

Results on Higgs-pair production in CMS

Garyfallia (Lisa) Paspalaki

(Purdue University) On behalf of the CMS collaboration

Multi-boson Interactions Workshop 2024

25-27 September

Toulouse, France

Outline

- Di-Higgs motivation searches
- Survey of CMS results with 13 TeV data
- Run3 and HL-LHC prospects
- Summary

Higgs Pair Production

- The precision measurement of the Higgs boson properties is one of the primary targets @LH
- The SM description of the **Higgs potential** is encoded with two parameters: mH, λ
- The measurement of $\sigma(HH)$ is the best way to extract the Higgs self-coupling $\lambda 3$

Kappa framework approach- Test accuracy and deviation from the SM

for every coupling c , $\kappa_c = c^{obs}/c^{SM}$

out of reach at

current colliders

Di-Higgs Pair Production

The di-Higgs cross section depends on the production mode, but it's **~1000 times rarer than** single-Higgs

At the LHC HH pairs are mainly produced through **gluon gluon fusion** (ggF) via a fermionic loop

Destructive interference between square and triangle $\sigma_{\rm ggF}$ =32.05 fb @NNLO

```
Direct access to \kappa_{\lambda} where \kappa_{\lambda} = \lambda_3 / \lambda_{3SM}
```

Second leading production through Vector Boson Fusion (VBF)

Signature from high energy jets $\sigma_{VBF} = 1.73 \text{ fb} @NNLO$ Direct access to κ_{λ} , κ_{V} , κ_{2V} Unique handle to study the quartic HHVV (κ_{2V}) coupling

HH production probe for BSM

Non-resonant signature

Low energy effect of new physics that modify the Higgs bosons' interactions:

к framework approach: modify HHH vertices

deviations from the SM are modelled by couplings modifiers kappa

Non-SM modifications to ggHH

Higgs Effective Field Theory (HEFT) approach: introduce operators with a strength given by Wilson coefficient explore sensitivity to BSM EFT couplings

with 20 shape benchmarks points (JHEP03(2020)091, JHEP04(2016)126)

Resonant signatures

Direct production of a new state $X \rightarrow HH$

Significance cross-section enhancement on resonance

Large set of BSM scenarios: various M_X hypothesis and search channels

9/19/24

additional ggF couplings (c2,cg,c2g)

Di-Higgs Final State

- Higgs boson decay branching ratios result in rich set of final states
- All decay channels are a compromise between Branching Ratio (BR) and final state signal purity (S/B) (no golden channel)
- Final states that drive the sensitivity "silver channels":
- H(bb) \rightarrow good branching ratio H(ττ), H(γγ) \rightarrow good signal purity
- Run1: a few channels
- Run2: H->bb or multileptons
- Full Run2: many new final states covered

	bb	₩₩ >=1 <i>l</i>	WW _{4q}	ττ	ZZ	YY
bb	34%					
WW >=1 <i>l</i>	13.4%	1.3%				
WW _{4q}	11.6%	1.1%	2.1%			
ττ	7.3%	1.4%	1.2%	0.39%		
ZZ	3.1%	0.6%	0.2%	0.33%	0.069%	
YY	0.26%	0.06%	0.04%	0.028%	0.012%	0.0005%

Overview of Di Higgs CMS results

HH->bbbb (highest branching fraction, large multijet background)

- Phys.Rev.Lett.129,081802 (resolved)
- <u>CMS-PAS-B2G-21-001</u> (VBF boosted)
- <u>Submitted to JHEP (VHH)</u>
- <u>Submitted to Eur. Phys. J. C (ZZ/ZH)</u>

 $HH \rightarrow bb \tau \tau$ (relatively large branching fraction, cleaner final state)

• Phys.Lett.B842(2023)137531

 $HH \rightarrow b\bar{b}\gamma\gamma$ (small branching fraction, clean signal signature h $\rightarrow \gamma\gamma$ mass peak)

• JHEP03(2021)257

$HH \rightarrow b\bar{b} VV / Multileptons$ (low branching fraction, but clean leptonic final states)

- <u>JHEP07(2023)095</u>(4W/WWττ/4τ,≥2l)
- <u>JHEP 06 (2023) 130 (</u>bbZZ, 4l)
- <u>CMS-PAS-HIG-21-005</u>(bbWW,≥1l)
- <u>CMS-PAS-B2G-21-001</u>(γγWW)
- <u>CMS-PAS-HIG-22-012</u> (γγττ)

More final states are covered

	bb	WW >=1 <i>l</i>	WW _{4q}	ττ	ZZ	YY
bb	34%					
WW >=1 <i>l</i>	13.4%	1.3%				
WW _{4q}	11.6%	1.1%	2.1%			
π	7.3%	1.4%	1.2%	0.39%		
ZZ	3.1%	0.6%	0.2%	0.33%	0.069%	
YY	0.26%	0.06%	0.04%	0.028%	0.012%	0.0005%

Limits on Di-Higgs Production

	bb	WW _{>=1<i>l</i>}	WW _{4q}	π	ZZ	YY
bb	34%					
WW _{>=1l}	13.4%	1.3%				
WW _{4q}	11.6%	1.1%	2.1%			
ττ	7.3%	1.4%	1.2%	0.39%		
ZZ	3.1%	0.6%	0.2%	0.33%	0.069%	
YY	0.26%	0.06%	0.04%	0.028%	0.012%	0.0005%

Leave no phase-space unturned

New additions <u>since Nature paper</u>: WWγγ, bbWW

WWγγ: Clean γγ peak, leptonic final states or jets bbWW: Second largest branching fraction Large background. Final states with at least one lepton cleaner.

an expected CMS Higgs results

Combined sensitivity on $\sigma/\sigma_{_{SM}}$

Run 2 Combination

CMS Summary

κ_{2V} = 0 is excluded at 6.6 σ

 $0.67 < \kappa_{2V} < 1.38$

9/16/24

Garyfallia (Lisa) Paspalaki

Overview of Di-Higgs CMS results

Newest results

bbVV fully hadronic

CMS-PAS-HIG-23-012

γγττ <u>CMS-PAS-HIG-22-012</u>

H + HH combination CMS-HIG-23-006

WWγγ <u>CMS-PAS-HIG-21-014</u>

bbWW JHEP 07 (2024) 293

More final states are covered

	bb	WW _{>=1l}	WW _{4q}	ττ	ZZ	YY
bb	34%					
WW >=1 <i>l</i>	13.4%	1.3%				
WW _{4q}	11.6%	1.1%	2.1%			
ττ	7.3%	1.4%	1.2%	0.39%		
ZZ	3.1%	0.6%	0.2%	0.33%	0.069%	
YY	0.26%	0.06%	0.04%	0.028%	0.012%	0.0005%

results on Di-Higgs Production will be presented today

ΗΗ->γγττ

- New final state, ggF production mode
- Standard H→γγ triggers; hadronic + leptonic τ decay modes
- Dominant backgrounds are irreducible γγ+jets and reducible γ+jets

Analysis strategy

- BDT is trained using kinematic features
- Fit myy in signal-enriched categories
- Signal models derived from fits to the MC with a Double Crystal Ball (DCB)
- signal and H→yy background are taken from simulation.

signal enriched categories

ΗΗ->γγττ

Results are expected to add in sensitivity on HH future combination

Observed (expected) 95% CL limit on $\sigma(HH)$ of 930 (740) fb, or 33 (26) × SM

Garyfallia (Lisa) Paspalaki

constraints on κ_{λ} :

κ_λ [-13, 18] ([-11, 16])

gs are SM-like Observed and expected 98 limits on **EFT benchmarks**

H + HH combination

both SH / HH sensitive to -> Combination improves constraints on with Run 2 data

combine all available single H and HH analyses from CMS

Complementary:

- **HH** more sensitive to κ_{λ}
- **Single Higgs**: provides stronger constrains on H couplings to fermions and vector bosons

Indirect κ_{λ} access through NLO contributions to single Higgs production and decay

σ_H>σ_{HH} Sensitivity to smaller variations 1

1D likelihood scan of $\kappa\lambda$ with other couplings fixed to 1

Applycic	Integrated	Maximum	Poforoncos	
Analysis	luminosity (fb $^{-1}$)	granularity	References	
$H \to 4l$	138	STXS 1.2	[34]	
${ m H} ightarrow \gamma \gamma$	138	STXS 1.2	[35,none]	
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	138	STXS 1.2	[37]	
$H \rightarrow leptons (t\bar{t}H)$	138	Inclusive	[38]	
$H \rightarrow b\overline{b} \ (ggH)$	138	Inclusive	[39]	
$H \rightarrow b\overline{b} \ (VH)$	77	Inclusive	[40,41]	
$H \rightarrow b\overline{b} \ (t\overline{t}H)$	36	Inclusive	[42]	
${ m H} ightarrow au au$	138	STXS 1.2	[43]	
$H \rightarrow \mu \mu$	138	Inclusive	[44]	

Analysis	Int. luminosity (fb $^{-1}$)	Targeted production modes
$HH ightarrow \gamma \gamma b\overline{b}$	138	ggHH and qqHH
$ m HH ightarrow au au m b \overline{b}$	138	ggHH and qqHH
$\rm HH \rightarrow 4b$	138	ggHH, qqHH and VHH
$\mathrm{HH} ightarrow \mathrm{leptons}$	138	ggHH
$HH \rightarrow WWb\overline{b}$	138	ggHH and qqHH

Main challenge: estimate and efficiently remove overlaps between signal region of different analyses

- additional selections are applied and/or
- the least sensitive category/analysis is removed

H + HH combination

Parameters are constrained in 2D

Constrain with single Higgs Constrain with HH

$HH \rightarrow bbVV(4q)$

CMS Simulation Preliminary

- Uncovered phase space with high branching fraction
- Focus on high-m_{HH} Lorentz boosted regime \rightarrow sensitive to κ_{2V}
- Boosted jets \rightarrow lower QCD background

- New H->VV tagger developed based on a transformer-based model
- Study ggF and VBF production: target κ_{2V} modifications at high m_{HH}

(13 TeV)

SM

$HH \rightarrow bbVV(4q)$

Selection:

- events selected using H(bb) ParticleNet tagger
- HVV tagger scores
- VBF-jet features (large invariant masses and pseudorapidity separation)
- BDT on AK8 jet kinematics

Backgrounds:

- QCD is estimated with a data driven method
- parametric transfer factor from a control region
- tt and V+jets are taken form simulation
- Fit on H(bb) regressed mass (m_{bb})

no relevant constraint on κ_{λ} , but Powerful constrain on κ_{2V}

Observed constraint on κ_{2V} @ 95%CL: [-0.04,2.05]

Garyfallia (Lis

9/12/24

HH->bbWW

- **ggF and VBF** production is studied
- events with at least one W decaying into leptons and a btagged jet
- both resolved and boosted jets
- tau veto (orthogonal to bbττ)
- 2 channels based on H->WW* decay: dilepton and single lepton

backgrounds:

- W+jets, t, tt, taken from MC
- DY taken form the data

DNN multi-classifier trained to separate signal vs background

Signal extraction: a profile binned likelihood fit is performed to the DNN discriminants for each event category

HH->bbWW

Signal extraction for ggF and VBF from 1D fit of DNN score distributions

HH->WWγγ

ggF production

three channels based on lepton multiplicity

- O lepton: 2 Binary DNNs (WWγγ DNN + bbγγ killer DNN)
 WWγγ DNN is trained to separate HH from all backgrounds
 (H + continuum background)
 bbγγ DNN trained to reject HH bb events
- 1 lepton: Multi-Class DNN
 -Trained a multi-classed DNN to separate HH , H and continuum background
- **2 lepton: Cut based**: clean final state and low statistics

Signal extracted from myy parametric fit

HH->WWγγ

CMS-PAS-HIG-21-014

-25.8(14.4)< κ_λ<24.1(18.3)

coupling of two Higgs bosons to two top quarks c₂ -2.4(-1.7)< c₂ <2.9(2.2)

upper limits are placed on twenty EFT benchmark scenarios ranging from $\sigma^{EFT} < 1.7-6.2(1.0-3.9)$

Improvements for Run3

<u>CMS_DP_23_050</u>

New online triggering strategies for Run 3 based on **ParticleNet for b-tagging** and **DeepTau for τ tagging** show great improvements over Run 2 baseline

Prospects for HL-LHC

Data taking period	Luminosity (fb ⁻¹)	HH projection	Reference
Run2	137	2.5 x SM	<u>Nature 607(2022)</u>
HL-LHC (including upgrades)	3000	4σ (ATLAS and CMS)	<u>CERN yellow</u> <u>report</u>

expect for ATLAS+CMS combined: at least 4σ signal significance and 50% precision

ongoing developments (triggers, machine learning based taggers, new decay channels, novel detectors ...) have the **potential to observe HH at 5** σ at HL-LHC

- The HH process is crucial for understanding the shape of the Higgs potential
- Extensive study of HH production with Run-2 data
- Large **improvements** not only due to increased luminosity in Run 2, but also constantly improved analysis and reconstruction techniques
- Exploring new HH channels
- H + HH combination
- Run 3 will bring new opportunities (improved trigger strategies etc.)
- At HL-LHC, 5σ discovery well accessible combining ATLAS and CMS.

BACK UP

The Higgs Effective field theory

SMEFT expands around EW-symmetric point, HEFT expands around EW vacuum

more general than SMEFT because implements weaker symmetry requirement there are UV scenarios that can be matched to HEFT but not SMEFT

in general more convergent than SMEFT: takes fewer orders to reproduce well UV model

BSM Di-Higgs

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^3 - \frac{m_t}{v} (\kappa_t H + \frac{c_2}{v} H^2) (\bar{t_L} t_R + h.c.) + \frac{\alpha_S}{12\pi v} (c_g H - \frac{c_{2g}}{2v} H^2) G^a_{\mu\nu} G^{a,\mu\nu} \Lambda^{A} \kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}, \ \lambda_{HHH}^{SM} = \frac{m_H^2}{2v^2}, \ \kappa_t = \frac{y_t}{y_t^{SM}}, \ y_t^{SM} = \frac{\sqrt{2}m_t^2}{v}$$

20 benchmark models

Benchmark	κ_{λ}	κ_t	<i>c</i> ₂	c_g	c_{2g}
SM	1.0	1.0	0.0	0.0	0.0
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
8a	1.0	1.0	0.5	$\frac{0.8}{3}$	0.0
1b	3.94	0.94	$\frac{-1}{3}$	0.75	-1
2b	6.84	0.61	$\frac{1}{3}$	0.0	1.0
3b	2.21	1.05	$\frac{-1}{3}$	0.75	-1.5
4b	2.79	0.61	$\frac{1}{3}$	-0.75	-0.5
5b	3.95	1.17	$\frac{-1}{3}$	0.25	1.5
6b	5.68	0.83	$\frac{1}{3}$	-0.75	-1.0
7b	-0.10	0.94	1.0	0.25	0.5

- There are 5 parameters in κλ, κt, c2g, c2, cg
- Points in the parameter phase space could be clustered in 20 benchmarks EFT
- MC samples could be reweighted by NLO ggHH samples using the analytic formula

	Best fit κ_{λ} value $\pm 1\sigma$		2σ interval	
Hypothesis	Expected	Observed	Expected	Observed
Other couplings fixed to the SM prediction	$1.0^{+4.6}_{-1.7}$	$3.1^{+3.0}_{-3.0}$	[-2.0,7.7]	[-1.2, 7.5]
Floating ($\kappa_V, \kappa_{2V}, \kappa_f$)	$1.0^{+4.7}_{-1.8}$	$4.5^{+1.8}_{-4.7}$	[-2.2, 7.8]	[-1.7,7.7]
Floating ($\kappa_V, \kappa_t, \kappa_b, \kappa_\tau$)	$1.0\substack{+4.8\\-1.8}$	$4.7^{+1.7}_{-4.1}$	[-2.3, 7.7]	[-1.4, 7.8]
Floating (κ_V , κ_{2V} , κ_t , κ_b , κ_τ , κ_μ)	$1.0\substack{+4.8\\-1.8}$	$4.7^{+1.7}_{-4.2}$	[-2.3, 7.8]	[-1.4, 7.8]

Expected and observed constraints on $\kappa\lambda$ at 2σ and best fit values from the combination of the single-H and HH channels under different assumptions on the Higgs boson couplings to fermions and vector bosons.

$HH \rightarrow bbVV(4q)$

GloParT

Process	Final state/ prongness	heavy flavour	# of classes	
H→VV	qqqq	0=/1=/0=	3	Н
(full-hadronic)	qqq	00/10/20	3	
	evqq		2	
	μvqq		2	Н
H→WW (semi-leptonic)	τ _e ∨qq	0c/1c	2	
(semi-leptonic)	τ _µ vqq		2	
	τ _h vqq		2	
		bb	1	
Hanga		cc	1	Н
n⇒qq		SS	1	
		qq (q=u/d)	1	н (*
	τ _e τ _h		1	"——
Η→ττ	$\tau_{\mu}\tau_{h}$		1	
	ThTh		1	
t→bW	bqq	1b + 0o/1o	2	t
(hadronic)	bq	10 + 00/10	2	
	bev		1	
	bμv		1	t
t→bW (leptopic)	bτ _e v	1b	1	
(ieptonic)	bτ _µ v		1	
	bτ _h v		1	
		b	1	g
		bb	1	000000
QCD		с	1	a
		сс	1	4
		others (light)	1	

$$T_{\rm HVV} = \frac{P_{\rm HVV4q} + P_{\rm HVV3q}}{P_{\rm QCD} + P_{\rm Top} + P_{\rm HVV4q} + P_{\rm HVV3q}},$$

