Triple-gauge couplings in LHC diboson production: a SMEFT view from every angle

In collaboration with Giovanni Pelliccioli and Eleni Vryonidou, JHEP08(2024)087 [2405.19083]

Hesham El Faham The University of Manchester

MBI, September 2024, Toulouse

Motivation for diboson at the LHC

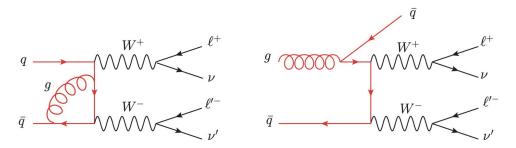
- Important probe for EWSB
- Fully leptonic diboson production → relatively clean signature at the LHC
- With Run 3 and HL-LHC -> promising for precision and differential measurements
- Irreducible background for Higgs analyses

At LO, production is dominated by quark-initial states and gluon-initiated ones are loop-induced

 \rightarrow at NLO in QCD, mixed channel opens up with enhancement from gluon luminosity

On diboson in the SMEFT

- Dominating quark-initiated channel is sensitive to dim-6 TGC
- At NLO QCD, sensitivity to TGC is non-trivial and depends on phase-space setups
- Dim-6 TGCs non-trivially correlate with Vqq-induced ones Grojean et al. [1810.05149]
- Linear suppression is expected for $2 \rightarrow 2$ due to helicity selection rules Azatov et al. [1607.05236]
- A priori, one can not neglect dim-8 SMEFT insertions e.g. Degrande et al. [2303.10493]

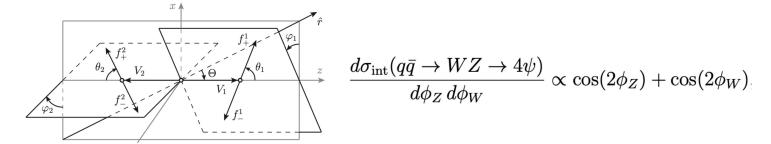

→ dim-8 effects are not expected to alter the power induced by *purely* dim-6 TGC quadratic contributions Corbett et al. [2304.03305]

Goal

- Purely CP-even and CP-odd SMEFT coefficients in the Warsaw basis Grzadkowski et al. [1008.4884]

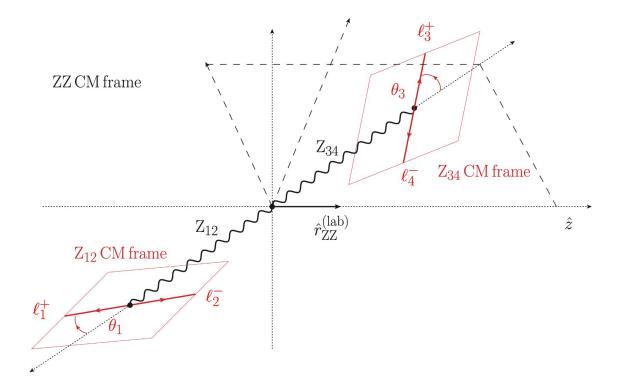
$$\epsilon_{ijk}W^{i}_{\mu\nu}W^{j,\nu\rho}W^{k,\mu}_{\rho}, \qquad \epsilon_{ijk}\tilde{W}^{i}_{\mu\nu}W^{j,\nu\rho}W^{k,\mu}_{\rho} \quad \longleftrightarrow \quad \lambda_{z} = -c_{W}\frac{v}{\Lambda^{2}}\frac{3}{2}g, \qquad \tilde{\lambda}_{z} = -c_{\tilde{W}}\frac{v}{\Lambda^{2}}\frac{3}{2}g$$

- Full NLO in QCD, including the complete off-shell effects and spin correlations


with SMEFTatNLO Degrande et al. [2008.11743] via MG5 Alwall et al. [1405.0301]

Diboson analysis features

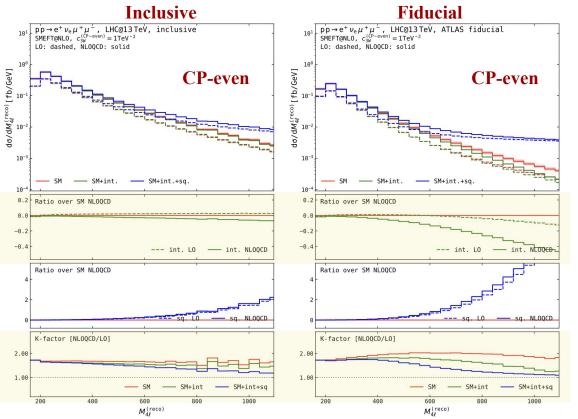
- Z couples ~ equally to left and right-hand charged leptons \rightarrow can not identify helicities
- W couples to left-hand fermions \rightarrow but neutrino reconstruction is problematic


Interference suppression at $2 \rightarrow 2$ is lifted at $2 \rightarrow 3$ or $2 \rightarrow 4$

 \rightarrow the angle spanned by the decay products and/or real radiation 'restores' the interference

Azatov et al. [1707.08060]; Panico et al. [1708.07823]

Helicity coordinate system



Questions to answer

- → Impact of different phase-space setups?
- \rightarrow EFT effects on angular coefficients and observables?
- \rightarrow Impact of NLO QCD?

 \rightarrow In this talk, we focus on WZ production

Impact of NLO QCD and selection cuts

Interference 'restored' through selection cuts

Inclusive

→ Real NLO radiation restores the suppressed LO SMEFT interference

Fiducial

 \rightarrow The interference restoration is already manifest at LO due to the modulation from the cuts

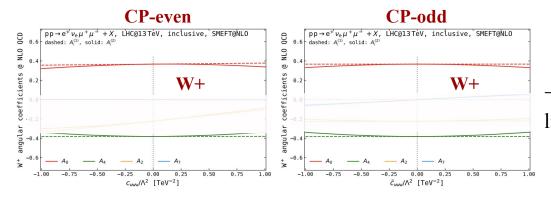
→ Non-trivial K-factors

ATLAS fiducial setups [1902.05759, 2211.09435, 1905.04242]

On polarisation fractions and angular terms

2-body decay rate of V boson + projections on spherical harmonics

 \rightarrow inclusive angular coefficients and polarisation fractions

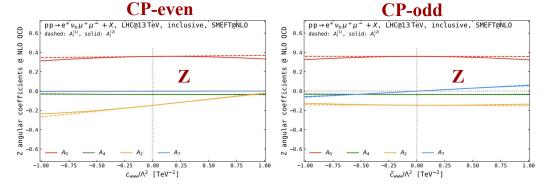

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^* \,\mathrm{d}\phi^*} = \frac{3}{16\pi} \Big[1 + \cos^2\theta^* + A_0 \frac{1 - 3\cos^2\theta^*}{2} + A_1 \sin 2\theta^* \cos \phi^* \\ + \frac{1}{2}A_2 \sin^2\theta^* \cos 2\phi^* + A_3 \sin \theta^* \cos \phi^* + A_4 \cos \theta^* \\ + A_5 \sin \theta^* \sin \phi^* + A_6 \sin 2\theta^* \sin \phi + A_7 \sin^2\theta^* \sin 2\phi^* \Big]$$
azimuthal integral
$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{8} \Big[2 f_0 \sin^2\theta^* \\ + f_\mathrm{L} \left(1 + \cos^2\theta^* - 2 c_{\mathrm{LR}} \cos \theta^* \right) \\ + f_\mathrm{R} \left(1 + \cos^2\theta^* + 2 c_{\mathrm{LR}} \cos \theta^* \right) \Big]$$

A_i coefficients modulate an angular term

 \rightarrow underly the **dynamics of the production and decay** process, the **polarisation states** of the particles, and **possible interference effects**

Inclusive angular coefficients

Inclusive setup



 \rightarrow A0 and A4 barely distorted by EFT at linear-level; slight effect from quadratics

Inclusive angular coefficients

CP-even CP-odd $pp \rightarrow e^+ v_e \mu^+ \mu^- + X$, LHC@13TeV, inclusive, SMEFT@NLO $pp \rightarrow e^+ v_e \mu^+ \mu^- + X$, LHC@13TeV, inclusive, SMEFT@NLO QCD QCD dashed: $A_i^{(1)}$, solid: $A_i^{(2)}$ 0.6 - dashed: A(1), solid: A(2 NLO NLO 0 0 C, cients coefficients W+ W+ 0.2 Deffi angular angul -0. -0.6 + M 2 -1.00 -0 75 -0.50 0 50 0.75 1 00 -1 00 0 25 0 50 0.75 1.00 A 25 -0 75 -0 56 $C_{\rm max}/\Lambda^2$ [TeV⁻²] \tilde{c}_{WW}/Λ^2 [TeV⁻²]

 \rightarrow A0 and A4 barely distorted by EFT at linear-level; slight effect from quadratics

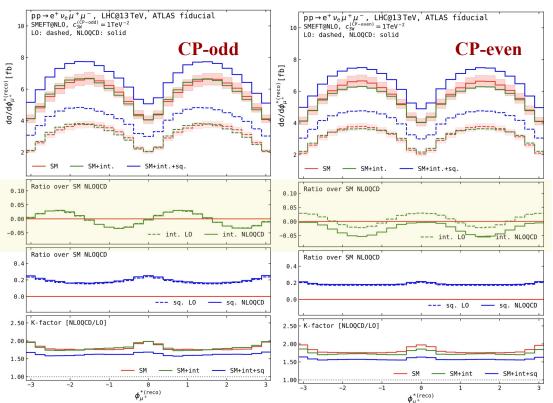
→ Small value of A4 manifests the left-right balance and not altered by EFT

 \rightarrow A7 is **parity-odd** sensitive

Inclusive setup

Polarisation sensitivity

Inclusive Inclusive $pp \rightarrow e^+ v_e \mu^+ \mu^-$, LHC@13TeV, inclusive SMEFT@NLO, $c_{3W}^{(CP-odd)} = 1\text{TeV}^{-2}$ $pp \rightarrow e'^+ v_e \mu^+ \mu'^-$, LHC@13TeV, inclusive SMEFT@NLO, $c_{3W}^{(CP-even)} = 1 \text{TeV}^{-2}$ L0: dashed, NLOQCD: solid LO: dashed, NLOQCD: solid 80 **CP-odd CP-even** /dcosθ_{e⁺}[fb] ≜ o fb] cosθ_e⁺[1 0 40 da∕ (dσ/ 20 20 — SM+int. —— SM+int.+sq. - SM+int. - SM+int.+sq. -0.75 -0.50-0.25 0.00 0.25 0.50 0.75 -0.75 -0.50 -0.25 0.25 0.50 0.75 cos0. cos0,

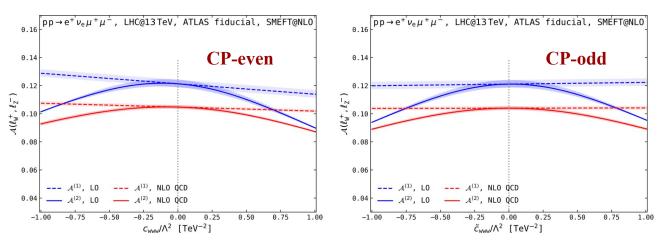

Polarisation angles as a probe to fractions

 \rightarrow Similar EFT shapes as in the SM

 \rightarrow Mild effects on fractions

Differential angular observables

Fiducial

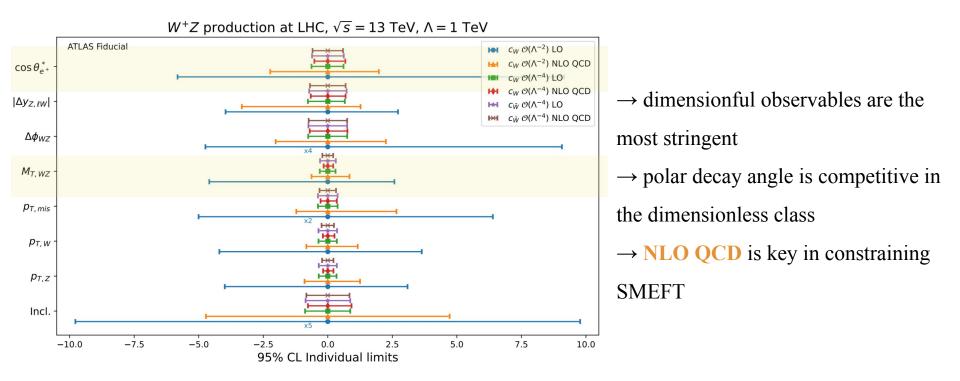


Fiducial

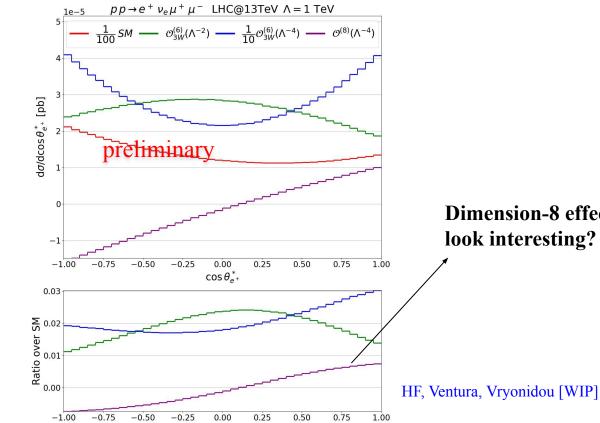
Azimuthal variables are good probes for CP-properties

- → Interference modulation maps the CP-property of TGC
- \rightarrow Distortion due to selection cuts and neutrino reconstruction relative to SM is mild (inclusive setup not shown here)

Boost asymmetries $\mathcal{A}(i,j) = \frac{\mathrm{d}\sigma(|y_i| > |y_j|) - \mathrm{d}\sigma(|y_i| < |y_j|)}{\mathrm{d}\sigma(|y_i| > |y_j|) + \mathrm{d}\sigma(|y_i| < |y_j|)}$


 \rightarrow **CP-even** modifies the right-handed fraction at linear and quadratic-levels

```
\rightarrow CP-odd linear effects are negligible
```


Differential measurements of boost asymmetries can be promising

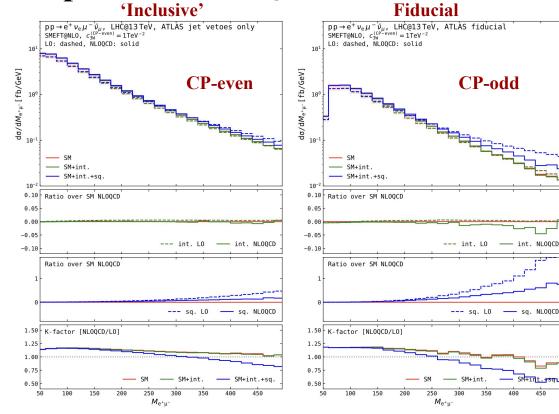
ATLAS fiducial setups [1902.05759, 2211.09435, 1905.04242]

Impact of NLO QCD on SMEFT

A glimpse at dimension-8 SMEFT in WZ [preliminary]

Dimension-8 effects on polarisation angles look interesting?

Summary

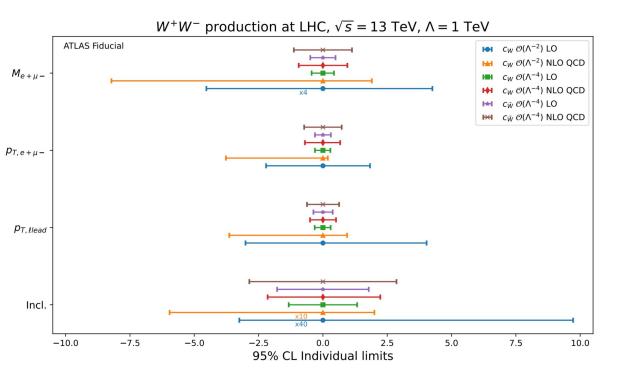

- → Impact of different phase-space setups?
- \rightarrow EFT effects on angular coefficients and observables?
- → Impact of NLO QCD?
 - \rightarrow Analysis is sensitive to fiducial setup and interference suppression is lifted by cuts
 - \rightarrow Mild effects on angular coefficients; azimuthal-observables are interesting
 - \rightarrow NLO effects lift the interference suppression and are key in constraining SMEFT

Conclusions

- NLO QCD is key in diboson production; constraining SMEFT, resurrecting 2→2 suppressed interference, non trivial k-factors
- The angle spanned by decay products as well as selection cuts have significant impact on the interference behavior
- Angular observables are good probes for TGC CP-properties
- Differential leptonic boost asymmetries might be promising in constraining SMEFT

Backup

Impact of NLO QCD and selection cuts WW


 \rightarrow Selection cuts still enhances

the interferences

450

 \rightarrow WW is less-sensitive to TGC than WZ

Impact of NLO QCD on SMEFT WW

 \rightarrow similar conclusions to the WZ case

 \rightarrow the different NLO QCD behaviour

is manifest