Electroweak $W^{\pm}Z$ production measurement at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector and an EFT interpretation

Eirini Kasimi on behalf of the ATLAS collaboration

25/09/2024

Multi-Boson Interactions 2024

- Motivation and theoretical framework
- Analysis overview and cross section measurements
- Effective Field Theory Interpretation results
- Conclusion and prospects

Paper link

MOTIVATION AND THEORETICAL FRAMEWORK

Vector Boson Scattering(VBS): Motivation

- Vector Boson Scattering (VBS) processes are very rare process —> low cross sections
- VBS provides an alternative way to study the mechanism of electroweak symmetry breaking (EWSB)
- VBS probes information on vector boson self-couplings
 - Explore the existence of New Physics through deviations from SM
- Importance of WZ VBS process
 - Clean signature with only one neutrino
 - High cross section w.r.t. the other VBS processes

Electroweak and QCD WZjj production

EWK WZjj production

tagging jet (4)

- Fully leptonic final state which contains three leptons and two jets
- Characteristic kinematic signature:
 - the products of two bosons produced centrally and

 Δy

• two forward jets with large spatial separation in rapidity and a high invariant mass

VBS

EWK WZjj productions

QCD WZjj production

- Characteristic kinematic signature
 - Presence of gluons
 - low rapidity separation
 - low invariant mass of the two jets system
- Fit in SR

tagging jet (3)

Explore the existence

of New Physics through deviations

from SM

Study of electroweak

symmetry breaking through

the vector boson self-

couplings

5

Effective Field Theory: Overview

- Two methods to look for physics beyond the Standard Model (BSM)
 - Look for new particles
 - Look for new interactions of SM particles (~ model-independent) —

Try to notice deviations in the tails of the distributions of some kinematical variables

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i^{(6)}}{\Lambda_i^2} O_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda_i^4} O_i^{(8)} + \dots$

- The Effective Field Theory (EFT) is the natural way to expand the SM such that the gauge symmetries are respected
- The EFT provides a way to search for effects of BSM
- Construction of an EFT Lagrangian:
 - SM: general theory of quark and lepton fields and their interactions with vector boson and the Higgs fields
 - Extend the theory: Add operators of higher dimension
- The EFT Lagrangian can be expressed as:
 - Λ is the scale of new physics
 - $O_i^{(6)}$, $O_i^{(8)}$ are the Lorentz and gauge invariant dimension-6 and dimension-8 operators
 - $c_i^{(6)}$, $c_i^{(8)}$ are the dimensionless Wilson coefficients of the dimension-6 and 8 effective operators
- Λ can be assumed as common to all the coefficients, the Wilson coefficients can be written as:

$$f_i^{(6)} = \frac{c_i^{(6)}}{\Lambda^2}, f_i^{(8)} = \frac{c_i^{(8)}}{\Lambda^4}, \dots$$

Energy scale of the interaction must be $\label{eq:energy} \mathbf{E} < \Lambda$

Effective Field Theory: dimension-8 operators

• The dimension-8 operators are dominant in aQGCs

They are divided into three categories: Longitudinal (L_S), transverse (L_T) and mixed (L_M)

$$\mathcal{L}_{S,0} = \frac{c_{S,0}}{\Lambda^4} \left[(D_\mu \Phi)^\dagger (D_v \Phi) \right] \times \left[(D^\mu \Phi)^\dagger (D^v \Phi) \right]$$
$$\mathcal{L}_{S,1} = \frac{c_{S,1}}{\Lambda^4} \left[(D_\mu \Phi)^\dagger (D^\mu \Phi) \right] \times \left[(D_v \Phi)^\dagger (D^v \Phi) \right]$$
$$\mathcal{L}_{S,2} = \frac{c_{S,2}}{\Lambda^4} \left[(D_\mu \Phi)^\dagger (D_v \Phi) \right] \times \left[(D^v \Phi)^\dagger (D^\mu \Phi) \right]$$

Scalar operators: Pure Higgs field

-	
$\mathcal{L}_{T,0} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \mathbb{C}$	$\operatorname{Ir}\left[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}\right]$
$\mathcal{L}_{T,1} = \operatorname{Tr}\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \times \mathcal{L}_{T,1}$	$\mathrm{Tr}\left[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}\right]$
$\mathcal{L}_{T,2} = \operatorname{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \times \mathcal{L}_{T,2}$	$\mathrm{Tr}\left[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}\right]$
$\mathcal{L}_{T,5} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \hat{H}$	$B_{\alpha\beta}B^{\alpha\beta}$
$\mathcal{L}_{T,6} = \operatorname{Tr}\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \times \mathcal{L}_{T,6}$	$B_{\mu\beta}B^{\alpha u}$
$\mathcal{L}_{T,7} = \operatorname{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \times \mathcal{L}_{T,7}$	$B_{\beta\nu}B^{\nu\alpha}$
$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$	
$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$	Tensor operators: field strength tensor
	2211001

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	X	Х	X	Ο	0	Ο	0	Ο	Ο
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	X	Х	Х	Х	Х	Х	Х	0	Ο
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	О	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	O \	Х	/ X	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	0	Ο	/ X	Ο	0	Х	Х	Х	Х

7

Effective Field Theory: Unitarity bounds

- aQGC terms: disturb the cancellation between different contributions to the scattering amplitude of longitudinally polarized, massive electroweak gauge bosons
- Cross section for the scattering of massive electroweak gauge bosons is rising with increasing centre-ofmass energy but it cannot exceed the physical upper bound
- Range of validity of the specific EFT model: $E^2 < \Lambda \leq s^U$, where $s^U \equiv s^U(f_i)$ is the unitarity bound

					Wilson coefficient	Bound	
Wilson coefficient	Bound				$\left \frac{f_{T0}}{\Lambda 4}\right $	$\frac{12}{5}\pi s^{-2}$	
$\left \frac{f_{M0}}{\Lambda^4}\right $	$\frac{32}{\sqrt{6}}\pi s^{-2}$				$\left \frac{\hat{J}_{T1}}{\Lambda^4}\right $	$\frac{\frac{24}{5}}{\pi s^{-2}}$	
$\left \frac{f_{M1}}{\Lambda^4}\right $	$\frac{128}{\sqrt{6}}\pi s^{-2}$	Wilson coefficient	Bound		$\left \frac{f_{T2}}{\Lambda^4}\right $	$\frac{96}{13}\pi s^{-2}$	
$\left \frac{f_{M2}}{\Lambda^4}\right $	$\frac{16}{\sqrt{2}}\pi s^{-2}$	$\left \frac{f_{S0}}{\Lambda^4}\right $	$32\pi s^{-2}$		$\left \frac{JT5}{\Lambda^4}\right $	$\frac{8}{\sqrt{3}}\pi s^{-2}$	
$\left \frac{f_{M3}}{M^4}\right $	$\frac{\frac{\sqrt{2}}{64}}{\sqrt{2}}\pi s^{-2}$	$\left \frac{f_{S1}}{\Lambda^4}\right $	$\frac{96}{7}\pi s^{-2}$		$\left \frac{JT6}{\Lambda^4}\right $	$\frac{48}{7}\pi s^{-2}$	
$\left \frac{f_{M4}}{M4}\right $	$\sqrt{2} 32\pi s^{-2}$	$\left \frac{f_{S2}}{\Lambda^4}\right $	$\frac{96}{5}\pi s^{-2}$		$\left \frac{J}{\Lambda^4}\right $	$\frac{32}{\sqrt{3}}\pi s^{-2}$	
$\left \frac{\int M^4}{\int M5}\right $	$64\pi s^{-2}$				$\left \frac{J_{1}}{\Lambda^{4}}\right $ $\left J_{T9}\right $	$\frac{1}{2}\pi s^{-2}$ $\frac{24}{\pi s} - 2$	
$\left \frac{f_{M7}}{\Lambda^4}\right $	$\frac{256}{\sqrt{2}}\pi s^{-2}$				$ \Lambda^4 $	7 1 3	
· // ·	$\sqrt{6}$		httr	os://	/journals.aps.org/prd/abstrac		RevD.101.113003

Eirini Kasimi, Multi-Boson Interactions 2024

Effective Field Theory: Decomposition method

- MC samples for the effect of higher dimension operators in many values of the coefficients
- In order to avoid the production of large amounts of Monte Carlo samples, we will profit from the decomposition method

ANALYSIS OVERVIEW AND RESULTS

Phase space definition for the cross-section measurements

Backgrounds

- Challenging separation between the signals and the backgrounds
- Backgrounds:
 - Reducible background: Z + jets, $Z\gamma$, $t\bar{t}$ and Wt
 - Irreducible background: $t\bar{t}V$, tZ, VVV, ZZjj QCD and ZZjj EW.

- At least one "fake" lepton
- Matrix method technique

At least three prompt leptons in the final state
Simultaneous fit in dedicated CRs

<u>WZjj Event selection and global WZjj strategy</u>

Baseline event selection:

and the second se							
		Inch	usive event selection			W7 ii Event se	lection
	ZZ veto	Less than 4 baseline leptor	ns		·	W Z JJ Event se	
	N leptons	Exactly three leptons pass	ing the Z lepton selection		J	let multiplicity	≥ 2
	Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 25 \text{ GeV} (\text{in } 2015)$	or $p_{\rm T}^{\rm lead} > 27 {\rm GeV}$ (in 2016)		$p_{\rm T}$ (of two tagging jets	> 40 GeV
	Z leptons	Two same flavor oppositel	y charged leptons passing Z lepton selection		$ \eta $ c	of two tagging jets	< 4.5
	Mass window	$ M_{\ell\ell} - M_Z < 10 \text{ GeV}$			$n \circ$	f two tagging jets	opposite sign
	W lepton	W lepton passes W selecti	on		1 0	m	> 150 GeV
VERSILE	W transverse mass	$ m_{\rm T}^w > 30 {\rm GeV}$				m_{JJ}	> 150 00 V
OIE							
IT BLAN	С						
		6 11				ttV and tZ	
	+ one ZZ CR de	atined by				Using a dedicated	BDT to constrain
	inverting the 4	th lepton veto		b-CR (ttV and	tZ)	them in this region	n
						internation internet	1 1

inverting the 4th lepton veto (67,8% expected purity)

> QCD-VR Not used in the cross section measurement or any step of the analysis

Eirini Kasimi, Multi-Boson Interactions 2024

(43,8% expected purity on ttV)

(20,3% expected purity on tZ)

<u>Strategy for inclusive</u> $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ measurement

- Goal: simultaneous measurement of the integrated $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ cross sections in the SR
 - separate the signal region into two categories:
 - events with $N_{\text{jets}} = 2$ and $p_t > 25$ GeV
 - events with $N_{\text{jets}} \ge 3$ and $p_t > 25$ GeV
- Signal fit free parameters

• Improve the sensitivity and the significance of the $\sigma_{WZjj-EW}$ measurement

• Increase the robustness of the measurement to a mismodelling of the jet multiplicity for *WZjj*-QCD events.

$$\begin{aligned} \sigma_{WZjj-EW} &= \mu_{WZjj-EW} \cdot \sigma_{WZjj-EW}^{\text{th},\text{MC}}, \\ \sigma_{WZjj-\text{strong}} &= \mu_{WZjj-\text{QCD}} \cdot \sigma_{WZjj-\text{QCD}}^{\text{th},\text{MC}} + \mu_{WZjj-\text{INT}} \cdot \sigma_{WZjj-\text{INT}}^{\text{th},\text{MC}}, \\ &= \mu_{WZjj-\text{QCD}} \cdot \sigma_{WZjj-\text{QCD}}^{\text{th},\text{MC}} + \sqrt{\mu_{WZjj-EW}} \cdot \sqrt{\mu_{WZjj-\text{QCD}}} \cdot \sigma_{WZjj-\text{INT}}^{\text{th},\text{MC}}. \end{aligned}$$

- Background normalization parameters
 - μ_{ttV} and μ_{tZ} : normalization parameters, defined in all three regions
 - μ_{ZZ-QCD} : normalization parameter, defined in the SR and the ZZ-CR
- Uncertainties parametrization
 - Detector related uncertainties: applied in every region in a correlated way
 - Theory uncertainties: parameters of interest only shape (and migration) effects considered

Eirini Kasimi, Multi-Boson Interactions 2024

<u>Inclusive</u> $\sigma_{WZjj-EW}$ <u>and</u> $\sigma_{WZjj-strong}$ <u>measurement: Results</u>

 $\sigma_{WZjj-EW} = 0.368 \pm 0.037 \text{ (stat.)} \pm 0.059 \text{ (syst.)} \pm 0.003 \text{ (lumi.) fb}$ $= 0.37 \pm 0.07 \text{ fb},$ $\sigma_{WZjj-strong} = 1.093 \pm 0.066 \text{ (stat.)} \pm 0.131 \text{ (syst.)} \pm 0.009 \text{ (lumi.) fb}$ $= 1.09 \pm 0.14 \text{ fb},$

<u>EWK:</u> Both generators consistent with data <u>Strong:</u> Both generators more than 2σ above data

Strategy for differential $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ measurement

- Goal: simultaneous measurement of $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ in the corresponding SRⁱ
- Free parameters in the fit
 - $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$: parameters of interest, measured in the SRⁱ
 - μ_{ttV} and μ_{tZ} : normalization parameters, defined in all the regions
 - μ_{ZZ-QCD} : normalization parameter, defined in the SR and the ZZ-CR
 - Theory uncertainties decorrelated between bins (or SRⁱ)

Signal sub-regions for M_{ii}:

- 500-1300 GeV
- 1300-2000 GeV
- >2000 GeV

<u>Signal sub-regions for N_{jets}</u>: Exactly 2 jets >2 jets

Eirini Kasimi, Multi-Boson Interactions 2024

- Kinematical variables:
 - WZ: M_T^{WZ} , $\Delta \Phi(W,Z)$
 - Jets: N_{jets} , m_{jj} , Δy_{jj} , $\Delta \phi_{jj}$, N_{jets} (gap), Z_{j3}
 - BDT score

EFT INTERPRETATION RESULTS

Extraction of reconstructed level limits

- Extraction of the limits using
 - two-dimensional distribution M_T^{WZ} BDT score in the fit
 - Create two-dimensional templates by binning two kinematic variables simultaneously
 - Create one dimension by 'unrolling' the bin contents

Expected and observed lower and upper 95% CL limits on the Wilson coefficients

	Expected	Observed
	(TeV^{-4})	(TeV^{-4})
f_{T1}/Λ^4	[-0.52, 0.49]	[-0.39, 0.35]
f_{T0}/Λ^4	[-0.80, 0.80]	[-0.57, 0.56]
f_{T2}/Λ^4	[-1.6, 1.4]	[-1.2, 1.0]
f_{M0}/Λ^4	[-8.3, 8.3]	[-5.8, 5.6]
f_{M1}/Λ^4	[-12.3, 12.2]	[-8.6, 8.5]
f_{S02}/Λ^4	[-14.2, 14.2]	[-10.4, 10.4]
f_{M7}/Λ^4	[-16.2, 16.2]	[-11.3, 11.3]
f_{S1}/Λ^4	[-42, 41]	[-30, 30]

2-D reconstructed level limits

• Limits on aQGC Wilson coefficients are also derived fitting two Wilson coefficients simultaneously

Unitarity limits

- Introduction of EFT operators can violate unitarity
 - for each operator there is an energy scale above which unitarity maybe violated
 - its absolute value is a function of the (arbitrary) cut-off scale

	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
$f_{\rm T0}/\Lambda^4$	[-7.0, 7.0]	[-1.5, 1.6]
$f_{ m T1}/\Lambda^4$	[-1.1, 1.0]	[-0.7, 0.6]
$f_{\mathrm{T2}}/\Lambda^4$	[-12, 6]	[-2.4, 1.8]
$f_{ m M0}/\Lambda^4$	[-60, 60]	[-12, 12]
$f_{ m M1}/\Lambda^4$	[-32, 32]	[-15, 15]
$f_{ m M7}/\Lambda^4$	[-30, 30]	[-15, 15]
$f_{ m S02}/\Lambda^4$	[-41, 41]	[-18, 18]
$f_{\rm S1}/\Lambda^4$	—	

Evolution of the individual 95%C.L. expected limits of the dimension-8 operators as a function of the cut-off scale

CONCLUSION AND PROSPECTS

Conclusion and Prospects

- Ongoing combination of aQGC Run2 EFT results among many VBS analyses (WZjj, ssWWjj, ZZjj, Zγjj etc)
- Possible improvements on Run 2 measurement:
 - SM measurements:
 - Improve QCD modeling
 - Introduce EWK NLO corrections
 - Polarization measurements with one gauge boson (W or Z) longitudinally polarized
 - EFT interpretation:
 - Perform a simultaneous study of both dimension-6 and dimension-8 operators
 - Study of effect of dimension-6 operators in EWK and QCD production and how to incorporate it in the EFT interpretation
 - Machine learning approach to the EFT re-interpretation of the WZ VBS production results appear very promising from preliminary studies at generator level
- HL-LHC (luminosity 3000 fb⁻¹)
 - Possible <u>first observation</u> of $W_L Z_L$ polarized state

BACKUP SLIDES

Experimental and theoretical uncertainties

Experimental uncertainties

• Dominant experimental uncertainty sources:

- ° reconstruction uncertainties related to
 - jet reconstruction
 - electrons reconstruction
 - muons reconstruction
 - E_t^{miss} reconstruction
- Luminosity uncertainty
- ° uncertainties on the pile-up reweighting procedure
- Systematic uncertainties on background contributions
 - Uncertainties on the amount of reducible background events arising from mis-identified leptons and determined using the data-driven matrix method <u>order of 20</u> <u>to 25%</u>
 - Irreducible backgrounds: propagate PDF and scale uncertainties in their generated cross sections
 - VVV: 20%
 - ZZ-EW: 25%

Theoretical uncertainties

 PDF and αS uncertainties: 100 NNPDF3.0 MC replicas and alternatives as variations (PDF4LHC recommendations)

• QCD-scale uncertainties:

- Vary the renormalization and factorization scales separately by a factor x=1/2 or x=2 from the nominal
- For WZjj-EW process
 - ° alternative definitions for the renormalization and factorizations scales

- **Parton shower uncertainties on the WZjj-EW process :** Estimated using Herwig as an alternative parton shower generator
- **Model uncertainties for the WZjj-QCD process :** Evaluated comparing Madgraph and Sherpa 2.2.12 predictions.

Impact of systematic uncertainties

Source	$rac{\Delta \sigma_{WZjj-EW}}{\sigma_{WZjj-EW}}$ [%]	$rac{\Delta \sigma_{WZjj- ext{strong}}}{\sigma_{WZjj- ext{strong}}}$ [%]
WZjj–EW theory modelling	7	1.8
WZjj–QCD theory modelling	2.8	8
WZjj–EW and $WZjj$ –QCD interference	0.35	0.6
PDFs	1.0	0.06
Jets	2.3	5
Pile-up	1.1	0.6
Electrons	0.8	0.8
Muons	0.9	0.9
<i>b</i> -tagging	0.10	0.11
MC statistics	1.9	1.2
Misid. lepton background	2.3	2.3
Other backgrounds	0.9	0.23
Luminosity	0.7	0.9
All systematics	16	12
Statistics	10	6
Total	19	13