac{1 + \cos \theta_{kl}}{2}\right)$
- depend on SU(2) × U(1) rotated Born matrix elements since $I^{W^{\pm}}_{i'_{k}i_{k}}$ non-diagonal (e.g. $e \rightarrow \nu_{e}$)

regular logarithms

• not part of a consistent expansion, but potentially numerically relevant

Collinear logarithms

collinear-singular diagrams factorize into collinear factor times Born matrix element owing to gauge invariance/Ward identities hep-ph/0014127

combine with external-line wave-function renormalisation

$$\Rightarrow \qquad \delta^{\mathrm{C}} \mathcal{M}^{i_1 \dots i_n} = \frac{\alpha}{4\pi} \sum_{k=1}^n \mathcal{M}_0^{i_1 \dots i'_k \dots i_n} \delta^{\mathrm{C}}_{i'_k i_k}$$

universal factors for external particles:

- associated with single external lines (factorisation)
- δ^{C} in general non-diagonal owing to mixing
- longitudinal gauge bosons behave as Goldstone bosons (Ward identity)

logarithms from parameter renormalisation

• contribute as counterterms (in high-energy approximation)

Establishment of $\mathsf{SCET}_{\mathrm{EW}}$ Chiu, Golf, Kelley, Manohar 0709.2377, 0806.1240, \dots

treatment of virtual EW corrections in $\mathsf{SCET}_{\mathrm{EW}}$

Julius-Maximilians-

WÜRZBURG

- provides resummation of EW logarithms
- includes finite terms in high-energy limit via matching
- neglects power-suppressed terms of order $M_{
 m W}^2/r_{kl}$

 $\begin{array}{ll} \mbox{implementation in Monte Carlo code} & \mbox{Denner, Rode 2402.10503} \\ \mbox{master formula (high scale $\mu_{\rm h} \sim \sqrt{s}$, low scale $\mu_{\rm h}$)) = $M_{\rm W}$ } \end{array}$

$$\mathcal{M}_{\text{SCET}} = \sum_{l,j} D_{1l}(\mu_l) \left[\hat{P} \exp\left(-\int_{\mu_l}^{\mu_h} \gamma(\mu) \, \mathrm{d} \ln \mu\right) \right]_{lj} \mathcal{M}_j(\mu_h)$$

with (l, j run over all processes related by SU(2) transformations)

- $\mathcal{M}_j(\mu_h)$: matrix elements in high-energy limit process dependent contain no mass logarithms but logarithms $\ln^2(r_{kl}/s)$, $\ln(r_{kl}/s)$
- $\gamma(\mu)$: anomalous dimension matrix, universal provides EW Sudakov logarithms and their resummation
- $D_{1l}(\mu_l)$: low-scale SCET_{EW} corrections, universal involve a single logarithm and finite mass-dependent terms

Logarithms/singularities in real corrections

arise from integration over phase space \Rightarrow implicit logarithms

real photon radiation

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- full inclusion Denner, Rode 2402.10503
 - complexity of LO calculation
 - cancels IR singularities
 - integrated subtraction terms must be expanded in high-energy limit
- omission of logarithms related to photon Pagani, Zaro 2110.03714
 - in sufficiently inclusive quantities real and virtual QED logarithms cancel
 - \Rightarrow discard photon contribution from virtual Sudakov logarithms
 - consistent at NLO but inconsistent for resummation

real emission of EW vector bosons

- separate IR-finite contribution, experimentally identifiable
- can be included as extra LO process if needed
- at LHC typically only a small fraction remains unresolved and compensates part of virtual corrections Baur hep-ph/0611241.

At very high energies (in particular for lepton colliders), real EW corrections could/should be treated in analogy to QCD and QED (with additional ingredients/difficulties, e.g. from longitudinal polarisation) \Rightarrow EW splitting functions, EW jets, EW parton showers

Some existing work

• EW splitting functions

Chen, Han, Tweedie 1611.00788, Nardi, Ricci, Wulzer 2405.08220

- EW Parton Distribution and fragmentation functions Bauer, Ferland, Webber 1703.08562, Bauer, Provasoli, Webber 1806.10157, Fornal, Manohar, Waalewijn 1803.06347, Bauer, Webber 1806.10157
- EW showers

Christiansen, Sjöstrand 1401.5238, Kleiss, Verheyen 2002.09248, Brooks, Skands, Verheyen 2108.10786, Masouminia, Richardson 2108.10817

• EW parton distributions for lepton colliders Han, Ma, Xie 2007.14300, 2103.09844, Ruiz, Costantini, Maltoni, Mattelaer, 2111.02442, Garosi, Marzocca, Trifinopoulos 2303.16964

multiple emission of heavy vector bosons not relevant for LHC!

Introduction

Logarithmic approximation of EW corrections

3 Automation of leading virtual EW logarithms

4 Sample results for specific processes involving weak bosons

5 Conclusion

General results for virtual EW logarithmic corrections to arbitrary non-mass suppressed processes in Sudakov limit from Denner, Pozzorini hep-ph/0010201 implemented in

• ALPGEN (specific processes)

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- MCFM (specific processes) Campbell et al. 1608.03356
- SHERPA (general processes) Bothmann, Napoletano 2006.14635
- MADGRAPH5_AMC@NLO (general processes) Pagani, Zaro 2110.03714 Pagani, Vitos, Zaro 2309.00452; Ma, Pagani, Zaro 2409.09129

Chiesa et al. 1305.6837

• OPENLOOPS (general processes) Lindert, Mai 2312.07927

optionally including some universal subsubleading non-mass-singular terms

Non-logarithmic terms can be consistently included via SCET_{EW}. Chiu, Manohar et al. 1409.1918 and refs. therein. Non-logarithmic terms are process dependent! Recent implementation of SCET approach for di-boson processes in Monte Carlo integrator based on RECOLA2 Denner, Rode 2402.10503

- Algorithm/automation of leading EW logarithms only applies to virtual corrections
- simple formulas, complexity of tree-level calculation
- not directly applicable to processes with resonances $r_{kl} \sim M_W^2$ Sudakov limit requires $r_{kl} \gg M_W^2$ for all k, l
- $\bullet\,$ non-logarithmic terms neglected \Rightarrow typical accuracy of few percent
- non-logarithmic terms may reach up to 10% (e.g. for $e^+e^- \rightarrow W^+_L W^-_L$ for $\sqrt{s} = 3 \text{ TeV}$)
- logarithmic approximation (LA) often not useful for inclusive quantities dominated by small scales, small EW corrections of $O(\alpha/(s_w^2 \pi)) \sim 1\%$
- quality of LA needs to be checked case by case depends on process, distribution, and phase-space region

Modification/extension of logarithmic approximation

• Denner, Pozzorini hep-ph/0010201: imaginary part neglected in

Julius-Maximilians-

WÜRZBURG

$$\ln^2 \frac{-r_{kl} - i\epsilon}{M^2} = \ln^2 \frac{|r_{kl}|}{M^2} - 2i\pi\theta(r_{kl}) \ln \frac{|r_{kl}|}{M^2}$$

since irrelevant for $2 \rightarrow 2$ processes (real amplitudes!) needed for more complicated processes

• implementations in MADGRAPH5_AMC@NLO and OPENLOOPS contain in addition to logarithms of hep-ph/0010201 $\ln^2 \frac{r_{kl}}{s}$ terms resulting from

$$\ln^2 \frac{|r_{kl}|}{M^2} = \ln^2 \frac{s}{M^2} + 2\ln \frac{s}{M^2} \ln \frac{|r_{kl}|}{s} + \ln^2 \frac{|r_{kl}|}{s}$$

improve approximation in many cases, but not a result of a consistent expansion

• implementation in MADGRAPH5_AMC@NLO contains logarithmic corrections from QCD corrections (translated from QED results) relevant for processes with contributions of different orders in α_s at LO

Introduction

- Logarithmic approximation of EW corrections
- 3 Automation of leading virtual EW logarithms

4 Sample results for specific processes involving weak bosons

5 Conclusion

Large NLO EW corrections to VBS processes

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

process	$\sigma_{ m LO}^{{\cal O}(lpha^6)}$ [fb]	$\Delta \sigma_{ m NLO, EW}^{\mathcal{O}(lpha^7)}$ [fb]	$\delta_{\rm EW}$ [%]
Biedermann et al. 1708.00268	(Dittmaier et al.	2308.16716)	
$\mathrm{pp} ightarrow \mu^+ u_\mu \mathrm{e}^+ u_\mathrm{e} \mathrm{jj}$ (W ⁺ W ⁺)	1.4178(2)	-0.2169(3)	-15.3
Denner et al. 1904.0088			
$\mathrm{pp} ightarrow \mu^+ \mu^- \mathrm{e}^+ u_\mathrm{e} \mathrm{jj} \; \mathrm{(ZW^+)}$	0.25511(1)	-0.04091(2)	-16.0
Denner et al. 2009.00411			
$\mathrm{pp} ightarrow \mu^+ \mu^- \mathrm{e^+ e^- jj}$ (ZZ)	0.097681(2)	-0.015573(5)	-15.9
Denner et al. 2202.10844			
$\mathrm{pp} ightarrow \mu^+ \mu^- \mathrm{e^+ e^- jj}$ (W ⁺ W ⁻)	2.6988(3)	-0.307(1)	-11.4

- EW corrections similar for all processes and rather independent of cuts \Rightarrow intrinsic feature of VBS process
- smaller corrections to W^+W^- due to Higgs resonance in fiducial phase space (Higgs contribution about 25%, corresponding EW corrections -6.5%)
- $\sigma^{\rm LO}$ receives sizeable contributions involving large invariants $r_{kl} \gg M_{\rm W}^2$

Source of large EW corrections for VBS

Double-pole approximation (DPA) for outgoing W bosons effective vector-boson approximation (EVBA) for incoming W bosons

• DPA and EVBA reduce discussion to $V_1V_2 \rightarrow V_3V_4$

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- $\bullet\,$ DPA accurate for cross section within 1%
- EVBA crude approximation ($\sim 50\%$) Kuss, Spiesberger '96, Dittmaier et al. '23 sufficient to understand dominant effects

high-energy, logarithm. approximation (LA) for $V_1V_2
ightarrow V_3V_4$ Denner, Pozzorini '00

$$\begin{split} \mathrm{d}\sigma_{\mathrm{LL}} &= \mathrm{d}\sigma_{\mathrm{LO}} \left[1 - \frac{\alpha}{4\pi} 4 C_{\mathrm{W}}^{\mathrm{EW}} \ln^2 \left(\frac{Q^2}{M_{\mathrm{W}}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\mathrm{W}}^{\mathrm{EW}} \ln \left(\frac{Q^2}{M_{\mathrm{W}}^2} \right) \right] \\ C_{\mathrm{W}}^{\mathrm{EW}} &= \frac{2}{s_{\mathrm{w}}^2}, \quad b_{\mathrm{W}}^{\mathrm{EW}} = \frac{19}{6s_{\mathrm{w}}^2} \quad \text{ for transverse W bosons, } \quad Q \to M_{4\ell} \end{split}$$

(double EW logs, collinear single EW logs, and single logs from parameter renormalisation included) (angular-dependent logarithms omitted, $\ln \frac{t}{u} \ln \frac{Q}{M_W}$)

large NLO EW corrections intrinsic feature of VBS

Simple formula for total cross section

$$d\sigma_{\rm LL} = d\sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm EW} \ln^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm EW} \ln \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

process	$\delta_{\rm EW}$ [%]	$\delta_{\rm EW}^{\rm log, diff}$ [%]	$\delta_{\rm EW}^{\rm log,int}$ [%]	$\langle M_{4\ell} \rangle$ [GeV]
$pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$	-16.0	-15.0	-16.1	390
$pp \rightarrow \mu^+ \mu^- e^+ \nu_e jj$	-16.0	-16.4	-17.5	413
$pp \rightarrow \mu^+ \mu^- e^+ e^- jj$	-15.9	-14.8	-15.8	385

- surprisingly good agreement with complete calculation
- large EW corrections are due to large gauge couplings of vector bosons $(C^{\rm EW})$ and large scale $Q \sim \langle M_{4\ell} \rangle \sim 400 \, {\rm GeV}$
- angular-dependent logarithms depend on process $\sim 1{-}2\%$ owing to cancellations

large NLO EW corrections intrinsic feature of VBS

NLO EW corrections to distribution in transverse momentum of W boson

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Bothmann, Napoletano 2006.14635 (Sherpa)

- NLO EW_{virt} contains only virtual EW corrections with IR subtraction using Catani–Seymour dipoles
- LO+NLL: EW logarithms in $\mathcal{O}(\alpha)$ via factor $(1+K_{\rm NLL})$
- LO+NLL (resum): EW logarithms naively resummed $\exp(1 + K_{\text{NLL}})$
- NLO EW contains photon-induced contributions and real corrections
- NLO EW (jet veto) contains veto on real radiation
- few percent difference between $$\rm LO+NLL$$ and EW_{virt} approximation up to $1\,{\rm TeV}$
- real contributions enhance corrections
- can be eliminated by jet veto

UNIVERSITÄT Logarithmic approximation for $u\bar{u} \rightarrow ZZ \ (10 \, TeV)$ WÜRZBURG

Virtual EW corrections to polarised squared matrix elements with IR-scale set to \sqrt{s} as function of the scattering anglePagani, Zaro 2110.03714 (Madgraph)

Results for different polarisations of quarks and (on-shell) Z bosons (different colours)

Virt (dots) full virtual corrections $s \rightarrow r_{kl}$ ON (solid): LA with $\ln^2(t/s)$ $s \rightarrow r_{kl}$ OFF (dashed): LA without $\ln^2(t/s)$ terms

observations:

- for small angles $\alpha \ln^2(t/s)$ terms contribute 35%
- finite terms amount to 10%
- \Rightarrow inclusion of $\ln^2(t/s)$ terms improves approximation

Logarithmic approximation for $pp \rightarrow W^+W^+W^-$ (100 TeV)

NLO EW corrections for distribution in the transverse momentum of the third leading W boson Pagani, Zaro 2110.03714 (Madgraph)

- photon-induced processes not included in LA as in NLO EW, no γ (dashed)
- $s \rightarrow r_{kl}$ (solid) contains squared angular logarithms $\ln^2(t/s)$, (dashed) does not
- SDK₀: photon treated as massive with mass $M_{\rm W}$ SDK_{weak}: all electromagnetic logarithms removed (apart from parameter renormalisation)
- FW corrections reach -200%
- LA SDK_{weak} with $s \rightarrow r_{kl}$ reproduces relative EW corrections (excluding photon-induced) within 10%

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

UNIVERSITÄT Logarithmic approximation for $pp \rightarrow ZZ (13 \text{ TeV})$

Distribution in invariant mass of Z-boson pair Lindert, Mai 2312.07927 (OpenLoops) virtual EW corr. with IR poles subtracted via Catani–Seymour I operator NLO_{VI} EW NLL_{VI} EW contains $\ln^2(t/s)$ terms, NLL_{VI} EW does not

LA requires $r_{kl} \gg M_W^2$ for all invariants

 \Rightarrow not directly applicable to processes with resonances

 $\begin{array}{ll} \mbox{solution: narrow-width approximation or pole approximation} \\ pp \rightarrow e^+ \nu_e \mu^- \nu_\mu & \Rightarrow & pp \rightarrow W^+ W^-, \, W^+ \rightarrow e^+ \nu_e, \, W^- \rightarrow \mu^- \nu_\mu \\ & \mbox{(and resonant W-boson propagators)} \end{array}$

- LA applicable to $pp \to W^+W^-$
- $\bullet\,$ no large logarithms in $W^- \to \mu^- \nu_\mu$ and $W^+ \to e^+ \nu_e$

problem: restricted accuracy of narrow-width/pole approximation

proposal by Lindert, Mai 2312.07927

combine off-shell and on-shell processes via probabilities based on kinematic projectors P(k) to include logarithms for both simultaneously probability for on-shell boson:

$$P(k) = \left|\frac{\mu^2 - w^2 M^2 \Gamma^2}{(k^2 - M^2 + \mathrm{i} w M \Gamma)^2 + \mu^2}\right| = \begin{cases} 1 & \text{if } k^2 \to M^2 \\ 0 & \text{if } k^2 \to \infty \end{cases}$$

(w=10 scaling factor, $\mu^2=M^2-\mathrm{i}M\Gamma$)

Logarithmic approximation for $pp \to e^+e^-\mu^+\mu^-$

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Distribution in invariant mass $m_{\mu^+e^-}$

LA for processes with resonances using kinematic projectors Lindert, Mai 2312.07927 (OpenLoops) NLO_{VI}EW : IR-subtracted virtual NLO **FW** corrections NLL'_{VMB}EW : LA for combined full and on-shell process \Rightarrow approximates within few % NLL'_{VMP} EW ext-only : LA for full process \Rightarrow deviates up to 20% ZZ NLL'_{VMP} : LA for on-shell process \Rightarrow approximates within few %

Quality of on-shell approximation depends on distribution!

Logarithmic approximation for $pp \to e^+ e^- \mu^+ \mu^-$

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Distribution in transverse momentum $p_{\mathrm{T},\mu^+\mathrm{e}^-}$

LA for processes with resonances using kinematic projectors Lindert, Mai 2312.07927 (OpenLoops) NLO_{VI}EW : IR-subtracted virtual NLO EW corrections

 $\begin{array}{l} \mathsf{NLL'}_{V_{\mathrm{MR}}}\mathsf{EW} \ : \ \mathsf{LA} \ \text{for combined full and} \\ & \text{on-shell process} \\ & \Rightarrow \text{approximates within few \%} \end{array}$

 $\begin{array}{l} {\sf NLL'}_{V_{\rm MR}} {\sf EW \ ext-only} \ : \ {\sf LA \ for \ full \ process} \\ \Rightarrow {\sf deviates \ up \ to \ } 20\% \end{array}$

 $\begin{array}{l} \mbox{ZZ NLL'}_{V_{\rm MR}} \ : \ \mbox{LA for on-shell process} \\ \Rightarrow \mbox{deviates up to } 20\% \end{array}$

Quality of on-shell approximation depends on distribution!

virtual EW corrections to distribution in μ production angle for longitudinal W bosons

- SCET neglects all power-suppressed corrections $\propto M_{\rm W}^2/s$
- SCET deviates by up to 5% at LO ($\Delta_{\rm SCET})$
- SCET $\mathcal{O}(\alpha)$ reproduces full $\mathcal{O}(\alpha)$ to better than 1% $(\delta_{\text{FO}}^{\text{virt}} - \delta_{\text{SCET}}^{\text{virt}})$ (relative corrections in SCET)
- LA deviates by up to 13% from full NLO result

$$e^+e^- \rightarrow W^+_T W^-_T \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau \tau^-$$
 for $\sqrt{s} = 3 \, TeV$

individual SCET_{EW} virtual corrections to distribution in τ production angle for transverse W bosons

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Denner, Rode 2402.10503

- SCET neglects all power-suppressed corrections
- SCET $\mathcal{O}(\alpha)$ reproduces full $\mathcal{O}(\alpha)$ to better than 0.5%
- O(α) corrections dominated by double logarithms (DL) and
 angular-dep. logarithms (Soft)
- non-logarithmic corrections in high-scale matching (HSM), in low-scale matching (LSM), and in corrections to boson decay (Decay)
- 20% corrections in HSM [contains all(!) $\ln^2(s/t)$ and $\ln(s/t)$ terms]
- -4% corrections in LSM

$$e^+e^- \rightarrow W^+_L W^-_L \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau \tau^-$$
 for $\sqrt{s}=3\,{\rm TeV}$

individual SCET_{EW} virtual corrections to distribution in μ energy for longitudinal W bosons

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Denner, Rode 2402.10503

- SCET neglects all power-suppressed corrections
- SCET $\mathcal{O}(\alpha)$ reproduces full $\mathcal{O}(\alpha)$ to better than 1%
- O(α) corrections dominated by double logarithms (DL) and
 angular-dep. logarithms (Soft)
- non-logarithmic corrections in high-scale matching (HSM), in low-scale matching (LSM), and in corrections to boson decay (Decay)
- 7% constant corrections in HSM [contains all(!) $\ln^2(s/t)$ and $\ln(s/t)$ terms]
- 4% constant corrections in LSM

Introduction

- 2 Logarithmic approximation of EW corrections
- 3 Automation of leading virtual EW logarithms
- 4 Sample results for specific processes involving weak bosons

Status of EW logarithmic Sudakov corrections

Conclusion

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- EW corrections at high energies dominated by large logarithms $\ln^{(2)}(E/M_W) \Rightarrow \mathcal{O}(20\text{--}50\%)$ at LHC
- simple generic results exist for virtual EW logarithmic corrections to non-mass suppressed matrix elements with complexity of tree-level calculation
- large cancellations between leading and subleading logarithms
- EW corrections in logarithmic approximation (LA) (plus improvements) implemented in automated tools SHERPA, MADGRAPH5_AMC@NLO, OPENLOOPS:
 - LA can describe virtual EW corrections within 10%.
 - Photon-induced channels (opening at NLO) have to be treated separately.
 - Results from LA should be checked against full calculation if available.
- SCET_{EW} provides a consistent framework to include finite terms as well. (in the high-energy limit, involving process-dependent contributions!)
- LA useful to resum corrections beyond NLO.

Thank You!