Full Run 2 overview of electro-weak multiboson production in CMS

Alexander von Humboldt Stiftung/Foundation

Saptaparna Bhattacharya Multiboson Interactions September 25-28th, 2024

Overview of CMS cross section results

			CMS preliminary
Jet	7 TeV	PRD 90 (2014) 072006	
ν	7 ToV	PRD 84 052011 (2011)	
, W	2.76 TeV	PLB 715 (2012) 66	
W	5.02 TeV	SMP-20-004	
W	7 TeV	IHEP 10 (2011) 132	
W	8 TeV	PRL 112 (2014) 191802	
W	13 TeV	SMP-20-004	
Z	2.76 TeV	JHEP 03 (2015) 022	
Z	5.02 TeV	SMP-20-004	
Z	7 TeV	JHEP 10 (2011) 132	
Z	8 TeV	PRL 112 (2014) 191802	
Z	13 TeV	SMP-20-004	
Z	13.6 TeV	SMP-22-017	
Wν	7 TeV	PRD 89 (2014) 092005	
Wv	13 TeV	PRI 126 252002 (2021)	
, Zv	7 TeV	PRD 89 (2014) 092005	
γ Zγ	8 TeV	IHEP 04 (2015) 164	
WW	5.02 TeV	PRL 127 (2021) 191801	
WW	7 TeV	EPJC 73 (2013) 2610	
WW	8 TeV	EPJC 76 (2016) 401	
WW	13 TeV	PRD 102 092001 (2020)	
WZ	5.02 TeV	PRL 127 (2021) 191801	
WZ	7 TeV	EPJC 77 (2017) 236	
WZ	8 TeV	EPJC 77 (2017) 236	
WZ	13 TeV	JHEP 07 (2022) 032	
ZZ	5.02 TeV	PRL 127 (2021) 191801	
ZZ	7 TeV	JHEP 01 (2013) 063	
ZZ	8 TeV	PLB 740 (2015) 250	
ZZ	13 TeV	EPJC 81 (2021) 200	
VVV	13 TeV	PRL 125 151802 (2020)	$\sigma(VVV) =$
www	13 TeV	PRL 125 151802 (2020)	$\sigma(WWW) = 5.9e+02f$
WWZ	13 TeV	PRL 125 151802 (2020)	$\sigma(WWZ) = 3e+02 \text{ fb}$
WZZ	13 TeV	PRL 125 151802 (2020)	$\sigma(WZZ) = 2e+02 \text{ fb}$
ZZZ	13 TeV	PRL 125 151802 (2020)	
$WV\gamma$	8 TeV	PRD 90 032008 (2014)	
$WW\gamma$	13 TeV	SMP-22-006	$\sigma(WW\gamma) = 6 \text{ fb}$
$W\gamma\gamma$	8 TeV	JHEP 10 (2017) 072	$\sigma(W\gamma\gamma) = 4.9 \text{ fb}$
$W\gamma\gamma$	13 TeV	JHEP 10 (2021) 174	$\sigma(W\gamma\gamma) = 14 \text{ fb}$
Ζγγ	8 TeV	JHEP 10 (2017) 072	$\sigma(Z\gamma\gamma) = 13 \text{ fb}$
Ζγγ	13 TeV	JHEP 10 (2021) 174	$\sigma(Z\gamma\gamma) = 5.4 \text{ fb}$
VBF W	8 TeV	JHEP 11 (2016) 147	$\sigma(\text{VBF W}) = 4.2\text{e}+02 \text{ fb}$
VBF W	13 TeV	EPJC 80 (2020) 43	
VBF Z	7 TeV	JHEP 10 (2013) 101	$\sigma(VBFZ) = 1.5e+02 \text{ fb}$
VBF Z	8 TeV	EPJC 75 (2015) 66	$\sigma(VBF Z) = 1.7e+02 \text{ fb}$
VBF Z	13 TeV	EPJC 78 (2018) 589	$\sigma(\text{VBF Z}) = 5.3\text{e}+0.00$
EW WV	13 TeV	PLB 834 (2022) 137438	σ (EW W)
ex. γγ→WW	8 TeV	JHEP 08 (2016) 119	$\sigma(\text{ex. }\gamma\gamma \rightarrow \text{WW}) = 22 \text{ fb}$
EW qqW γ	8 TeV	JHEP 06 (2017) 106	$\sigma(EW qqW\gamma) = 11 fb$
EW qqW γ	13 TeV	PRD 108 032017	$\sigma(EW q q W \gamma) = 24 fb$
EW os WW	13 TeV	PLB 841 (2023) 137495	$\sigma(\text{EW os WW}) = 10 \text{ fb}$
EW ss WW	8 TeV	PRL 114 051801 (2015)	$\sigma(\text{EW ss WW}) = 4 \text{ fb}$
EW ss WW	13 TeV	PLB 809 (2020) 135710	$\sigma(\text{EW ss WW}) = 4 \text{ fb}$
EW qqΖγ	8 TeV	PLB 770 (2017) 380	$\sigma(\text{EW } \text{qqZ}\gamma) = 1.9 \text{ fb}$
EW qqZγ	13 TeV	PRD 104 072001 (2021)	$\sigma(\text{EW } \text{qq}\text{Z}\gamma) = 5.2 \text{ fb}$
EW qqWZ	13 TeV	PLB 809 (2020) 135710	$\sigma(EW qqWZ) = 1.8 \text{ fb}$
EW qq∠Z	13 IeV	PLB 812 (2020) 135992	O(EVV qqZZ) = 0.33 ID

1.0e+00

Measured cross sections and exclusion limits at 95% C.L. See here for all cross section summary plots

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

1.0e+02

Overview of CMS cross section results

				CMS preliminary
d C C	Jet	7 TeV	PRD 90 (2014) 072006	
Electroweak	γ W W W W Z Z Z Z Z Z Z	7 TeV 2.76 TeV 5.02 TeV 7 TeV 8 TeV 13 TeV 2.76 TeV 5.02 TeV 7 TeV 8 TeV 13 TeV 13 TeV 13.6 TeV	PRD 84 052011 (2011) PLB 715 (2012) 66 SMP-20-004 JHEP 10 (2011) 132 PRL 112 (2014) 191802 SMP-20-004 JHEP 03 (2015) 022 SMP-20-004 JHEP 10 (2011) 132 PRL 112 (2014) 191802 SMP-20-004 SMP-22-017	
di-Boson	 Wγ Wγ Zγ Zγ WW WW WW WW WZ WZ WZ ZZ ZZ	7 TeV 13 TeV 7 TeV 8 TeV 5.02 TeV 7 TeV 8 TeV 13 TeV 5.02 TeV 8 TeV 13 TeV 5.02 TeV 8 TeV 13 TeV 5.02 TeV 8 TeV 13 TeV	PRD 89 (2014) 092005 PRL 126 252002 (2021) PRD 89 (2014) 092005 JHEP 04 (2015) 164 PRL 127 (2021) 191801 EPJC 73 (2013) 2610 EPJC 76 (2016) 401 PRD 102 092001 (2020) PRL 127 (2021) 191801 EPJC 77 (2017) 236 EPJC 77 (2017) 236 JHEP 07 (2022) 032 PRL 127 (2021) 191801 JHEP 01 (2013) 063 PLB 740 (2015) 250 EPJC 81 (2021) 200	$q \longrightarrow Z \rightarrow b\bar{b}$ $\bar{q} \longrightarrow Z$
tri-Boson	$\begin{array}{c} \nabla \nabla \nabla \\ WWW \\ WWZ \\ WZZ \\ ZZZ \\ W \nabla \gamma \\ WW \\ W \\ W \\ \gamma \\ W \\ \gamma \\ W \\ \gamma \\ \gamma $	13 TeV 13 TeV 13 TeV 13 TeV 13 TeV 8 TeV 13 TeV 8 TeV 13 TeV 8 TeV 13 TeV 13 TeV	PRL 125 151802 (2020) PRL 125 151802 (2020) PRL 125 151802 (2020) PRL 125 151802 (2020) PRL 125 151802 (2020) PRD 90 032008 (2014) SMP-22-006 JHEP 10 (2017) 072 JHEP 10 (2021) 174 JHEP 10 (2021) 174	$\sigma(WWW) = 5.9e+02$ $\sigma(WWZ) = 3e+02 \text{ fb}$ $\sigma(WZZ) = 2e+02 \text{ fb}$ $\sigma(WW\gamma) = 6 \text{ fb}$ $\sigma(W\varphi\gamma) = 4.9 \text{ fb}$ $\sigma(W\varphi\gamma) = 14 \text{ fb}$ $\sigma(Z\varphi\gamma) = 13 \text{ fb}$ $\sigma(Z\varphi\gamma) = 5.4 \text{ fb}$
VBF and VBS	VBF W VBF W VBF Z VBF Z VBF Z EW WV ex. $\gamma\gamma \rightarrow$ WW EW qqW γ EW qqW γ EW qqW γ EW os WW EW ss WW EW ss WW EW ss WW EW ss WW EW qqZ γ EW qqZ γ EW qqZ z	8 TeV 13 TeV 7 TeV 8 TeV 13 TeV 13 TeV 8 TeV 13 TeV 13 TeV 13 TeV 8 TeV 13 TeV 13 TeV 13 TeV 13 TeV 13 TeV	JHEP 11 (2016) 147 EPJC 80 (2020) 43 JHEP 10 (2013) 101 EPJC 75 (2015) 66 EPJC 78 (2018) 589 PLB 834 (2022) 137438 JHEP 08 (2016) 119 JHEP 06 (2017) 106 PRD 108 032017 PLB 841 (2023) 137495 PRL 114 051801 (2015) PLB 809 (2020) 135710 PLB 770 (2017) 380 PRD 104 072001 (2021) PLB 809 (2020) 135710 PLB 812 (2020) 135992	$\sigma(\text{VBF W}) = 4.2\text{e}+02 \text{ fb}$ $\sigma(\text{VBF Z}) = 1.5\text{e}+02 \text{ fb}$ $\sigma(\text{VBF Z}) = 1.7\text{e}+02 \text{ fb}$ $\sigma(\text{VBF Z}) = 5.3\text{e}+0$ $\sigma(\text{VBF Z}) = 5.3\text{e}+0$ $\sigma(\text{VBF Z}) = 5.3\text{e}+0$ $\sigma(\text{EW w}) = 11 \text{ fb}$ $\sigma(\text{EW qqWy}) = 11 \text{ fb}$ $\sigma(\text{EW qqWy}) = 24 \text{ fb}$ $\sigma(\text{EW os WW}) = 10 \text{ fb}$ $\sigma(\text{EW ss WW}) = 4 \text{ fb}$ $\sigma(\text{EW ss WW}) = 4 \text{ fb}$ $\sigma(\text{EW qqZy}) = 1.9 \text{ fb}$ $\sigma(\text{EW qqZy}) = 5.2 \text{ fb}$ $\sigma(\text{EW qqZZ}) = 0.33 \text{ fb}$

1.0e+00

Measured cross sections and exclusion limits at 95% C.L. See here for all cross section summary plots

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

1.0e+02

$3 \mu b^{-1}$ - 138 fb⁻¹ (2.76,5.02,7,8,13,13.6 TeV)

З 5 fb⁻¹ 36 pb⁻¹ 231 nb⁻¹ 298 pb⁻¹ 36 pb⁻¹ 18 pb⁻¹ 201 pb⁻¹ 5 pb⁻¹ 5 pb^{-1} 36 pb⁻¹ 18 pb^{-1} 201 pb⁻¹ 5 fb⁻¹ 5 fb⁻¹ 137 fb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 302 pb⁻¹ 5 fb⁻¹ 19 fb⁻¹ 36 fb⁻¹ 302 pb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 137 fb⁻¹ 302 pb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 19 fb⁻¹ 138 fb⁻¹ 19 fb⁻¹ 137 fb⁻¹ 19 fb⁻¹ 137 fb⁻¹ 9 fb⁻¹ 5 fb⁻¹ fb^{-1}) fb⁻¹ 5 fb⁻¹ 8 fb⁻¹) fb⁻¹) fb⁻¹ Η $18 \, {\rm fb}^{-1}$ fh = 137 fb⁻¹ fb^{-1} 37 fb⁻¹ 37 fb⁻¹ 37 fb⁻¹

Outline

- Observation of $WZ\gamma$ and $WW\gamma$
 - Exploring the implication of new physics modifying the quartic coupling in the Standard Model – effective field theory (EFT) interpretation
- The $\gamma\gamma \rightarrow \tau\tau$ process and measuring $g_{\tau} 2$
- Tagging the protons with the Precision Proton Spectrometer
- Evolution of vector boson scattering (VBS) measurements
 - Same-signed WW with a hadronic τ
 - $W\gamma$ with 2 jets
 - HHWW coupling
 - Future prospects
- Dibosons
 - Neutral couplings and $ZZ/HZ, Z \rightarrow bb, H \rightarrow bb$

- $WZ\gamma$ process observed (expected) with a significance of 5.4 (3.8) σ
- Final state defined by requiring three charged leptons ($WZ \rightarrow \ell \nu \ell \ell)$ and a photon Fiducial cross section measured as: 5.48 ± 1.11 fb
- Several new physics scenarios explored including axions-like particles

https://cds.cern.ch/record/2905175

- Simultaneous fit of signal and background regions
- Major background sources
 - Non-prompt photon and leptons
 - Prompt ZZ with an ISR photon

Pro V V١ To Nonpro Nonpro WZG Total bac Total pre

Obse

cess	SR	Nonprompt ℓ CR	Nonprompt γ CR	ZZ CR
V	13.0 ± 0.3	1.86 ± 0.12	0.16 ± 0.02	1016 ± 12
/V	0.69 ± 0.05	0.36 ± 0.11	0.01 ± 0.01	0.10 ± 0.04
γ	1.38 ± 0.76	4.66 ± 2.05	438 ± 27	0.01 ± 0.01
op	3.34 ± 0.55	227 ± 15	27.0 ± 5.9	0.30 ± 0.04
$ompt \ell$	12.9 ± 2.8	1792 ± 34	< 0.1	< 0.1
$\operatorname{ompt} \gamma$	15.8 ± 2.2	< 0.1	195 ± 19	< 0.1
signal	60.8 ± 3.5	0.66 ± 0.01	0.20 ± 0.04	0.02 ± 0.01
kground	48.5 ± 3.7	2027 ± 33	660 ± 21	1016 ± 12
ediction	109 ± 5	2027 ± 33	660 ± 21	1016 ± 12
erved	108	2029	658	1017

 $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum \frac{f_j}{\Lambda^4} \mathcal{O}_j$? Events $E_{CM} < E_{LHC}$ SM

New physics at high energies manifesting at low energies $E_{CM} > E_{LHC}$

Log(Variable analogous to partonic center of mass energy)

BSM implication of $WZ\gamma$

EFT interpretation of dimension-8 operators featuring $SU(2)_L$ and $U(1)_Y$ field strength

Operators	Observed limits [TeV $^{-4}$]	Expected limits [TeV $^{-4}$]	Unitarity bound [TeV]
$F_{\rm T,0}/\Lambda^4$	[-2.60, 2.60]	[-2.52, 2.52]	1.32
$F_{\rm T,1}/\Lambda^4$	[-3.28, 3.24]	[-3.18, 3.14]	1.48
$F_{\rm T,2}/\Lambda^4$	[-7.15, 7.05]	[-6.95, 6.85]	1.35
$F_{\rm T.5}/\Lambda^4$	[-2.54, 2.56]	[-2.46, 2.50]	1.55
$F_{\rm T.6}/\Lambda^4$	[-3.18, 3.22]	[-3.08, 3.14]	1.61
$F_{\mathrm{T,7}}^{1,0}/\Lambda^4$	[-6.85, 7.05]	[-6.65, 6.85]	1.71

The $WZ\gamma$ process is also sensitive to mediation by axion-like particles

https://arxiv.org/pdf/2004.05174

YITP-SB-2020-8

Unitarity Constraints on Anomalous Quartic Couplings

Eduardo da Silva Almeida^{*} and O. J. P. Éboli[†] Instituto de Física, Universidade de São Paulo, São Paulo - SP, Brazil.

M. C. Gonzalez–Garcia[‡]

Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 647 Diagonal, E-08028 Barcelona, Spain and C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

We obtain the partial-wave unitarity constraints on the lowest-dimension effective operators which generate anomalous quartic gauge couplings but leave the triple gauge couplings unaffected. We consider operator expansions with linear and nonlinear realizations of the electroweak symmetry and explore the multidimensional parameter space of the coefficients of the relevant operators: 20 dimension-eight operators in the linear expansion and 5 $\mathcal{O}(p^4)$ operators in the derivative expansion. We study two-to-two scattering of electroweak gauge bosons and Higgs bosons taking into account all coupled channels and all possible helicity amplitudes for the J = 0, 1 partial waves. In general, the bounds degrade by factors of a few when several operator coefficients are considered to be nonvanishing simultaneously. However, this requires considering constraints from both J = 0 and J = 1 partial waves for some sets of operators.

4

Phys. Rev. Lett. 132 (2024) 121901

- $WW\gamma$ process observed (expected) with a significance of 5.6 (5.1) σ
- Higgs boson to light quarks

*The theoretical modeling uncertainties include the renormalization and factorization of QCD scales, PDFs, and parton shower modeling

Trilinear coupling

Fiducial cross section measured as: 5.9 ± 0.8 (stat.) ± 0.8 (syst.) ± 0.7 (modeling*) fb Associated search for H with a photon explored \rightarrow generated by coupling of the

Phys. Rev. Lett. 132 (2024) 121901

Associated production $(H\gamma)$

- $WW\gamma \rightarrow e^+ \nu_e \mu^- \bar{\nu_u}\gamma$ or $\mu^+ \nu_\mu e^- \bar{\nu_e}\gamma$ final state
- Events with b-jets vetoed
- Additional loose leptons vetoed
- Backgrounds suppressed by
 - $M_{\ell\ell} > 10 \, \mathrm{GeV}$
- $p_T^{\ell\ell} > 15 \text{ GeV}$
- $m_T^{WW} > 10 \text{ GeV}$

 $m_T^{WW} = \sqrt{2p_T^{\ell} p_T^{miss}} [1 - \cos \Delta \phi(\overline{p_T}^{\ell}, \overline{p_T}^{miss})]$

Signal extracted from a binned maximum likelihood fit using two dimensional distributions in m_T^{WW} and $m_{\ell\ell\gamma}$ (product of the Poisson probability mass functions for each bin forms the likelihood function)

Candidate $\gamma\gamma \rightarrow \tau\tau$ event measured in proton-proton collisions by CMS. The event is reconstructed as having a leptonic τ decay, $\tau \rightarrow \mu v v$, with the μ track indicated in red, and a hadronic τ decay, $\tau \rightarrow \pi \pi \pi v$, with the 3 charged pions indicated by the yellow tracks and by the energy deposits in the ECAL (green) and HCAL (cyan)

DISCLOSING QUANTUM CORRECTIONS TO ELECTROMAGNETIC INTERACTIONS OF TAU LEPTONS

The LHC as a photon collider

Measurement of the g_{τ} -2

Most general form of the QED vertex:

$$\Gamma^{\mu} = \gamma^{\mu} F_{1}(q^{2}) + \frac{\sigma^{\mu\nu} q_{\nu}}{2m} \left[iF_{2}(q^{2}) + F_{3}(q^{2})\gamma_{5} + F_{2}(q^{2}) + F_{3}(q^{2})\gamma_{5} + F_{2}(q^{2}) \right]$$

$$F_{2}(0) = a_{\ell} \equiv (g_{\ell} - 2)/2$$

$$F_{3}(0) = -\frac{2m}{e} d_{\ell}$$

 g_{ℓ} (gyromagnetic ratio) \rightarrow relates the magnetic moment to the spin of the lepton

Schwinger term: $a_{\ell} = \frac{1}{2\pi} \simeq 0.00116$

- Extremely sensitive analysis

Limits set to ~3 X Schwinger term

Milestone in collider physics!

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-006/index.html

The TOTEM Roman pot detectors

- reconstruct transverse momentum of scattered protons
- estimate the transverse location of the primary interaction

New studies on high- β^* period in 2018 expected to enable several physics analyses

Search for exclusive $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ production in final states with jets and forward protons

- Both protons tagged by the precision proton spectrometer (PPS)
- The $\gamma\gamma \rightarrow WW$ process allows the study of the quartic coupling
- Events selected based on properties of jets, the protons and their correlation
- First search for anomalous high-mass $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ using reconstructed forward protons
 - Limits 15-20x more stringent than previous results

Vector Boson Scattering

- Pure electro-weak interactions of order at least α_{EW}^4

- High mass of the two jets (M_{ii})

• Final state consists of two high transverse momenta (p_T) jets Rapidity gap between jets \rightarrow no color flow

Decay product of the gauge bosons: central with respect to jets

Why Vector Boson Scattering?

Studying the Higgs mechanism *Higgslessly*!

ChatGPT

"However, it is important to note that the precise role of the Higgs boson in unitarizing WW scattering, in particular, is still an active area of research and there are ongoing studies to refine our understanding of this process."

Vector Boson Scattering — evolution of knowledge

\sqrt{S}	Process	Reference	Significance/Status
	EW W±W±jj $(2\ell 2\nu jj)$	PhysRevLett.114.051801	2σ
$0 T_{0}$	EW Z γ jj ($\nu\nu/\ell\ell\gamma jj$)	PhysLettB770(2017)380-402	Зσ
olev	EW W $\pm\gamma$ jj ($\ell\nu\gamma jj$)	<u>JHEP06(2017)106</u>	2.7σ
	EW W±Zjj $(3\ell \nu jj)$	<u>PhysRevLett.114.051801</u>	2σ
	EW W±W±jj $(2\ell 2\nu jj)$	<u>PhysLettB809(2020)</u>	2016: 5.5σ, Run II » 5.0σ
	EW ZZjj $(4\ell jj)$	PhysLettB812(2021)135992	2016: 2.7σ, Run II: 4.0σ
	EW W±Zjj (3ℓjj)	<u>PhysLettB809(2020)135710</u>	6.8σ
	EW Zyjj (llyjj)	<u>PhysRevD.104.072001</u>	4.7 σ , Run II \gg 5.0 σ
40 T -1/	EW W $\pm \gamma jj$ ($\ell \nu \gamma jj$)	PhysLettB811(2020)135988	2016: 5.3σ
13 IEV	EW W±Vjj (<i>ℓνjjjj</i>)	<u>arXiv:2112.05259</u>	4.4σ
	EW W±W∓jj $(2\ell 2\nu jj)$	<u>arXiv:2205.05711</u>	5.6σ
	EW VVpp (4jpp)	<u>arXiv:2211.16320</u>	CMS with TOTEM
	EW W $\pm \gamma jj$ ($\ell \nu \gamma jj$)	arXiv:2212.12592	Cross section measurement with full Run II
	W±W±jj ($\ell \tau_{had} 2\nu jj$)	<u>SMP-22-008</u>	2.9σ

http://cds.cern.ch/record/2867989?In=en

VBS Same Sign WW with hadronic τ

- Study of vector boson scattering processes \rightarrow essential to probe nature of electroweak symmetry breaking
- Constraints on various effective field theory operators evaluated
- Several kinematic observables sensitive to the effect of new physics

Vector Boson Scattering (VBS)

Pure electro-weak interactions of order α_{FW}^{0}

VBS Same Sign WW with hadronic τ

- Final state where one of the two same-signed W-bosons decays to a hadronic τ
 - Signature: $\tau_h \nu_\tau \ell \nu_\ell (\ell = e, \mu)$
- Evidence of SM process at 2.7 σ , signal strength: $1.44^{+0.63}_{-0.56}$
 - Public since August 2023

http://cds.cern.ch/record/2867989?In=en

Same sign l, τ_h pair

 $p_T^{\text{miss}} > 50 \text{ GeV}$ $m_{ii} > 500 \text{ GeV}$ veto on b-tagged jets

Opposite sign paír

Top control region

Fakes

Exploring the implication of new physics modifying the quartic coupling in the Standard Model

In the past, diboson analyses used to extract sensitivity to dimension-6 operators and vector boson scattering primarily used to extract sensitivity to dimension-8 operators Now explore vector boson scattering for both dimension-6 and dimension-8 exploration

Exploring the implication of new physics modifying the quartic coupling in the Standard Model

In the past, diboson analyses used to extract sensitivity to dimension-6 operators and vector boson scattering primarily used to extract sensitivity to dimension-8 operators

Exploring the implication of new physics modifying the quartic coupling in the Standard Model

Now explore vector boson scattering for both dimension-6 and dimension-8 exploration

http://cds.cern.ch/record/2867989?ln=en

VBS Same Sign WW with hadronic τ Deep Neural Network (DNNs) trained with used to gain sensitivity to BSM signals

avtracted with	Wilcon	antiont	68% CL interval	(s)	$95\%~{ m CL}$	interval
			Expected	Observed	Expected	Observed
dim-6 DNN output		$c_{ll}^{(1)}$	$[-12.9, -8.03] \cup [-2.95, 1.91]$	[-11.6, 0.045]	$\left[-14.6, 3.53 ight]$	$\left[-13.5, 2.11\right]$
astributions		$c_{qq}^{(1)}$	[-0.501, 0.576]	$\left[-0.341, 0.416 ight]$	$\left[-0.742, 0.818 ight]$	$\left[-0.605, 0.681\right]$
		c_W	$\left[-0.681, 0.669 ight]$	$\left[-0.513, 0.481\right]$	$\left[-0.987, 0.974 ight]$	$\left[-0.842, 0.818 ight]$
		c_{HW}	[-7.00, 6.09]	$\left[-5.48, 4.31 ight]$	[-9.99, 9.05]	[-8.68, 7.60]
		c_{HWB}	[-41.7, 69.6]	[30.7, 89.2]	[-66.6, 96.4]	$\left[-49.7,110\right]$
	dim-6	c_H	[-16.6, 18.1]	$\left[-12.0, 14.0\right]$	$\left[-24.7, 26.3 ight]$	$\left[-20.9, 22.7\right]$
		c_{HD}	$\left[-24.6,34.7\right]$	$\left[-15.3, 31.5 ight]$	$\left[-38.2,48.8 ight]$	$\left[-31.4,45.5 ight]$
		$c_{Hl}^{\left(1 ight) }$	$\left[-28.8, 29.9\right]$	$\left[-38.2, 39.5\right]$	$\left[-49.4, 49.7\right]$	$\left[-69.3,68.3\right]$
		$c_{Hl}^{\left(3 ight) }$	$[-1.43, 2.23] \cup [5.88, 9.54]$	$\left[-0.045, 8.58\right]$	$\left[-2.64, 10.8\right]$	$\left[-1.59, 9.94\right]$
		$c_{Hq}^{\left(1 ight) }$	$\left[-4.53, 4.42\right]$	$\left[-3.27, 3.44\right]$	$\left[-6.56, 6.44\right]$	$\left[-5.55, 5.60\right]$
		$c_{Hq}^{(3)}$	$\left[-2.39, 1.37\right]$	$\left[-1.88, 0.705\right]$	$\left[-3.24, 2.16\right]$	$\left[-2.82, 1.61\right]$
		f_{T0}	[-1.02, 1.08]	[-0.774, 0.842]	[-1.52, 1.58]	[-1.32, 1.38]
		f_{T1}	$\left[-0.426, 0.480 ight]$	$\left[-0.319, 0.381\right]$	$\left[-0.640, 0.695 ight]$	$\left[-0.552, 0.613 ight]$
dim-8 DNN output		f_{T2}	[-1.15, 1.37]	$\left[-0.851, 1.12 ight]$	[-1.75, 1.98]	$\left[-1.51, 1.76 ight]$
distributions		f_{M0}	$\left[-9.89, 9.74\right]$	[-8.07, 7.70]	[-14.6, 14.5]	$\left[-13.1, 12.8 ight]$
	dim_8	f_{M1}	$\left[-12.5, 13.3\right]$	$\left[-9.54, 11.15 ight]$	$\left[-18.7, 19.6\right]$	$\left[-16.4, 17.7 ight]$
	uiii-0	f_{M7}	$\left[-20.3, 19.2\right]$	[-17.6, 15.3]	$\left[-29.9, 28.8\right]$	$\left[-27.6, 25.8\right]$
		f_{S0}	[-11.6, 12.0]	$\left[-9.60, 9.82\right]$	$\left[-17.4, 17.9 ight]$	$\left[-15.9, 16.1\right]$
		f_{S1}	$\left[-37.4, 38.8\right]$	$\left[-40.9, 41.3\right]$	$\left[-57.2, 58.6\right]$	$\left[-60.9, 61.8\right]$
		f_{S2}	$\left[-37.4, 38.8 ight]$	[-40.9, 41.3]	[-57.2, 58.6]	$\left[-60.9, 61.8\right]$

VBS Same Sign WW with hadronic τ

- First simultaneous extraction of dim-6 and dim-8 constraints
- Transverse mass (M_{01}) used as the variable of interest for 2D constraints

$$N \propto |\mathcal{A}|^2 = |\mathcal{A}_{SM}|^2 + \sum_{\alpha} \frac{C_{\alpha}}{\Lambda^2} \cdot 2\mathcal{R}e(\mathcal{A}_{SM}\mathcal{A}_{Q\alpha}^{(6)\dagger}) + \sum_{\alpha,\beta} \frac{C_{\alpha}C_{\alpha}}{\Lambda^4}$$

Dim6 including linear, BSM and mixed contributions

$$\sum_{k} \left[\frac{f_k}{\Lambda^4} \cdot 2\mathcal{R}e(\mathcal{A}_{SM}\mathcal{A}_{Qk}^{(8)\dagger}) \right] + \sum_{k} \frac{f_k^2}{\Lambda^8} \cdot (\mathcal{A}_{Qk}^{(8)}\mathcal{A}_{Qk}^{(8)\dagger})$$

Dim8 including linear and BSM contributions

 $M_{01} = (p_{T\tau} + p_l + \overrightarrow{p_T}^{miss})^2 + |p_{T\tau} + \overrightarrow{p_T}^{miss}|^2$

138 fb⁻

http://cds.cern.ch/record/2867989?ln=en

VBS Same Sign WW with hadronic τ

Simultaneous extraction of dim-6 and dim-8 constraints

Sensitive to correlation between Higgsfermion operators

 $M_{01} = (p_{T\tau} + p_l + \overrightarrow{p_T}^{miss})^2 + |p_{T\tau} + \overrightarrow{p_T}^{miss}|^2$

29

PRD 108 (2023) 032017

- First observation of the Wy + 2 jets process with observed (expected) significance of 5.3 (4.8) σ with 35.9 fb^{-1}
- Extensive measurement now possible with full Run II dataset
- Invariant mass of the Wγ system is sensitive to presence of dim-8 operators

• Major backgrounds from W+jets and $t\bar{t}$ processes where the jet constituents is misidentified as a photon

	Barrel	Endcap
EW W γ in fiducial region	316 ± 16	90.2 ± 5.5
EW W γ out of fiducial region	64.7 ± 2.0	20.4 ± 1.0
$QCDW\gamma$	1301 ± 28	362 ± 13
top, VV, Z γ	402 ± 14	93.3 ± 7.2
Nonprompt photon	434 ± 13	120.2 ± 5.7
Nonprompt muon	134 ± 27	45 ± 11
Nonprompt electron	189 ± 20	86 ± 13
Nonprompt photon, nonprompt muon	43.0 ± 7.0	14.6 ± 3.4
Nonprompt photon, nonprompt electron	75.5 ± 5.5	25.0 ± 2.0
Total prediction	2960 ± 43	856 ± 21
Data	2959 ± 57	849 ± 32

Search for *HWW/HHWW* couplings in the VBS production of $W^{\pm}W^{\pm}H$ with $H \rightarrow b\bar{b}$ decays

https://arxiv.org/pdf/2405.16566

https://cds.cern.ch/record/2905615

https://arxiv.org/pdf/2405.16566

Search for HHWW couplings in the VBS production of $W^{\pm}W^{\pm}H$ with $H \rightarrow b\bar{b}$ decays

- Boosted decision tree trained against major backgrounds All scenarios with $\lambda_{WZ} = \frac{k_W}{k_Z} < 0$ excluded

Shorthand	Description
η_I	η of the leading merged jet
$p_{\mathrm{T},I}$	$p_{\rm T}$ of the leading merged jet
$p_{\mathrm{T},ii}$	$p_{\rm T}$ of the VBS-jet system
P_{i_0}	magnitude of the three-momentum of the leading VBS jet
$P_{j_1}^{j_0}$	magnitude of the three-momentum of the subleading VBS jet
$M^{1}_{\ell\ell}$	invariant mass of the SS dilepton system
p_{T,ℓ_0}	$p_{\rm T}$ of the leading lepton
p_{T,ℓ_1}	$p_{\rm T}$ of the subleading lepton
$E_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse energy
\hat{L}_T	scalar sum of $p_{T,\ell_0}, p_{T,\ell_1}$ and E_T^{miss}
S_T	scalar sum of $p_{T,J}$ and L_T

Extraction of sign of W and Z coupling to Higgs performed with W and Higgs in final state

Events

10

10

10⁰

 10^{-10}

Data / Pred.

0.5

• For $W^{\pm}W^{\pm}H$ low signal yields \rightarrow need more data to set tight constraints on couplings

Going forward... (practicalities)

- Study of vector boson scattering processes is an exciting area of research with many new analyses in the last few years
- Run III dataset provides additional opportunities to study these processes in depth
- As the precision program of the LHC is realized, studying generator modeling is crucial
 - <u>Many different generators</u> studied with various configurations
 - Features discussion of choice of dipole recoil scheme
 - Synchronize sample production between ATLAS and CMS

		-	~			
Sample	Generator	μ -scale	Shower	Tune	PDF	furtl
name						
Sherpa	Sherpa v2.2.2	dynamic scale,	internal	internal	NNPDF3.0-	mult
(ATLAS)		m_{WW}			NNLO	actly
						verti
						addi
						at L
						QCI
PW+Py8	POWHEG v2,	fixed scale,	PYTHIA	AZNLO	NNPDF3.0-	NLC
(ATLAS)	VBS approx.	m_W	8.212		NLO	
PW+Py8	POWHEG v2	fixed scale,	PYTHIA	AZNLO	NNPDF3.0-	Dipo
dipole-		m_W	8.235		NLO	-
recoil						
(ATLAS)						
MG5+Py8	MG5_AMCNLO	dynamic scale,	PYTHIA	A14	NNPDF3.0-	LO,
dipole-	v2.6.2	jet1_jet1	8.235		NLO	coil
recoil		$\bigvee p_{\mathrm{T}} p_{\mathrm{T}}$				
(ATLAS)						
MG5+Pv8	MG5 AMCNLO	dynamic scale	PVTHIA		NNPDF3 0-	LO
(CMS)	v2 3 3	using a $2 \rightarrow 2$	8 212		LO	EV, EW
	12.0.0	topology from	0.212		LO	
		the clustered				
		ovtornal state				
$\mathbf{DW} + \mathbf{Drr}\mathbf{Q}$		dunamia scale		Monach	NNDDE2 0	NI (
FW+Fyo	FOWIEG V2	$\int \frac{dynamic scale}{\sqrt{1+1+1+2}}$	PYTHIA 0.020	WIOHASH	NNPDF5.0-	NLC
(VBScan)		$ \sqrt{p_{\mathrm{T}}^{\mathrm{jet1}} p_{\mathrm{T}}^{\mathrm{jet2}}}$	8.230		NLO	
·	1	· · ·		1	I	

Going forward...

- - of the Higgs coupling to gauge bosons
- Analysis projected from Run II to 3000 fb⁻¹

CMS-PAS-

 Understanding electroweak symmetry breaking → crucial part of LHC physics program Longitudinally polarized scattering of W and Z complementary to direct measurements

Т	R	_	2	1	_	0	0	1

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-22-009/index.html

Anomalous neutral gauge couplings in the mono photon channel

Anomalous neutral gauge couplings in the mono photon channel

- Generalized theory of forbidden neutral gauge couplings
 - Parametrized with 8 parameters $(h_1 \text{ to } h_4)$
 - incoming off-shell Z or γ and outgoing on-shell Z and γ
 - CP violating: h_1^V , h_2^V ; CP conserving: h_3^V , h_4^V

$$\Gamma_{ZZ\gamma}^{\alpha\beta\mu} = \frac{p^2 - q_1^2}{m_Z^2} \left[h_1^Z (q_2^\mu g^{\alpha\beta} - q_2^\alpha g^{\mu\beta}) + \frac{h_2^Z}{m_Z^2} p^\alpha [(p.q_2)g^{\mu\beta} - q_2^\mu p^\beta] + h_3^Z \epsilon^{\mu\alpha\beta\rho} q_{2\rho} + \frac{h_4^Z}{m_Z^2} p^\alpha \epsilon^{\mu\beta\rho\sigma} q_{2\rho} + \frac{h_4^Z}{m_Z^2} p^\alpha \epsilon^{\mu\beta\sigma} q_{2\rho} + \frac{h_4^Z$$

 $\Gamma^{\alpha\beta\mu}_{7,m}$ obtained with some simple substitutions to the above equation

Ellis et al: https://indico.cern.ch/event/1330671/contributions/5601599/ attachments/2735050/4755768/Offshell+CPV_Dimension8.pdf

• Vertex functions describe the most general Lorentz and $U_V(1)$ invariant interactions of the

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-22-009/index.html

Anomalous neutral gauge couplings in the mono photon channel

- New physics most likely to show up as deviation at high p_T
 - Photon p_T is the variable of interest
- data-driven methods and simulations

Backgrounds range from $W + \gamma$, V + jets, $\gamma + jets$ and dibosons estimated using

Eur. Phys. J. C 84 (2024) 712

Search for $ZZ \rightarrow b\bar{b}$ and $ZH \rightarrow b\bar{b}$

- right
 - measurement

Search for $ZZ \rightarrow bb$ and $ZH \rightarrow bb$

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-011/

- Background modeling validated by high-event-count proxy for the four-tag background
- Synthetic data generated by using the hemisphere technique:
 - Event split into hemispheres and library generated
 - Corrections introduced to account for $t\bar{t}$ background contamination
- Mixed models allow testing for biases in the background model that can mimic a signal
 - Check with and without unconstrained signal template
- $ZZ \rightarrow b\bar{b}$ observed with 3.8 σ significance
- $ZH \rightarrow bb$ observed with 5.0 σ significance

1200

1000

200

В +

Data / S .

Search for $ZZ \rightarrow bb$ and $ZH \rightarrow bb$

Original three-tag event split into two hemispheres

Three-tag events are divided into two halves by cutting along the axis perpendicular to the

Hemisphere library

Mixed Event

Stress testing the Standard Model

- The full Run 2 dataset allowed us to observed rare processes predicted by the SM
- Precision tests of multiboson processes and improving background predictions for Higgs self coupling measurements were possible
- Run 3 luminosity already exceeds Run 2

Additional Material

Introducing the dramatis personae The Standard Model of Particle Physics Forces Quarks

Leptons

e	J	
ν_e	D J	$ $

Focus of my talk:

- Explore the gauge boson sector → interplay between W, Z, and γ
- Enables fundamental tests of the Standard Model

ntrol region	Top γ control region
ns of identical	Flip b-veto and remo cut on transverse ma of the WW-system
npt lepton odeling	Validate top-quark an non-prompt photor background modelir

Process	SR (0 jet)	SR (≥ 1 jet)	SR (total)	SSWW γ CR	Top γ CR
$WW\gamma$	122 ± 23	132 ± 27	254 ± 47	1.0 ± 0.2	12.8 ± 2.7
$QCD V\gamma$	72.0 ± 6.4	94.7 ± 9.3	167 ± 14	12.2 ± 2.2	12.6 ± 1.2
VV	15.1 ± 1.4	21.6 ± 2.4	36.7 ± 3.5	24.9 ± 1.7	2.0 ± 0.3
Тор	56.6 ± 6.5	271 ± 26	328 ± 32	2.4 ± 0.6	2434 ± 85
Nonprompt ℓ	45.7 ± 4.0	77.2 ± 6.5	122.9 ± 9.7	197 ± 14	40 ± 11
Nonprompt γ	109.1 ± 9.0	301 ± 24	410 ± 32	19.9 ± 1.6	793 ± 62
Total	420 ± 20	898 ± 29	1318 ± 43	257 ± 14	3294 ± 57
Data	414	916	1330	259	3287
		Background			

dominated

Simultaneous extraction of signal and control regions

Search for exclusive $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ production in final states with jets and forward protons

Number of events	region	N _{evt} (2016)	N _{evt} (2017)	Ν
Anti-acoplanarity sideband	δ	1.5 ± 1.1	1.6 ± 0.8	1
Anti-pruned mass sideband	δ	0.4 ± 0.2	0.9 ± 0.2	
Event mixing	δ	0.5 (< 2.1)	1.5 (< 3.6)	1
Expected signal	δ	1.3	1.4	
$(a_0^Z / \Lambda^2 = 1 \times 10^{-5} \text{GeV}^{-2})$				
Anti-acoplanarity sideband	0	1.5 ± 1.1	3.7 ± 1.5	3
Anti-pruned mass sideband	0	2.1 ± 0.8	5.4 ± 1.3	4
Event mixing	0	2.0 ± 1.8	6.3 ± 5.1	
Expected signal	0	1.0	1.6	
$(a_0^Z / \Lambda^2 = 1 \times 10^{-5} \text{GeV}^{-2})$				

Effective Field Theory interpretation in $\gamma\gamma \rightarrow \tau\tau$

$$\mathscr{L}_{BSM} = \frac{C_{\tau B}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R H B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R \sigma^i H W^i_{\mu\nu}$$

$$\tau \tau \gamma \text{ vertex parametrized as:}$$

$$V_{\tau \tau \gamma} = i e \gamma^{\mu} = \frac{\nu \sqrt{2}}{\Lambda^2} [\text{Re}[C_{\tau \gamma} + \text{Im}[C_{\tau \gamma}] i \gamma_5]$$

$$C_{\tau \gamma} = (\cos \theta_W C_{\tau B} - \sin \theta_W C_{\tau W})$$

BSM contribution to a_{τ} : $\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}[C_{\tau\gamma}]$

This paper presents a measurement of the EW W γ jj production at $\sqrt{s} = 13$ TeV based on the complete Run 2 data collected during 2016–2018, superseding the previous CMS result [4]. A complete set of tabulated results of this analysis is available in the HEPData database [5]. In addition to increased integrated luminosity, our new results include: (*i*) an updated fiducial region requiring jets with $p_T > 50$ GeV; (*ii*) the removal of the missing transverse momentum requirement from the fiducial region definition; (*iii*) the treatment of the interference term between the EW- and quantum chromodynamics (QCD) induced processes as a background component; (*iv*) and the treatment of the out-of-fiducial signal contribution as a background component.

9 Fiducial cross section measurement

The fiducial cross section measurement for the EW W γ production at 13 TeV is extracted with the same 2D $m_{jj}-m_{\ell\gamma}$ binning used for the signal significance. The fiducial region is defined based on the particle-level (for leptons, photons, jets) quantities: one lepton $p_{\rm T}^{\ell}$ > 35 GeV and

 $|\eta_{\ell}| < 2.4, p_{\rm T}^{\rm miss} > 30 \,{\rm GeV}, p_{\rm T}^{\gamma} > 25 \,{\rm GeV}, |\eta_{\gamma}| < 1.444 \text{ or } 1.566 < |\eta_{\gamma}| < 2.5, \Delta R_{\ell\gamma} > 0.5, m_{\rm T}^{\rm W} > 30 \,{\rm GeV}$, and two jets with $p_{\rm T}^{j1(2)} > 50 \,{\rm GeV}, |\eta_{\rm j}| < 4.7, m_{\rm jj} > 500 \,{\rm GeV}, \Delta R_{\rm jj} > 0.5, \Delta R_{\rm j\ell} > 0.5, \Delta R_{\rm j\gamma} > 0.5, and |\Delta \eta_{\rm jj}| > 2.5$. The leptons are reconstructed at the particle level with fully recovered final-state radiation. The acceptance is defined as the fraction of the signal events passing the fiducial region selection, and is estimated using MG5. The theoretical uncertainty in the extrapolation between the fiducial and SR is negligible (< 1%). We define the cross section as $\sigma^{\rm fid} = \sigma_{\rm g} \hat{\mu} \alpha_{\rm gf}$, where the cross section for the signal events is $\sigma_{\rm g} = 0.776 \,{\rm pb}$ calculated with MG5 at LO in QCD [12], the observed signal strength parameter $\hat{\mu} = 0.88^{+0.19}_{-0.18}$, and the

Search for *HHWW* couplings in the VBS production of $W^{\pm}W^{\pm}H$ with $H \rightarrow b\bar{b}$ decays

Events

10

10

Data / Pred.

- removed by requiring $m_{ii} > 100$ GeV
- Boosted decision tree trained against major backgrounds
- Low signal yields \rightarrow need more data to set tight constraints on couplings

		L
		ЦI
VV	VV	

Shorthand	Description
η_{I}	η of the leading merged jet
$p_{\mathrm{T},I}$	$p_{\rm T}$ of the leading merged jet
$p_{\mathrm{T},ii}$	$p_{\rm T}$ of the VBS-jet system
P_{j_0}	magnitude of the three-momentum of the leading VBS jet
$P_{j_1}^{j_0}$	magnitude of the three-momentum of the subleading VBS jet
$\dot{M_{\ell\ell}}$	invariant mass of the SS dilepton system
$p_{\mathrm{T,}\ell_0}$	$p_{\rm T}$ of the leading lepton
$p_{\mathrm{T,}\ell_1}$	$p_{\rm T}$ of the subleading lepton
$E_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse energy
\hat{L}_T	scalar sum of $p_{T,\ell_0}, p_{T,\ell_1}$ and E_T^{miss}
S_T	scalar sum of $p_{T,J}$ and L_T

https://cds.cern.ch/record/2905615

Extraction of sign of W and Z coupling to Higgs performed with single W and Higgs in final state Final state: 2 same-signed leptons (one τ lepton permitted), a boosted jet, non-VBS contribution

Study of *WH* production and extraction of relative sign of the W and Z couplings

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-23-007/index.html

Source	ZZ	ZH
Statistical uncertainty	75	77
Total systematic uncertainty	67	64
Background model	61	56
(Variance)	(46)	(46)
(Extrapolation)	(40)	(33)
b tagging	9	17
Jet energy scale and resolution	9	5
Others	24	24

Search for $ZZ \rightarrow b\bar{b}$ and $ZH \rightarrow b\bar{b}$

	ZZ	ZH
Signal strength expected (stat. only)	$1.0 \ ^{+1.9}_{-1.7} \ (1.0 \ ^{+1.4}_{-1.3})$	$1.0 \ ^{+1.5}_{-1.4}$ (1.0
Signal strength observed	$0.0 \ ^{+2.0}_{-1.7}$	$2.2 \ ^{+0.9}_{-0.8}$
Expected upper limit at 95% CL (stat. only)	3.8 (2.8)	2.9 (2.3
Observed upper limit at 95% CL	3.8	5.0

The mixing algorithm is based on the technique developed in a previous CMS HH \rightarrow 4b analysis [20]. The first step involves creating a collection of hemispheres (hemisphere library) from events in the four-tag data set. Each event is split into two hemispheres using the plane orthogonal to the transverse thrust axis [20], which is chosen based on the assumption that it is a good proxy for the initial gluon directions in the underlying scattering process. Jets on one side of the plane are assigned to one hemisphere, those on the other side are assigned to the other hemisphere. Four variables are computed using the sum of the four-vectors of all the jets in that hemisphere: the invariant mass, the longitudinal momentum, and the transverse momentum perpendicular and parallel to the transverse thrust axis. The jet and b jet multiplicities are also computed for each hemisphere. The library is created with events that pass the jet kinematic requirements but before the dijet invariant mass requirement given in Eq. (1) is applied.

Search for $ZZ \rightarrow b\bar{b}$ and $ZH \rightarrow b\bar{b}$