Study of CP violating EFT bosonic operators with the ATLAS detector

Léo Boudet (LAPP, CNRS) on behalf of the ATLAS collaboration

Multi-Boson Interactions 2024, Toulouse 26/09/2024

leo.boudet@cern.ch

SMEFT for CPV

CP violation (CPV) is one of Sakharov's conditions

→ The CKM phase in SM allows CP breaking, but its effects are not large enough

→ new CPV must occur beyond explored energy range

→ SMEFT offers an indirect way to look for BSM CPV effects

Standard Model EFT Lagrangian

CP violation from bosonic operators

Processes involving couplings between bosons abundantly produced at LHC

CP conservation often assumed in most analyses

Specific CP-odd operators challenges, e.g. almost no modification of the cross section

Standard Model EFT: dim 6 in Warsaw basis

In the Warsaw basis [1] there are **3 types of dim 6 bosonic operators:**

- * Boson self-coupling (X³ or H⁶)
- * Higgs propagator (H⁴D²)
- * Higgs-gauge (X²H²)
- X : field strength tensor (dim 2) H : Higgs field (dim 1) D : Covariant derivative (dim 1)

\rightarrow 5 + 2 + 8 = 15 operators

$\mathcal{L}_6^{(1)}$ – X^3		${\cal L}_6^{(6)}-\psi^2 X H$		$\mathcal{L}_6^{(8b)}-(ar{R}R)(ar{R}R)$	
Q_G	$f^{abc}G^{a u}_\mu G^{b ho}_ u G^{c\mu}_ ho$	Q_{eW}	$(\bar{l}_p\sigma^{\mu\nu}e_r)\sigma^iHW^i_{\mu\nu}$	Q_{ee}	$(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{abc} {\widetilde G}^{a\nu}_\mu G^{b\rho}_\nu G^{c\mu}_\rho$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \widetilde{H} G^a_{\mu\nu}$	Q_{dd}	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \sigma^i \tilde{H} W^i_{\mu\nu}$	Q_{eu}	$(\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t)$
	$\mathcal{L}_6^{(2)}-H^6$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{ed}	$(\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t)$
Q_H	$(H^{\dagger}H)^3$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$
	$\mathcal{L}_6^{(3)}-H^4D^2$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$	$Q_{ud}^{(8)}$	$(\bar{u}_p\gamma_\mu T^a u_r)(\bar{d}_s\gamma^\mu T^a d_t)$
$Q_{H_{\square}}$	$(H^\dagger H) \square (H^\dagger H)$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$		
Q_{HD}	$\left(D^{\mu}H^{\dagger}H\right)\left(H^{\dagger}D_{\mu}H\right)$				
	$\mathcal{L}_6^{(4)}-X^2H^2$		$\mathcal{L}_6^{(7)}-\psi^2 H^2 D$		${\cal L}_6^{(8c)}-(ar LL)(ar RR)$
Q_{HG}	$H^{\dagger}H G^{a}_{\mu\nu}G^{a\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a\mu\nu}$	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{HW}	$H^{\dagger}HW^{i}_{\mu\nu}W^{I\mu\nu}$	Q_{He}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{e}_p \gamma^\mu e_r)$	Q_{ld}	$(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$
$Q_{H\widetilde{W}}$	$H^\dagger H\widetilde{W}^i_{\mu\nu}W^{i\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{qe}	$(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$
Q_{HB}	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$
$Q_{H\widetilde{B}}$	$H^\dagger H {\widetilde B}_{\mu\nu} B^{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{u}_s \gamma^\mu T^a u_t)$
Q_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B^{\mu\nu}$	$Q_{Hud} + h.c.$	$i({\widetilde H}^\dagger D_\mu H)({\bar u}_p\gamma^\mu d_r)$	$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma_\mu T^a q_r)(\bar{d}_s\gamma^\mu T^a d_t)$
	$\mathcal{L}_6^{(5)}-\psi^2 H^3$	L	${}_{6}^{(8a)} - (ar{L}L)(ar{L}L)$	$\mathcal{L}_6^{(8d)}$	$(\bar{L}R)(\bar{R}L),(\bar{L}R)(\bar{L}R)$
Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Q_{ll}	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$
Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^a u_r) \varepsilon_{jk} (\bar{q}_s^k T^a d_t)$
		$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}^j_p e_r) \varepsilon_{jk} (\bar{q}^k_s u_t)$
		$Q_{la}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^i l_r)(\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{lean}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$

HEP04 (2021) 073

Standard Model EFT: dim 6 in Warsaw basis

Among those, 6 CP odd operators that include dual tensors

$$\tilde{X}_{\mu\nu} = \varepsilon_{\mu\nu\rho\sigma} X^{\rho\sigma}$$

In the electroweak sector, 4 remain:

$$\mathcal{Q}_{ ilde{W}}, \mathcal{Q}_{H ilde{W}}, \mathcal{Q}_{H ilde{B}}, \mathcal{Q}_{H ilde{W}B}$$

Sources of anomalous triple gauge coupling (aTGC)

Differential XS of CP-odd observables sensitive to the interference

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\Re(\mathcal{M}_{SM}^*)$$

 $\mathcal{L}_{6}^{(1)} - X^{3}$ $f^{abc}G^{a\nu}G^{b\rho}G^{c\mu}$ Q_G $f^{abc} \tilde{G}^{a\nu}_{\mu} G^{b\rho}_{\nu} G^{c\mu}_{\rho}$ $Q_{\widetilde{c}}$ $\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$ Q_W $\varepsilon^{ijk}\widetilde{W}^{i\nu}W^{j\rho}W^{k\mu}$ $Q_{\widetilde{W}}$ $\mathcal{L}_{c}^{(2)} - H^{6}$ Q_H $(H^{\dagger}H)^3$ $\mathcal{L}_{6}^{(3)} - H^4 D^2$ $(H^{\dagger}H) \square (H^{\dagger}H)$ $Q_{H\square}$ Q_{HD} $(D^{\mu}H^{\dagger}H)$ $(H^{\dagger}D_{\mu}H)$ $\mathcal{L}_{e}^{(4)} - X^2 H^2$ $H^{\dagger}H G^{a}_{\mu\nu}G^{a\mu\nu}$ Q_{HG} $H^{\dagger}H \widetilde{G}^{a}_{\mu\nu}G^{a\mu\nu}$ $Q_{H\widetilde{G}}$ $H^{\dagger}HW^{i}_{\mu\nu}W^{I\mu\nu}$ Q_{HW} $H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i\mu\nu}$ $Q_{H\widetilde{W}}$ $H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$ Q_{HB} $H^{\dagger}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$ $Q_{H\widetilde{B}}$ $H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$ Q_{HWB} $H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B^{\mu\nu}$ $Q_{H\widetilde{W}B}$

6

Léo Boudet (LAPP)

MBI 2024 - Toulouse

Constraints on Wilson coefficients

Perform maximal likelihood fit on relevant observable

Léo Boudet (LAPP)

MBI 2024 - Toulouse

VBF Wjj @ $\sqrt{s} = 8$ TeV (first in ATLAS)

Challenging analysis in a pp collider:

- Neutrino of W \rightarrow lv decay only reconstructed as missing E_T
- Complicated reconstruction of pw
- Handling QCD produced Wjj (expected fraction of 78% QCD production in EW enhanced signal region)

Fit on **azimuthal angle difference between jets** $\Delta \Phi(\mathbf{j}_1, \mathbf{j}_2)$

$$\Delta\Phi(j_1, j_2) = |\Phi_{j1} - \Phi_{j2}|$$

Parameter	Expected [TeV ⁻²]	Observed [TeV ⁻²]	
$\frac{c_W}{\Lambda^2}$	[-39, 37]	[-33, 30]	(NB: coefficients
$\frac{c_B}{\Lambda^2}$	[-200, 190]	[-170, 160]	here, not Warsaw)
$\frac{c_{WWW}}{\Lambda^2}$	[-16, 13]	[-13,9]	
$\frac{c_{\tilde{W}}}{\Lambda^2}$	[-720, 720]	[-580, 580]	
$\frac{c_{\tilde{W}WW}}{\Lambda^2}$	[-14, 14]	[-11, 11]	

MBI 2024 - Toulouse

VBF Zjj (√s = 13 TeV)

Increased √s (8→13 TeV)
Full Run 2 statistics (20 → 139 fb⁻¹)

Two leptons final state, well reconstructed

Main challenge: **extract EW component** \rightarrow VBF topology related variables \rightarrow binned maximum-likelihood fit in SR $\xi_Z = |y_{ll} - \frac{y_{j1} + y_{j2}}{2}|/|y_{j1} - y_{j2}|$

 $-j_1(j_2) = (sub) leading jet$

- gap jets = jets with rapidity y such as min(y_{j1},y_{j2}) < y < max(y_{j1},y_{j2})

VBF Zjj (√s = 13 TeV)

Full $\Delta \Phi(j_1, j_2)$ range : [- π, π]

Angular variable → negligeable impact of quadratic term

Wilson	Includes	95% confidence	e interval [TeV ⁻²]	<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

Most competitive limits to this day

Eur. Phys. J. C 81 (2020)

Léo Boudet (LAPP)

00

VBF H $\rightarrow \tau \tau$ and $\chi \chi$

VBF H $\rightarrow \tau \tau$ and $\gamma \gamma$

Léo Boudet (LAPP)

MBI 2024 - Toulouse

VBF H→WW*

- VBF process with two bosons in final states

- \rightarrow Two HVV vertices (both production and decay)
- H to WW* has second largest BR

Experimental challenges:

- Two final state neutrinos
- Important top and VV backgrounds

VBF H→WW*

Phys Rev D 108, 072003 (2023)

Léo Boudet (LAPP)

15

3

- Single angular observable $\Delta \Phi(j_1, j_2)$ gives stringent constraints for CP-odd c_i
- Optimal observable not as widely used as angular ones
- $Q_{\text{W}\text{-}\text{WW}}$ and $Q_{\text{HW}\text{-}\text{B}}$ well constrained by EW bosons VBF
- $Q_{\text{HW}\sim}$ and $Q_{\text{HB}\sim}$ better constrained by Higgs VBF
- Impact of quadratic term negligeable when using angular variables except in VBF H \rightarrow WW channel

 \rightarrow exploit additional variables sensitive to quadratic term

MBI 2024 - Toulouse

CP violating aNTGC

Searches for CPV e.g. $ZZ \rightarrow 4l$, $ZZ \rightarrow vvll$, $ZX \rightarrow vvY$

Investigate CP-odd **anomalous Neutral Triple Gauge Coupling** (aNTGC)

$$\mathcal{L}_{VZZ} \supset -\frac{e}{m_Z^2} f_V^4(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta)$$
(V = A, Z)

ZZ→4l analysis : CP-odd observable built from polar and azimuthal angles

$$\mathcal{O}_{T_{yz,1}T_{yz,3}} = (\sin\varphi_1 \times \cos\theta_1) \times (\sin\varphi_3 \times \cos\theta_3)$$

aNTCC parameter	Interference only		Full	
an IOC parameter	Expected	Observed	Expected	Observed
f_Z^4	[-0.16, 0.16]	[-0.12, 0.20]	[-0.013, 0.012]	[-0.012, 0.012]
f_{γ}^4	[-0.30, 0.30]	[-0.34, 0.28]	[-0.015, 0.015]	[-0.015, 0.015]

Including quadratic term improves limits by a factor 10

What about VBS ?

aQGC probed in VBS processes \rightarrow cross section \sim fb \rightarrow low statistics

Léo Boudet (LAPP)

MBI 2024 - Toulouse

18

Conclusion & outlook

- Vjj and Hjj analyses complentary to constrain dim 6 CP-odd SMEFT bosonic operators
 Constraints on CPV are also put on aNTGC
- Combine additional observables, including **angular** and **energy** related observables (ML)
- Exploit additional final states:
 - inclusive diboson final states (WZ, Wy)
 - VBS for dimension 8 operators

Thank you for your attention

Poisson likelihood

Alternative to the Gaussian likelihood, used for instance in Higgs EFT analyses

$$\mathcal{L}(x;\mu,\theta) = \prod_{c}^{N_{cat}} \left(\prod_{k}^{N_{bin}} \operatorname{Pois}(\sum_{s} N_{c}^{s} + \sum_{b} N_{c}^{b}, n_{obs,k})\right) \times \prod_{i}^{n_{syst}} f_{i}(\theta_{i})$$

$$MC \text{ events (sig + bkg)} \qquad Nuisance parameters$$

Operators definitions

$\mathcal{L}_6^{(1)}-X^3$					
Q_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$				
$Q_{\widetilde{G}}$	$f^{abc} {\widetilde G}^{a u}_\mu G^{b ho}_ u G^{c\mu}_ ho$				
Q_W	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$				
$Q_{\widetilde{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$				
	$\mathcal{L}_6^{(2)}-H^6$				
Q_H	$(H^{\dagger}H)^3$				
	${\cal L}_6^{(3)} - H^4 D^2$				
$Q_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$				
Q_{HD}	$\left(D^{\mu}H^{\dagger}H\right)\left(H^{\dagger}D_{\mu}H\right)$				
	$\mathcal{L}_6^{(4)}-X^2H^2$				
Q_{HG}	$H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$				
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a\mu\nu}$				
Q_{HW}	$H^{\dagger}HW^{i}_{\mu\nu}W^{I\mu\nu}$				
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i\mu\nu}$				
Q_{HB}	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$				
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$				
Q_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$				
$Q_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu u}B^{\mu u}$				

$$W^{i,\nu}_{\mu} = \partial_{\mu}W^{i,\nu} - \partial^{\nu}W^{i}_{\mu} - g\varepsilon^{ijk}W^{j}_{\mu}W^{k,\nu}$$

$$B^{\mu\nu} = \partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu}$$
$$\mathbf{H} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$$

HISZ and Warsaw basis

HISZ

Warsaw

$$\mathcal{O}_{\tilde{B}} = (D_{\mu}H)^{\dagger} \tilde{B}^{\mu\nu} (D_{\nu}H)$$
$$\mathcal{O}_{\tilde{W}} = (D_{\mu}H)^{\dagger} \tilde{W}^{\mu\nu} (D_{\nu}H)$$
$$\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}(W_{\mu\nu}W^{\nu}_{\rho}\tilde{W}^{\rho\mu})$$

$$\begin{aligned} \mathcal{Q}_{H\tilde{W}} &= \phi^{\dagger} \phi \tilde{W}^{i}_{\mu\nu} W^{i,\mu\nu} \\ \mathcal{Q}_{H\tilde{B}} &= \phi^{\dagger} \phi \tilde{B}_{\mu\nu} B^{\mu\nu} \\ \mathcal{Q}_{\tilde{W}WW} &= \varepsilon_{ijk} \tilde{W}^{i,\nu}_{\mu} W^{j,\rho}_{\nu} W^{k,\mu}_{\rho} \\ \mathcal{Q}_{H\tilde{W}B} &= \phi^{\dagger} \sigma^{i} \phi \tilde{W}^{i}_{\mu\nu} B^{\mu\nu} \end{aligned}$$

Wjj control, validation, signal regions

QCD Wjj

EFT fit region :

Dedicated high energy SR to increase EFT/SM ratio

 \rightarrow m_{jj} > 1 TeV, leading jet p_T > 600 GeV

Only accounting for SM-dim6 interference term

$$OO = \frac{2\Re(\mathcal{M}_{SM}^*\mathcal{M}_6)}{|\mathcal{M}_{SM}|^2}$$

By definition only accounting for interference, not sensitive to quadratic term

$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

CP even counterparts and constraints

WW/WZ → lvqq' (<u>Eur. Phys. J. C77 (2017) 563</u>)

Parameter	Observed [TeV ⁻²]	Expected [TeV ⁻²]	Observed [TeV ⁻²]	Expected [TeV ⁻²]
	WV –	→ ℓvjj	WV -	$\rightarrow \ell \nu J$
c_{WWW}/Λ^2	[-5.3, 5.3]	[-6.4, 6.3]	[-3.1, 3.1]	[-3.6, 3.6]
c_B/Λ^2	[-36,43]	[-45,51]	[-19, 20]	[-22, 23]
c_W/Λ^2	[-6.4, 11]	[-8.7, 13]	[-5.1, 5.8]	[-6.0, 6.7]

In HISZ basis

Higgs $\rightarrow ZZ^* \rightarrow 4l$

Considering VBF enriched signal region, using optimal observable for both

- 1. H production vertex OO_{jj}
- 2. H decay vertex OO_{4l}

Wilson coefficients from aNTGC

Linear combination of aNTGC parameters gives EFT Wilson coefficients

$$f_{4}^{Z} = \frac{M_{Z}^{2}v^{2}\left(c_{w}^{2}\frac{C_{WW}}{\Lambda^{4}} + 2c_{w}s_{w}\frac{C_{BW}}{\Lambda^{4}} + 4s_{w}^{2}\frac{C_{BB}}{\Lambda^{4}}\right)}{2c_{w}s_{w}}$$
$$f_{4}^{\gamma} = -\frac{M_{Z}^{2}v^{2}\left(-c_{w}s_{w}\frac{C_{WW}}{\Lambda^{4}} + \frac{C_{BW}}{\Lambda^{4}}\left(c_{w}^{2} - s_{w}^{2}\right) + 4c_{w}s_{w}\frac{C_{BB}}{\Lambda^{4}}\right)}{4c_{w}s_{w}}$$
 arXiv:1308.6323v2

Parameter	Limit 93	From 7V → vvV	
	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]	
$C_{\widetilde{B}W}/\Lambda^4$	(-1.1, 1.1)	(-1.3, 1.3)	
C_{BW}/Λ^4	(-0.65, 0.64)	(-0.74, 0.74)	
C_{WW}/Λ^4	(-2.3, 2.3)	(-2.7, 2.7)	
C_{BB}/Λ^4	(-0.24, 0.24)	(-0.28, 0.27)	

Optimal Observable in Hjj

Phys Let B 805 (2020) 135426