

Measurement of ZZ cross-sections in the four-lepton final state in *pp* collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS experiment

Xingyu Wu On behalf of the ATLAS Collaboration

Multi-Boson Interactions 2024, Toulouse

- This talk will be focusing on the recent 13.6 TeV Run-3 ZZ cross section measurement in the 4-lepton final state with the ATLAS detector.
- Paper: <u>Phys. Lett. B 855 (2024) 138764</u>
- ATLAS briefing: ATLAS measures ZZ production using Run-3 data and a new slim data format
- The electroweak sector of the Standard Model has been tested at the highest available energies in a model-independent way!

Introduction

- Measurement of ZZ process
 - Low cross-section but clean background for the leptonic decay $(4l, l = e, \mu)$.
 - Precision test of the Standard Model.
- Various measurements of ZZ production have been performed by ATLAS and CMS.
 - 4 lepton final state was measured in a wide range of m_{4l} .
 - Rich physics contents

- Latest results using partial Run-3 data ($L = 29 \text{ fb}^{-1}$).
 - In the on-shell ZZ region using 4 lepton final state.
 - Total cross section and differential cross section measurements.

10³ m₄ [GeV

ATLAS

10

s = 13.6 TeV 29 fb

 3×10^{2} 4×10

Sherpa qqNLO+ggLOx1.7(→ ZZ) (*)

Sherpa qq[NLOxNLO EW]+ggLOx1.7(→ ZZ) (*) MATRIX qqNNLO+ggNLO(→ ZZ) (*) MATRIX qq[NNLOxNLO EW]+ggNLO(→ ZZ) (

ZZ cross section measurement in Run-3

• The first look of di-boson process with LHC Run-3 data.

	Measurement	MC prediction	MATRIX + EW $ZZjj$
Fiducial	$36.7 \pm 1.6(\text{stat}) \pm 1.5(\text{syst}) \pm 0.8(\text{lumi}) \text{ fb}$	36.8 ^{+4.3} _{-3.5} fb	36.5 ± 0.7 fb
Total	$16.8 \pm 0.7(\text{stat}) \pm 0.7(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb}$	17.0 ^{+1.9} _{-1.4} pb	16.7 ± 0.5 pb

4

Fiducial region and event selection

- Fiducial region
 - Designed to be as inclusive as possible.
 - Based on particle-level prompt leptons.
 - Particle level: after parton showering and QED FSR.
- Quadruplet (4-leptons)
 - Same flavor opposite charge (SFOC) lepton pair closest to Z mass is designated as the leading pair.
 - Remaining SFOC pair closest to Z mass is designated as sub-leading pair and completes the quadruplet.
 - One quadruplet defined in an event.
 - Three flavor categories: 4e, $2e2\mu$, 4μ .
- Event selection
 - Leptons are first reconstructed and checked with - - object selection.
 - Tight criteria applied on leptons in quadruplet to ---mitigate misidentified or non-prompt leptons.
 - Z mass on-shell and ZZ on-shell cuts are finally applied to select ZZ events.

	Fiducial phase space
Muon selection	Bare, $p_{\rm T} > 5 \text{ GeV}$, $ \eta < 2.5$
Electron selection	Dressed, $p_{\rm T} > 7 {\rm GeV}$, $ \eta < 2.47$
Four-lepton signature	\geq 2 SFOC pairs
Lepton kinematics	$p_{\rm T} > 27/10 { m ~GeV}$
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.05$
Low-mass $\ell^+\ell^-$ veto	$m_{ij} > 5 \text{ GeV}$
Z mass window	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$
ZZ on-shell	$m_{4l} > 180 \text{ GeV}$

Event selections in fiducial region

Total phase space

- To measure the ZZ inclusive total cross section.
- The phase space is formed with born-level leptons.
 - Born-level: after parton showering but before QED FSR.
- Focusing on the on-shell ZZ production.

	Fiducial phase space	Total lepton phase space	-	
Muon selection	Bare, $p_{\rm T} > 5 {\rm GeV}$, $ \eta < 2.5$	Born	<u> </u>	
Electron selection	Dressed, $p_{\rm T} > 7 \text{ GeV}$, $ \eta < 2.47$	Born	<u> </u>	Define with born leptons
Four-lepton signature	\geq 2 SFOC pairs	≥ 2 SFOC pairs	Ĩ	
Lepton kinematics	$p_{\rm T} > 27/10 { m ~GeV}$			Pemove lepton cut
Lepton separation	$\Delta R(\ell_i,\ell_j) > 0.05$			
Low-mass $\ell^+\ell^-$ veto	$m_{ij} > 5 \text{ GeV}$	$m_{ij} > 5 \text{ GeV}$	i.	and ZZ on-shell cut
Z mass window	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$		· · · · · · · · · · · · · · · · · · ·
ZZ on-shell	$m_{4l} > 180 \text{ GeV}$	L	-	

Table 1: Definition of the fiducial and total lepton phase-space regions.

Compare with the fiducial phase space

SFOC: same flavor opposite charge.

Physics modelling

- MC samples are generated dedicatedly for each essential process.
- Signal (MC estimation)
 - $q\bar{q} \rightarrow ZZ$: Sherpa v2.2.12+MEPS@NLO w. 0,1j@NLO, 2,3 j@LO QCD
 - gg \rightarrow ZZ: Sherpa v2.2.12+MEPS@NLO w. 0,1j@LO
 - inclusive, $m_{4l} > 130 \text{ GeV}$
 - 1.7 K-factor was applied to predicted cross section to account for higher order QCD corrections.
 - EW $q\bar{q} \rightarrow ZZ + 2j$: Powheg Box v2+Pythia 8.3 w. 2 add. jets(EW) @NLO
- Irreducible background (MC estimation, contribution $\sim 1\%$)
 - VVV: Sherpa v2.2.12+MEPS@NLO w. 0j@NLO, 1,2 j@LO QCD
 - ttZ: Sherpa v2.2.12+MEPS@NLO w. 0, 1j@NLO, 1j@LO QCD
- Fake background (data driven method, contribution ~4%)
 - *lllv*: Sherpa v2.2.12+MEPS@NLO w. 0,1j@NLO, 2,3 j@LO QCD
 - tī: Powheg Box v2+Pythia 8.307 @NLO QCD
 - Z + jets: Sherpa v2.2.12+MEPS@NLO w. 0-2j@NLO, 3-5 j@LO QCD

Fake estimation

- Fake refers to events with one or more non-prompt/fake leptons entering quadruplet.
 - Large contributions from Z + jets and $t\bar{t}$ processes.
 - Mainly originated from photon conversion and hadron decays.
 - Contributes about 4% or less in most measured bins.
- Fake background estimated with data-driven approach:
 - Fake Factor method
 - Estimate fake factor in Control Region and transfer it into Signal Region.
- Validation
 - A dedicated validation region is defined
 - The quadruplet should have one SFOC pair and one different-flavor opposite-charge pair.
 - Orthogonal to the SR.
 - Data/MC comparison was checked in validation region
 - In good agreement.

Uncertainties

- Multi-source of uncertainties are studied and estimated
 - Data statistics
 - Predominant uncertainty
 - Theoretical uncertainties
 - PDF + α_s , QCD scale variations and parton shower uncertainties.
 - Conservative variations on ZZjj ($\pm 20\%$), VVV ($\pm 10\%$) and ttZ ($\pm 15\%$) cross sections.
 - Experimental systematics
 - Lepton momentum resolution and energy scale.
 - Lepton identification, isolation, reconstruction and trigger efficiency.
 - Pileup reweighting.
 - Luminosity.
 - Fake background
 - Statistical uncertainty.
 - Fake factor systematic uncertainty.
 - MC systematic uncertainty.

Largest contribution from electron ID.

Source	Relative uncertainty(%)		
Data statistical uncertainty	4.2		
MC statistical uncertainty	0.3		
Luminosity	2.2		
Pile-up	0.3		
Lepton momentum	0.2		
Lepton efficiency	3.7		
Background	1.6		
Theoretical uncertainty	1.0		
Total	6.3		

Breakdown of relative uncertainty in the measured fiducial cross-section

Detector-level yields

- The m_{4l} , $p_{T,4l}$ spectrums are derived at reconstructed level.
- Generally in good agreement with limited statistics.

yields comparison

Process	Yield
qqZZ	515 ± 50
ggZZ	74 ± 44
ZZjj	4.7 ± 1.0
ttll	5.5 ± 0.8
triboson	2.1 ± 0.2
Fake	25.4 <u>±</u> 8.1
Total	626 <u>±</u> 88
Data 2022	625

Unfolding and detector correction

- Derive the m_{4l} , $p_{T,4l}$ spectrum corrected for detector effects at particle-level.
 - Remove the effect of the detector efficiency, resolution and acceptance.

• The unfolded distribution could be used to retrieve differential cross-section and compare with theoretical prediction directly

Differential cross sections

- Using unfolding method to correct the detector effects.
- Fiducial level data/MC comparison with 2 observables: m_{4l} , $p_{T,4l}$.
- Good agreement is shown at up to NNLO QCD + NLO EW order with limited statistics.
 - Different MC predictions at different accuracies are provided.

MC predictions provided with Sherpa/Powheg and MATRIX

Inclusive fiducial cross section

- Fiducial cross section: $\sigma_{\text{fid.}} = \frac{N_{\text{obs}} N_{\text{bkg}}}{L \cdot C}$
- Correction factor: $C = \frac{N_{Reco}}{N_{Truth}}$
- $\sigma_{fid.}$ = 36.7 \pm 1.6 (stat.) \pm 1.5(sys.) \pm 0.8 (lumi) fb
- Agree with the theoretical predictions within uncertainties.

Source	Relative uncertainty(%)
Data statistical uncertainty	4.2
MC statistical uncertainty	0.3
Luminosity	2.2
Lepton momentum	0.2
Lepton efficiency	3.7
Background	1.6
Theoretical uncertainty	1.0
Total	6.3

Uncertainty breakdown on $\sigma_{fid.}$

Total cross section

- Total cross section: $\sigma_{\text{total}} = \frac{N_{\text{data}} N_{\text{bkg}}}{L \cdot A \cdot C \cdot 4BR_{Z \to e^+e^-}^2}$
- Acceptance: $A = \frac{N_{truth}}{N_{total}}$
- $\sigma_{total} = 16.8 \pm 0.7 \text{ (stat.)} \pm 0.7 \text{ (sys.)} \pm 0.4 \text{ (lumi) pb}$

- First Run-3 ZZ results are reported.
 - ZZ differential fiducial cross-sections as a function of m_{4l} and $p_{T,4l}$ are measured.
 - ZZ inclusive fiducial and total cross sections are measured.
 - Good agreement is shown with the limited statistics.
- The observed data agrees with the state-of-art MC simulation at up to NNLO QCD + NLO EW accuracy.
- The electroweak sector of the Standard Model has been tested at the highest available energies in a model-independent way!

