

EFT interpretations in HH Anna Tegetmeier on behalf of the ATLAS collaboration

Multi-Boson Interactions, 25-27 September 2024

 Effective Field Theories (EFTs) can be used to p range of the LHC

Effective Field Theories (EFTs) can be used to parametrize BSM physics at energy scales above the

What is seen in a lot of analyses:

 BSM physics leads to deviations in the tales of the distributions

- Effective Field Theories (EFTs) can be used to p range of the LHC
- Full Run 2 di-Higgs ATLAS analyses included El first time!

Effective Field Theories (EFTs) can be used to parametrize BSM physics at energy scales above the

Full Run 2 di-Higgs ATLAS analyses included EFT interpretations for di-Higgs searches for the

- Effective Field Theories (EFTs) can be used to p range of the LHC
- Full Run 2 di-Higgs ATLAS analyses included El first time!
- What can be seen for di-Higgs
 - EFT effects are not only visible in the tails of the m_{HH} distribution
 - Can lead to enhancements at **lower** as well as **higher** m_{HH} values

Effective Field Theories (EFTs) can be used to parametrize BSM physics at energy scales above the

Full Run 2 di-Higgs ATLAS analyses included EFT interpretations for di-Higgs searches for the

the m_{HH} distribution as **higher** m_{HH} values

- Two different EFT parameterizations are considered in di-Higgs searches
 - SM effective field theory (**SMEFT**) ullet
 - Higgs effective field theory (**HEFT**) \bullet

Two different EFT parameterizations are considered in di-Higgs searches

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

HEFT

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

Two different EFT parameterizations are considered in di-Higgs searches

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

- Preserves the SM $SU_C(3) \times SU(2)_L \times U(1)_Y$ ulletsymmetry
- Higgs boson is in a **doublet**

HEFT

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

- Nonlinear realization of the gauge symmetry groups $SU(2)_L \times U(1)_Y$
- Higgs boson is in a **singlet**

Two different EFT parameterizations are considered in di-Higgs searches

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots$$

- Preserves the SM $SU_C(3) \times SU(2)_L \times U(1)_Y$ symmetry
- Higgs boson is in a **doublet**
- Operators can affect multiple vertices at the same time
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are correlated

HEFT

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

- Nonlinear realization of the gauge symmetry groups \bullet $SU(2)_L \times U(1)_Y$
- Higgs boson is in a **singlet**
- One-to-one relations between operators and effective interactions
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are uncorrelated

Two different EFT parameterizations are considered in di-Higgs searches

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots$$

- Preserves the SM $SU_C(3) \times SU(2)_L \times U(1)_Y$ symmetry
- Higgs boson is in a **doublet**
- Operators can affect multiple vertices at the same time
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are correlated

More useful for combinations with other ATLAS analyses

HEFT

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

- Nonlinear realization of the gauge symmetry groups \bullet $SU(2)_L \times U(1)_Y$
- Higgs boson is in a **singlet**
- One-to-one relations between operators and effective interactions
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are uncorrelated

EFT Analyses

ATLAS analyses (SMEFT and HEFT): \bullet

- $HH \rightarrow b\bar{b}b\bar{b}$ (Phys. Rev. D 108 (2023) 052003)
- $HH \rightarrow b\bar{b}\tau\tau$ (Phys. Rev. D 110 (2024) 032012)
- $HH \rightarrow b\bar{b}\gamma\gamma$ (JHEP 01 (2024) 066)

	bb	WW	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.000

The three golden channels of di-Higgs:

bbbb: Large statistics but difficult multijet background $bb\tau\tau$: Good balance between statistic and background $bb\gamma\gamma$: Small statistics but very clear final state

ATLAS analyses $bb\tau\tau$

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

bbyy

Low statistic but very clear final state

- Large statistics, difficult background
- In total 20 regions
 - ggF vs. VBF
 - $|\Delta\eta_{HH}|$, X_{HH} (di-Higgs discriminant)

- Good balance between statistics and background
- In total 9 regions
 - had LTT
 - VBF, low- m_{HH} , high- m_{HH} \bullet

ATLAS analyses $bb\tau\tau$

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

bbyy

Had-had vs. lep-had SLT vs. lep-

- Low statistic but very clear final state
- In total 7 regions
 - Low- $m_{bb\gamma\gamma}^*$ vs. high- $m_{bb\gamma\gamma}^*$
 - BDT score •

- Large statistics, difficult background
- In total 20 regions
 - ggF vs. VBF
 - $|\Delta\eta_{HH}|$, X_{HH} (di-Higgs discriminant)
- Fits performed in bins of the reconstructed m_{HH} distribution

- Good balance between statistics and background
- In total 9 regions
 - Had-had vs. lep-had SLT vs. lephad LTT
 - VBF, low- m_{HH} , high- m_{HH}
- Fits performed in bins of the BDT score distributions

ATLAS analyses $bb\tau\tau$

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

- state

- Large statistics, difficult background
- In total 20 regions
 - ggF vs. VBF
 - $|\Delta\eta_{HH}|$, X_{HH} (di-Higgs discriminant)
- Fits performed in bins of the reconstructed m_{HH} distribution
- Small excess in data in the ggF signal regions

- Good balance between statistics and background
- In total 9 regions
 - Had-had vs. lep-had SLT vs. lephad LTT
 - VBF, low- m_{HH} , high- m_{HH}
- Fits performed in bins of the BDT score distributions

ATLAS analyses $bb\tau\tau$

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

- state

- Large statistics, difficult background
- In total 20 regions
 - ggF vs. VBF
 - $|\Delta\eta_{HH}|$, X_{HH} (di-Higgs discriminant)
- Fits performed in bins of the reconstructed m_{HH} distribution
- Small excess in data in the ggF signal regions

- Good balance between statistics and background
- In total 9 regions
 - Had-had vs. lep-had SLT vs. lephad LTT
 - VBF, low- m_{HH} , high- m_{HH}
- Fits performed in bins of the BDT score distributions
- Excess in data in lep-had SLT signal region in the high- m_{HH} category

ATLAS analyses $bb\tau\tau$

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

- Low statistic but very clear final state

- Large statistics, difficult background
- In total 20 regions
 - ggF vs. VBF
 - $|\Delta\eta_{HH}|$, X_{HH} (di-Higgs discriminant)
- Fits performed in bins of the reconstructed m_{HH} distribution
- Small excess in data in the ggF signal regions

- Good balance between statistics and background
- In total 9 regions
 - Had-had vs. lep-had SLT vs. lephad LTT
 - VBF, low- m_{HH} , high- m_{HH}
- Fits performed in bins of the BDT score distributions
- Excess in data in lep-had SLT signal region in the high- m_{HH} category

ATLAS analyses bbττ

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

Low statistic but very clear final state

- In total 7 regions
 - Low- $m_{bb\gamma\gamma}^*$ vs. high- $m_{bb\gamma\gamma}^*$
 - BDT score
- Unbinned fits to the $m_{\gamma\gamma}$ distribution
- Deficit in data in the most sensitive signal regions

EFT Analyses

- **ATLAS** analyses (SMEFT and HEFT):
 - *HH* → *bbbb* (Phys. Rev. D 108 (2023) 052003)
 - $HH \rightarrow b\bar{b}\tau\tau$ (Phys. Rev. D 110 (2024) 032012)
 - $HH \rightarrow bb\gamma\gamma$ (JHEP 01 (2024) 066)

- **ATLAS combinations (HEFT)**
 - $HH \rightarrow (b\bar{b}\gamma\gamma + b\bar{b}\tau\tau)$ combination (ATL-PHYS-PUB-2022-019)
 - HH combination (Phys. Rev. Lett. 133 (2024) 101801)
 - Use the *bbbb*, *bbyy* and *bbtt* channel

	bb	WW	ττ	ZZ	 ץץ
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.000

The three golden channels of di-Higgs:

bbbb: Large statistics but difficult multijet background $bb\tau\tau$: Good balance between statistic and background $bb\gamma\gamma$: Small statistics but very clear final state

ATLAS analyses (SME

EFT predictions from Monte-Carlo

- Predictions for different EFT scenarios are obtained by using an **event-level** \bullet **reweighting technique** based on the m_{HH} distribution with the **SM ggF sample**
 - The inclusive and differential *HH* production cross section for a set of Wilson coefficients can be parametrized with a polynomial
 - The coefficients A can be determined by generating a set of truth-level MC samples
 - With the polynomials weights are defined that allow to reweight the SM ggF events to any wanted combination of the Wilson coefficients

Amplitudes for SMEFT

- bbbb : Madgraph samples at LO using the SMEFT@NLO model additional k-Factors are applied to account for NLO effects
- : Powheg samples at NLO using the SMEFT@NLO model • $bb\gamma\gamma, bb\tau\tau$

Amplitudes for HEFT

- Amplitudes are taken from literature (NLO) (bbbb, bbyy/bbtautau)
- $bb\tau\tau$ additionally uses a linear combination method based on six (SMEFT) or ten (HEFT) reco-level base samples produced with Powheg

LHCHWG-2022-004 2

$$\begin{aligned} \sigma_{hh}^{\text{NLO}}(c_{hhh}, c_{thh}, c_{tthh}, c_{ggh}, c_{gghh}) \\ &= Poly(\mathbf{c}, \mathbf{A}) \\ &= A_1 c_{thh}^4 + A_2 c_{tthh}^2 + (A_3 c_{thh}^2 + A_4 c_{ggh}^2) c_{hhh}^2 \\ &+ A_5 c_{gghh}^2 + (A_6 c_{tthh} + A_7 c_{thh} c_{hhh}) c_{thh}^2 \\ &+ (A_8 c_{thh} c_{hhh} + A_9 c_{ggh} c_{hhh}) c_{tthh} + A_{10} c_{tthh} \\ &+ (A_{11} c_{ggh} c_{hhh} + A_{12} c_{gghh}) c_{thh}^2 \\ &+ (A_{13} c_{hhh} c_{ggh} + A_{14} c_{gghh}) c_{thh} c_{hhh} \\ &+ A_{15} c_{ggh} c_{gghh} c_{hhh} + A_{16} c_{thh}^3 c_{ggh} \\ &+ A_{17} c_{thh} c_{tthh} c_{ggh} + A_{18} c_{thh} c_{ggh}^2 \\ &+ A_{21} c_{tthh} c_{ggh}^2 + A_{22} c_{ggh}^3 c_{hhh} \\ &+ A_{23} c_{ggh}^2 c_{gghh} \end{aligned}$$

 $-(c_{hhh}, c_{thh}, c_{tthh}, c_{ggh}, c_{gghh}) = Poly(\mathbf{c}, d\mathbf{A}|m_{hh})$

 $w_{\text{HEFT}} = \frac{Poly(\mathbf{c}, d\mathbf{A}|m_{hh})}{Poly(\mathbf{c}_{\text{SM}}, d\mathbf{A}|m_{hh})}$

 $_{l}c_{qqhh}$

SMEFT

Two different EFT parameterizations are considered in di-Higgs searches

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

- Preserves the SM $SU_C(3) \times SU(2)_L \times U(1)_Y$ symmetry
- Higgs boson is in a **doublet**
- Operators can affect multiple vertices at the same time
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are correlated

More useful for combinations with other ATLAS analyses

HEFT

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

- Nonlinear realization of the gauge symmetry groups $SU(2)_L \times U(1)_Y$
- Higgs boson is in a **singlet**
- One-to-one relations between operators and effective interactions
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are uncorrelated

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

- Preserves the SM $SU_C(3) \times SU(2)_L \times U(1)_Y$ \bullet symmetry
- Higgs boson is in a **doublet**
- Operators can affect multiple vertices at the same time
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are correlated

More useful for combinations with other ATLAS analyses

SMEFT

- Run-2 di-Higgs analyses looked at **dim-6** operators
- contributions from both the **linear and the** quadratic terms in the Wilson coefficient expansion are considered
- EFT effects on the **single Higgs background** are included
 - $bb\gamma\gamma$, $bb\tau\tau$: include EFT effects e.g with reweighting technique using $p_T(H)$
 - bbbb : EFT effects automatically included in data driven background estimation

Basis

- Probe operators of the Warsaw basis
 - Basis provides a complete set of **dim-6 operators** •
 - Used in a broad set of different ATLAS analyses
 - single-Higgs, $t\bar{t}$, Diboson, etc.

Wilson Coefficient	Operator
c_H	$(H^{\dagger}H)^3$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
C_{tH}	$(H^{\dagger}H)(ar{Q} ilde{H}t)$
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u}_{A}$
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^{A}t)\tilde{H}G^{\mu\nu}$

Phys. Rev. D 108 (2023) 052003

Basis

- Probe operators of the Warsaw basis
 - Basis provides a complete set of **dim-6 operators**
 - Used in a broad set of different ATLAS analyses
 - single-Higgs, $t\bar{t}$, Diboson, etc.

SMEFT in di-Higgs

• Five operators relevant for di-Higgs:

 c_H

Unique sensitivity from di-Higgs affects the Higgs-self coupling

Wilson Coefficient	Operator
c_H	$(H^{\dagger}H)^3$
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$
C_{tH}	$(H^{\dagger}H)(ar{Q} ilde{H}t)$
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u}_{A}$
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^{\dot{A}}t)\tilde{H}G^{A}_{\mu}$

Basis

- Probe operators of the **Warsaw basis**
 - Basis provides a complete set of **dim-6 operators** •
 - Used in a broad set of different ATLAS analyses lacksquare
 - single-Higgs, $t\bar{t}$, Diboson, etc.

SMEFT in di-Higgs

Five operators relevant for di-Higgs:

Wilson Coefficient **Operator** $(H^{\dagger}H)^3$ C_H $(H^{\dagger}H)\Box(H^{\dagger}H)$ $C_{H\square}$ Η $(H^{\dagger}H)(\bar{Q}\tilde{H}t)$ C_{tH} $H^{\dagger}HG^{A}_{\mu\nu}G^{\mu\nu}_{A}$ $(\bar{Q}\sigma^{\mu\nu}T^{A}t)\tilde{H}G^{A}_{\mu\nu}$ g saaaaaaaaaaaaaa C_{HG} c_{tG} ` H

Phys. Rev. D 108 (2023) 052003

26

Basis

- Probe operators of the Warsaw basis
 - Basis provides a complete set of **dim-6 operators** •
 - Used in a broad set of different ATLAS analyses ullet
 - single-Higgs, $t\bar{t}$, Diboson, etc.

SMEFT in di-Higgs

Five operators relevant for di-Higgs:

Wilson Coefficient	Operator
c_H	$(H^{\dagger}H)^3$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
c_{tH}	$(H^{\dagger}H)(ar{Q} ilde{H}t)$
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u}_{A}$
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^{A}t)\tilde{H}G^{A}_{\mu\nu}$

Phys. Rev. D 108 (2023) 052003

- **1D constraints** are set on the individual Wilson coefficients while all other Wilson coefficients are fixed to zero (SM value)
 - C_H
 - **First limits** on c_H from ATLAS analyses ullet
 - Best sensitivity from $bb\gamma\gamma$ ullet
 - $C_{H\square}$ ullet
 - Best expected limits from $bb\tau\tau$ \bullet
 - Best observed limits from $bb\gamma\gamma$ lacksquare
 - bbbb additionally sets constraints on the Wilson lacksquarecoefficients c_{tH} , c_{tG} , c_{HG}

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

SMEFT results

_	Wilson coefficient	analysis	95% CL Observed	95% CL Expected
_		bbbb	[-22, 11]	[-20, 11]
	c_H	$bb\gamma\gamma$	[-14.4, 6.2]	[-16.8, 9.7]
		bb au au	$[-19.4,\ 10.0]$	[-19.1, 8.6]
_		bbbb	[-8.9, 14.5]	[-9.3, 13.9]
	$c_{H\Box}$	$bb\gamma\gamma$	[-9.4, 10.2]	[-12.4, 13.7]
_		bb au au	[-12.6, 11.6]	[-8.5, 11.1]

Wilson coefficient	analysis	95% CL Observed	95% CL Expected
c_{HG}		[-0.067, 0.060]	[-0.056, 0.049]
c_{tH}	bbbb	[-10.7, 6.2]	[-10.0, 6.4]
c_{tG}		$[-1.12, \ 1.15]$	[-0.97, 0.94]

SMEFT results

- Additionally **2D limits** in the $(c_H, c_{H \square})$ parameter space were set by the analyses
 - All other Wilson coefficients are fixed to zero (SM value)

СН

No deviation from the SM found \bullet

₽ 50 ATLAS Observed Limit (95% CL) Expected Limit (95% CL) $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ $c_{tH}=0.0, c_{tG}=0.0, c_{HG}=0.0$ Expected Limit ±1o Expected Limit ±20 30 SM Prediction 20 10 -10 -20 -30 -30 -20 20 30 -40 -10 10 0

bbbb

Additional 2D limits in the (c_H, c_{tH}) , (c_H, c_{GH}) and (c_H, c_{tG}) parameters space from *bbbb* in <u>backup</u>

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

 C_H

СН

Two different EFT parameterizations are considered in di-Higgs searches

SMEFT

BSM physics is described by an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots$$

- Preserves the SM $SU_C(3) \times SU(2)_L \times U(1)_Y$ symmetry
- Higgs boson is in a **doublet**
- Operators can affect multiple vertices at the same time
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are correlated

More useful for combinations with other ATLAS analyses

HEFT

Organization of the HEFT Lagrangian is guided by chiral perturbation theory

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

- Nonlinear realization of the gauge symmetry groups $SU(2)_L \times U(1)_Y$
- Higgs boson is in a **singlet**
- One-to-one relations between operators and effective interactions
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are uncorrelated

Simplified HH interpretations

- Besides the individual analyses also the di-Higgs combination performed HEFT interpretations
 - Focus will be on the combination results
- EFT effects on the single Higgs background are not included
 - Most interesting operators for di-Higgs not affected by single Higgs at tree level

HEFT

HEFT

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

- Nonlinear realization of the gauge symmetry groups $SU(2)_L \times U(1)_Y$
- Higgs boson is in a **singlet**
- One-to-one relations between operators and effective interactions
 - Couplings of single Higgs bosons and Higgs boson pairs to fermions and gluons are uncorrelated

HEFT in di-Higgs

lacksquare

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

HEFT in di-Higgs

 \bullet

$$\mathcal{L}_{\text{HEFT}} = -\frac{c_{hhh}}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

HEFT in di-Higgs

lacksquare

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(\frac{c_{tth}}{\nu} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

Trilinear Higgs coupling equivalent to κ_{λ}

Coupling single Higgs to tops

HEFT in di-Higgs

lacksquare

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + \frac{c_{tthh}}{\nu^2} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

HEFT in di-Higgs

lacksquare

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(\mathbf{c_{ggh}} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

HEFT in di-Higgs

lacksquare

$$\mathcal{L}_{\text{HEFT}} = -c_{hhh} \frac{m_h^2}{2\nu} h^3 - m_t \left(c_{tth} \frac{h}{\nu} + c_{tthh} \frac{h^2}{\nu^2} \right) t\bar{t} + \frac{\alpha_S}{8\pi} \left(c_{ggh} \frac{h}{\nu} + c_{gghh} \frac{h^2}{\nu^2} \right) G_{\mu\mu} G^{\alpha,\mu\nu}$$

Trilinear Higgs coupling equivalent to κ_{λ}

Coupling single Higgs to tops

Effective coupling Effective coupling two Higgs to tops single Higgs to gluons

ggF production mode described by five relevant operators and their associated Wilson coefficients:

Effective coupling two Higgs to gluons

- Benchmark points are chosen to **describe representative** *m*_{*HH*} **shapes features**
 - Selected by theorists using cluster analysis
 - Point 1, 2, 3, 6 : softer m_{HH} spectrum \bullet
 - Point 4, 5, 7 : harder m_{HH} spectrum
- bbbb, $bb\gamma\gamma$, $bb\tau\tau$ and the di-Higgs combination set 95% CL upper limits on these benchmarks

Benchmark	C _{hhh}	C _{tth}	C _{ggh}	C _{gghh}	C _{tthh}
SM	1.00	1.00	0	0	0
1	5.11	1.10	0	0	0
2	6.84	1.03	-1/3	0	1/6
3	2.21	1.05	1/2	1/2	-1/3
4	2.79	0.90	-1/3	-1/2	-1/6
5	3.95	1.17	1/6	-1/2	-1/3
6	-0.68	0.90	1/2	1/4	-1/6
7	-0.10	0.94	1/6	-1/6	1

0.05

HEFT results

For HEFT seven benchmark points in the five Wilson coefficients c_{hhh} , c_{tth} , c_{ggh} , c_{gghh} , c_{tthh} are defined

- 95% CL upper limits from the combination
- Expected sensitivity from the different analyses
 - $\triangle bbbb$: more sensitive to harder m_{HH} spectra
 - $\nabla bb\gamma\gamma$: more sensitive to softer m_{HH} spectra
 - $\Box bb\tau\tau$: best expected sensitivity for most benchmark points observed sensitive worse due to excess in data
- A specific benchmark point is excluded if the observed limits (•) on the cross-section is smaller than the theory prediction (+)
 - Benchmarks 3, 4, 5 and 7 are excluded

HDBS-2021-18

- 95% CL upper limits from the combination
- Expected sensitivity from the different analyses
 - $\triangle bbbb$: more sensitive to harder m_{HH} spectra
 - $\nabla bb\gamma\gamma$: more sensitive to softer m_{HH} spectra
 - $\Box bb\tau\tau$: best expected sensitivity for most benchmark points observed sensitive worse due to excess in data
- A specific benchmark point is excluded if the observed limits (•) on the cross-section is smaller than the theory prediction (+)
 - Benchmarks 3, 4, 5 and 7 are excluded
 - **However**: this does not mean that the full shape that is represented by the benchmark point is excluded!

HDBS-2021-18

- 95% CL upper limits from the combination
- Expected sensitivity from the different analyses
 - $\triangle bbbb$: more sensitive to harder m_{HH} spectra
 - $\nabla bb\gamma\gamma$: more sensitive to softer m_{HH} spectra
 - $\Box bb\tau\tau$: best expected sensitivity for most benchmark points observed sensitive worse due to excess in data
- A specific benchmark point is excluded if the observed limits (•) on the cross-section is smaller than the theory prediction (+)
 - Benchmarks 3, 4, 5 and 7 are excluded
 - **However**: this does not mean that the full shape that is represented by the benchmark point is excluded!
 - Especially the two benchmark points with the softest m_{HH} spectrum (BM 1 and 2) lead to weaker constraints

HDBS-2021-18

HEFT results

- Analyses set **1D limits** on the Wilson coefficients c_{tthh} and c_{gghh} \bullet
 - di-Higgs has a unique sensitivity to these operators at LO lacksquare
 - Other Wilson coefficients are fixed to their SM value \bullet
 - One for c_{hhh} , c_{tth}
 - Zero for c_{ggh} , c_{gghh} and c_{tthh}
- Best limits from the di-Higgs combination \bullet
 - Expected limits driven by $bb\tau\tau$ and bbbbullet
 - Best observed limits from individual analyses by $bb\gamma\gamma$ \bullet

Wilson coefficient	analysis	95% CL Observed	95% CL Expected		
	bbbb	[-0.36, 0.78]	[-0.42, 0.75]		
	$bb\gamma\gamma$	[-0.42, 0.52]	[-0.59, 0.69]		
c_{gghh}	bb au au	[-0.51, 0.58]	[-0.42, 0.44]		
	combination	[-0.38, 0.49]	[-0.36, 0.36]		
	bbbb	[-0.55, 0.51]	[-0.46, 0.40]		
	$bb\gamma\gamma$	[-0.28, 0.73]	[-0.48, 0.94]		
c_{tthh}	bb au au	[-0.40, 0.84]	[-0.32, 0.72]		
	combination	[-0.19, 0.70]	[-0.27, 0.66]		

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012 Phys. Rev. Lett. 133 (2024) 101801 HDBS-2021-18

Observed

Expected

HEFT results

(c_{hhh}, c_{tthh}) and (c_{gghh}, c_{tthh})

- Non-probed Wilson coefficients are fixed to their SM prediction lacksquare
- ullet
- Deviations mainly due to *bbbb* analyses ullet
 - \bullet
 - Favours non-SM values in the fit lacksquare

Two-dimensional test-statistic contours are also performed in the coefficient spaces of (c_{hhh}, c_{gghh}) ,

Two minima are expected because of the quadratic dependence of the cross-section on the coefficients

Data-driven background modeling cannot perfectly describe the background distribution in data

- First EFT interpretations from ATLAS di-Higgs analyses were performed ullet
 - *bbbb*, *bb* $\tau\tau$ and *bb* $\gamma\gamma$
 - di-Higgs combination
- 1D and 2D limits were set on interesting operators of the SMEFT and HEFT framework \bullet
 - First ATLAS limits on c_H , c_{tthh} and c_{gghh}
- Additional limits were set on shape benchmarks of the HEFT framework

- First EFT interpretations from ATLAS di-Higgs analyses were performed
 - *bbbb*, *bbtt* and *bbyy*
 - di-Higgs combination
- 1D and 2D limits
 - First ATLAS

Additional limits were set

- So far di-Higgs SMEFT analyses focused on the ggF production mode using dim-6 operators \bullet
 - The VBF production mode is ignored

gluon-gluon Fusion (ggF)

Vector Boson Fusion (VBF)

- So far di-Higgs SMEFT analyses focused on the ggF production mode using dim-6 operators
 - The VBF production mode is ignored
- But: VBF is sensitive to the quartic Higgs-Gauge coupling at LO lacksquare
 - Can be probed by the **dim-8 Eboli model**

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

Vector Boson Fusion (VBF)

- So far di-Higgs SMEFT analyses focused on the ggF production mode using dim-6 operators
 - The VBF production mode is ignored
- But: VBF is sensitive to the quartic Higgs-Gauge coupling at LO \bullet
 - Can be probed by the **dim-8 Eboli model**
 - Model that is widely used in VBS analyses ullet
 - VBF di-Higgs sensitive to the S and M operators of this model

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$	ZZHH	WWHH	$Z\gamma HH$	$\gamma\gamma HH$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1},\mathcal{O}_{S,2}$	\checkmark	\checkmark			\checkmark					\checkmark	\checkmark		
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,7}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\mathcal{O}_{M,4},\mathcal{O}_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark
$\mathcal{O}_{T,0}, \mathcal{O}_{T,1}, \mathcal{O}_{T,2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

VBF

Adapted from AnomalousGaugeCoupling

- So far di-Higgs SMEFT analyses focused on the ggF production mode using dim-6 operators
 - The VBF production mode is ignored
- But: VBF is sensitive to the quartic Higgs-Gauge coupling at LO \bullet
 - Can be probed by the **dim-8 Eboli model**
 - Model that is widely used in VBS analyses ullet
 - VBF di-Higgs sensitive to the S and M operators of this model
 - Pheno paper:
 - Sensitivity study based on the cross-section

	VBS $W^{\pm}V$	semileptonic	VBF HH	$I \rightarrow b\overline{b}b\overline{b}$
Coeff.	no unitarity	w/ unitarity	no unitarity	w/unitarity
$f_{ m M0}/\Lambda^4$	[-1.0, 1.0]	[-3.3, 3.5]	[-0.95,0.95]	[-3.3, 3.3]
$f_{ m M1}/\Lambda^4$	[-3.1, 3.1]	[-7.4, 7.6]	[-3.8, 3.8]	[-13, 14]
$f_{ m M2}/\Lambda^4$	[-1.5, 1.5]	[-9.1, 9.0]	[-1.3, 1.3]	[-7.6, 7.3]
$f_{ m M3}/\Lambda^4$	[-5.5, 5.5]	[-32, 30]	[-5.2, 5.3]	[-29, 30]
$f_{\mathrm{M4}}/\Lambda^4$	[-3.1, 3.1]	[-8.6, 8.7]	[-4.0, 4.0]	[-14, 14]
$f_{ m M5}/\Lambda^4$	[-4.5, 4.5]	[-10, 10]	[-7.1, 7.1]	[-26, 26]
$f_{ m M7}/\Lambda^4$	[-5.1, 5.1]	[-11,11]	[-7.6, 7.6]	[-27, 27]
$f_{ m S0}/\Lambda^4$	[-4.2, 4.2]	[-8.5, 9.5]	[-30,29]	/
$f_{{ m S1}}/\Lambda^4$	[-5.2, 5.2]	/	[-11,10]	/
$f_{ m S2}/\Lambda^4$	-	[-21, 25]	[-17, 16]	/

arxiv.org/abs/2205.15959

VBF di-Higgs is expected to have a similar sensitivity to the operators as VBS processes!

- So far di-Higgs SMEFT analyses focused on the ggF production mode using dim-6 operators
 - The VBF production mode is ignored
- But: VBF is sensitive to the quartic Higgs-Gauge coupling at LO
 - Can be probed by the **dim-8 Eboli model**
 - Model that is widely used in VBS analyses
 - VBF di-Higgs sensitive to the S and M operators of this model
 - Pheno paper:
 - Sensitivity study based on the cross-section

VBF di-Higgs is expected to have a similar sensitivity to the operators as VBS processes!

Truth-level simulation of di-Higgs distributions for the different EFT operators using Madgraph with the amplitude decomposition approach indicated additional sensitivity when including shape information

- First EFT interpretations from ATLAS di-Higgs analyses were performed
 - *bbbb*, *bb* $\tau\tau$ and *bb* $\gamma\gamma$
 - di-Higgs combination
- 1D and 2D limits were set on interesting operators of the SMEFT and HEFT framework
 - First ATLAS limits on c_H , c_{tthh} and c_{gghh}
- Additional limits were set on benchmarks of the HEFT framework
- What could be added in future analysis:
 - Including dim-8 VBF di-Higgs EFT interpretations at reco level promising
 - Potential for combination with VBS

Backup

SMEFT results

• *bbbb*: additional 2D limits in the (c_H, c_{tH}) , (c_H, c_{GH}) and (c_H, c_{tG}) parameters space

Phys. Rev. D 108 (2023) 052003

55

- Benchmark limits for the individual *bbbb*, *bbyy* and *bbtt* analyses
- bbbb \bullet
 - \bullet older definition of the benchmarks
 - excludes benchmarks 3, 5 and 7 \bullet
- bbyy: \bullet
 - excludes benchmarks 3, 4, 5 and 7
 - Comparable limits to *bbbb* for benchmarks 3,5 and 7
- $bb\tau\tau$ \bullet
 - Uses the same benchmarks as $bb\gamma\gamma$ \bullet

HEFT results

Phys. Rev. D 108 (2023) 052003 JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

No direct comparison between *bbbb* and the other analyses possible for benchmark points 1, 2, 4 and 6 since *bbbb* uses an

• 2D limits from the individual $bb\gamma\gamma$ and $bb\tau\tau$ analyses

JHEP 01 (2024) 066 Phys. Rev. D 110 (2024) 032012

