

The University of Manchester

The Automation of SMEFT-Assisted constraints on UV-complete models

Multi-Boson Interactions 2024

Toulouse, France 27 September 2024

Alejo N. Rossia

On behalf of the SMEFIT Collaboration *Department of Physics and Astronomy*

The University of Manchester

Based on:

[2309.04523] JHEP 01 (2024) 179 (w/ J. ter Hoeve, G. Magni, J. Rojo, and E. Vryonidou) [2404.12809] JHEP 09 (2024) 091 (w/ E. Celada, T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, M. Thomas and E. Vryonidou)

$$\psi_{UV} = ? \quad \mathcal{L}_{UV} = ? \quad G_{UV} = ?$$

MANCHESTER 1824

The University of Manchester

V

Ε

$$\psi_{UV} = ? \quad \mathcal{L}_{UV} = ? \quad G_{UV} = ?$$
$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots \quad \underset{\psi_{SMEFT} = \psi_{SM}}{\overset{G_{SMEFT} = SU(3) \times SU(2) \times U(1)}{\psi_{SMEFT} = \psi_{SM}}$$

The University of Manchester

MANCHESTER

Ε

Λ

V

MANCHESTER 1824 The University of Manchester

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

MANCHESTER

$$\mathcal{L}_{UV} = \mathcal{L}_{UV} = \mathcal{L}$$

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

MANCHESTER

$$\psi_{UV} = ? \qquad \mathcal{L}_{UV} = ? \qquad G_{UV} = ?$$

$$\Lambda \qquad \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots \frac{G_{SMEFT} = SU(3) \times SU(2) \times U(1)}{\psi_{SMEFT} = \psi_{SM}}$$

$$(Mostly) Model-independent phenomenology$$

$$d\sigma = d\sigma_{SM} + \frac{c_i^{(6)}}{\Lambda^2} d\sigma_{int.}^i + \frac{c_i^{(6)}c_j^{(6)}}{\Lambda^4} d\sigma_{EFT}^{i.j.}$$

$$SM \text{ prediction}$$
Experimental measurement

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

MANCHESTER

$$\psi_{UV} = ? \qquad \mathcal{L}_{UV} = ? \qquad G_{UV} = ?$$

$$\Lambda \qquad \qquad \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots \frac{G_{SMEFT} = SU(3) \times SU(2) \times U(1)}{\psi_{SMEFT} = \psi_{SM}}$$

$$(Mostly) Model-independent phenomenology$$

$$d\sigma = d\sigma_{SM} + \frac{c_i^{(6)}}{\Lambda^2} d\sigma_{int.}^i + \frac{c_i^{(6)}c_j^{(6)}}{\Lambda^4} d\sigma_{EFT}^{i.j}$$

$$SMEFT \text{ prediction}$$

$$SM \text{ prediction}$$

$$Experimental measurement$$

The University of Manchester

MANCHESTER

Correlations, correlations everywhere...

Correlations, correlations everywhere...

Correlations, correlations everywhere...

One observable can be influenced by many operators

One operator can contribute to

Higgs decay

Ø

[A. Biekötter's seminar]

Zh production

Weak boson fusion Higgs production

Correlations, correlations everywhere...

Correlations, correlations everywhere...

The choices in the fitter's way

• Dataset

Correlations, correlations everywhere...

The choices in the fitter's way

- Dataset
- Likelihoods

Correlations, correlations everywhere...

• Likelihoods

Correlations, correlations everywhere...

• Likelihoods

Correlations, correlations everywhere...

Correlations, correlations everywhere...

Correlations, correlations everywhere...

v. 2.0: [2302.06660] v. 3.0: [2404.12809]

A Python software for global interpretation of particle physics data in SMEFT

v. 2.0: [2302.06660] v. 3.0: [2404.12809]

Operator basis

• Warsaw basis with rotations.

Flavour sym.: $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_l \times U(1)_e)^3 + y_{b,c,\tau}^{SM} + c_{\varphi(b,c,\tau)}$

Operator	Coefficien	t Definition	Operator	Coefficien	t Definition				
3rd generation quarks									
$\mathcal{O}^{(1)}_{_{arphi Q}}$	$c^{(1)}_{\varphi Q}$ (*)	$i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{Q} \gamma^{\mu} Q)$	\mathcal{O}_{tW}	c_{tW}	$i ig(ar{Q} au^{\mu u} au_{_I} t ig) ilde{arphi} W^I_{\mu u} + ext{h.c.}$				
${\cal O}^{(3)}_{arphi Q}$	$c^{(3)}_{\varphi Q}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphiig)ig(ar{Q}\gamma^\mu au^{\scriptscriptstyle I}Qig)$	\mathcal{O}_{tB}	c_{tB} (*)	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$				
$\mathcal{O}_{arphi t}$	$c_{arphi t}$	$i (\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t)$	\mathcal{O}_{tG}	c_{tG}	$ig_{S}\left(ar{Q} au^{\mu u}T_{\scriptscriptstyle A}t ight) ilde{arphi}G^{A}_{\mu u}\!+\! ext{h.c.}$				
\mathcal{O}_{tarphi}	$c_{t\varphi}$	$\left(arphi^{\dagger} arphi ight) ar{Q} t ilde{arphi} + { m h.c.}$	\mathcal{O}_{barphi}	$c_{b\varphi}$	$\left(arphi^{\dagger} arphi ight) ar{Q} b arphi + { m h.c.}$				
1st, 2nd generation quarks									
$\mathcal{O}^{(1)}_{_{arphi q}}$	$c^{(1)}_{\varphi q}$ (*)	$\sum\limits_{i=1,2} iig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphi ig) ig(ar{q}_i \gamma^\mu q_i ig)$	$\mathcal{O}_{arphi d}$	$c_{arphi d}$	$\sum\limits_{i=1,2,3} i ig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphi ig) ig(ar{d}_i \gamma^\mu d_i ig)$				
${\cal O}^{(3)}_{arphi q}$	$c^{(3)}_{arphi q}$	$\sum_{i=1,2} i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i})$	${\cal O}_{c arphi}$	$c_{c\varphi}$	$\left(arphi^{\dagger} arphi ight) ar{q}_2 c \widetilde{arphi} + { m h.c.}$				
$\mathcal{O}_{arphi u}$	$c_{arphi u}$	$\sum_{i=1,2}^{i=1,2} iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar{u}_i \gamma^\mu u_i ig)$							
two-leptons									
$\mathcal{O}_{arphi\ell_i}$	$c_{\varphi \ell_i}$	$i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar{\ell}_i \gamma^\mu \ell_i ig)$	$\mathcal{O}_{\varphi\mu}$	$c_{arphi\mu}$	$i(\varphi^\dagger \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{\mu} \gamma^\mu \mu)$				
${\cal O}^{(3)}_{_{arphi\ell_i}}$	$c^{(3)}_{\varphi \ell_i}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphiig)ig(ar \ell_i\gamma^\mu au^{\scriptscriptstyle I} \ell_iig)$	$\mathcal{O}_{arphi au}$	$c_{\varphi\tau}$	$i \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) \left(\overline{\tau} \gamma^{\mu} \tau \right)$				
$\mathcal{O}_{arphi e}$	$c_{arphi e}$	$i \bigl(\varphi^\dagger \overset{\leftrightarrow}{D}_\mu \varphi \bigr) \bigl(ar{e} \gamma^\mu e \bigr)$	$\mathcal{O}_{ auarphi}$	$c_{\tau\varphi}$	$\left(\varphi^{\dagger} \varphi \right) \bar{\ell_3} \tau \varphi + {\rm h.c.}$				
four-leptons									
$\mathcal{O}_{\ell\ell}$	$c_{\ell\ell}$	$\left(ar{\ell}_1\gamma_\mu\ell_2 ight)\left(ar{\ell}_2\gamma^\mu\ell_1 ight)$							
f		f			f V				
\bar{f}		\bar{f}			\bar{f}				

Operator	Coefficient	Definition	Operator	Coefficient	Definition
$\mathcal{O}_{arphi G}$	$c_{arphi G}$	$\left(arphi^{\dagger} arphi ight) G^{\mu u}_{\scriptscriptstyle A} G^{\scriptscriptstyle A}_{\mu u}$	$\mathcal{O}_{\varphi\square}$	$c_{arphi \square}$	$\partial_\mu (arphi^\dagger arphi) \partial^\mu (arphi^\dagger arphi)$
$\mathcal{O}_{arphi B}$	$c_{arphi B}$	$\left(\varphi^{\dagger} \varphi \right) B^{\mu \nu} B_{\mu \nu}$	$\mathcal{O}_{arphi D}$	$c_{arphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$
$\mathcal{O}_{arphi W}$	$c_{arphi W}$	$\left(arphi^{\dagger} arphi ight) W^{\mu u}_{\scriptscriptstyle I} W^{\scriptscriptstyle I}_{\mu u}$	\mathcal{O}_W	c_{WWW}	$\epsilon_{IJK}W^I_{\mu u}W^{J, u ho}W^{K,\mu}_ ho$
$\mathcal{O}_{arphi WB}$	$c_{\varphi WB}$	$(arphi^\dagger au_{\scriptscriptstyle I} arphi) B^{\mu u} W^{\scriptscriptstyle I}_{\mu u}$			

Fit of 45 (50) WCs at the linear (quadratic) level

SMEFIT 3.0 results

The University of Manchester

Pulls and correlations

Correlation: NLO $\mathcal{O}\left(\Lambda^{-4}\right)$

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

7.

Pulls and correlations

Fit residuals (pulls) largely SM compatible

Correlation: NLO $\mathcal{O}\left(\Lambda^{-4}\right)$

The University of Manchester

NLO QCD in the EFT effects

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

7(+1/2).

An eye on the future

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-4}\right)$, Marginalised

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-4}\right)$, Marginalised

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

The University of Manchester

9.

1024 The University of Manchester

MANCHESTER

The state of matching affairs

Automated 1-loop matching*

MANCHESTER 1824

The state of matching affairs

*Only up to tree level for heavy spin-1 bosons.

- On-shell matching techniques [2308.00035] [F. Vilches@Planck24] [J. López Miras@HEFT2024]
- Matching with Spontaneous Symmetry Breaking [2404.11640]
- Functional matching for dim. >6 [2306.09103] [2308.03849] [2311.12757]
- 1-loop dictionaries [2303.16965] [P. Olgoso@HEFT2024] [J. Gargalionis@Planck24]
- **2-loop matching** [2311.13630] [J. Fuentes-Martín@HEFT2024] Disclaimer: incomplete list.

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

The University of Manchester

MANCHESTER

Automation across scales

Bridging the gap

nn hù

Automating the reuse of SMEFT predictions and global fits to bound UV models

Photo by Didier Descouens - Own work, CC BY-SA 4.0

SMEFI

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

match2fit

Constrains on WCs from UV matching

Tree-level matching

Constrains on WCs from UV matching

Tree-level matching

Constrains on WCs from UV matching

Tree-level matching

UV constraints on the WC space are highly non trivial

 $P(C_i | D)$ Posterior on WCs

- A Wolfram Mathematica™ package, fully documented.
- Reads results from Matchmakereft and produces run cards that can be fed into smefit to perform a fit.
- Uses the same WC basis than SMEFiT.

 $\mathrm{U}(2)_q \times \mathrm{U}(3)_d \times \mathrm{U}(2)_u \times (\mathrm{U}(1)_\ell \times \mathrm{U}(1)_e)^3 + c_{b\varphi}, c_{\tau\varphi}, c_{c\varphi}$

- It can impose UV flavor assumptions and evaluates the masses.
- It can run Matchmakereft to perform the matching and translation at once.

It supports 1-loop matching results.

One-part. models at tree level

Dataset: SMEFiT 2.0 + EWPOs

One-part. models at tree level

Sensitivity to the sign of UV couplings

Dataset: SMEFiT 2.0 + EWPOs

One-part. models at tree level

Sensitivity to the sign of UV couplings

Top couplings sensitive to quadratic-in-WCs pieces

Dataset: SMEFiT 2.0 + EWPOs

One-loop matching makes a difference

$$\phi \sim (1,2)_{1/2} \qquad \mathcal{L}_{\rm UV} \supset -(y^u_\phi)_{33} \phi^{\dagger} i \sigma_2 \bar{q}_L^{T,3} u^3_R - \lambda_\phi \phi^{\dagger} H |H|^2 + \text{h.c.} \qquad m_\phi = 1 \text{ TeV}$$

Dataset: SMEFiT 2.0 + EWPOs

One-loop matching makes a difference

Dataset: SMEFiT 2.0 + EWPOs

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

One-loop matching makes a difference

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Tree-level matching

The University of Manchester

The University of Manchester

MANCHESTER 1824 The University of Manchester

The University of Manchester

MANCHESTER

The University of Manchester

MANCHESTER

The University of Manchester

MANCHESTER

The University of Manchester

Conclusions

- We have the tools for the full cycle of the EFT program for BSM Physics.
- SMEFiT allows to interpret LHC data at the EFT and UV model levels from one set of predictions.
- Match2fit provides a simple and flexible SMEFiT-MMEFT interface.
- LHC Run 2 data shows an impressive constrain power.
- We can understand the impact of future colliders at SMEFT and UV level.
- Several improvement possibilities: interfacing more codes, flavor data, RGE effects, more general flavor symmetries...

Thanks for your attention!

Contact:

Alejo N. Rossia

HEP Theory Group – Dept. Of Physics and Astronomy

E-mail: alejo dot rossia at manchester dot ac dot uk

Thanks to M. Thomas, E. Celada, V. Miralles and H. el Faham for ideas for the slides and discussions.

MANCHESTER 1824

Appendix

UV invariants

We are sensitive only to combinations of UV couplings that enter the WCs.

Not necessary to do the fit, but useful to understand the results.

Restrictions from EFT flavor symmetry

- Your model produces an operator that should vanish and does not enter in any fitted process.
 - The bounds from the fit might be suboptimal with respect to bounds from other processes.
- Your model produces an operator that should vanish and enters some processes in the dataset.
 - The bounds from the fit might not be trustworthy and suboptimal.
- The symmetry assumes two WCs to be equal but your model produces them with different values.
 - Match2fit will take only one of those values and ignore the other.
 Unless the difference is small, the bounds from the fit are not trustworthy.

How to forecast

highest int. luminosity

- Pseudodata fluctuated around SM
- Rescale uncertainties:
 - Statistical $\longrightarrow \mathcal{L}$
 - Systematics $\longrightarrow \frac{1}{2}$
- No HL-LHC optimization

- Snowmass + FCC midterm Feas. Rep.
- Z-pole+161+240+350/365 GeV
 - EWPOs
 - $f\bar{f}$ production
 - $ZH + \nu \overline{\nu}H + \text{all } H$ decays.
 - $W^+W^- + t\bar{t}$ with Optim. Obs.

Additional technicalities

SMEFiT supports relations among fit parameters like:

$$\sum_{i} a_i (c_1)^{n_{1,i}} \dots (c_N)^{n_{N,i}} = 0$$

The exponents can be rational numbers of any sign. This imposes restrictions on the supported matching relations.

Probability in UV and WC spaces

The relation between PDFs in WC and UV space can be misleading.

$$\begin{split} P(c) &= \frac{2}{\sqrt{\pi}} e^{-c^2} , \qquad \int_0^\infty dc \, P(c) = 1 & \qquad \\ c &= g^2 \\ P(|g|) &= \frac{4}{\sqrt{\pi}} |g| e^{-|g|^4} , \qquad \int_0^\infty d|g| \, P(|g|) = 1 & \qquad \\ \int_0^\infty d|g| \,$$

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

A4.

One-part. models at tree level

Good agreement with the Fitmaker results

Dataset: SMEFiT 2.0 + EWPOs

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

A5.

Multi-particle models at tree level

1824 The University of Manchester Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

A6.

List of models

	Scalars		Fermions	Vectors							
Particle	Irrep	Particle	Irrep	Particle	Irrep						
S	$(1,1)_{0}$	N	$(1,1)_{0}$	B	$(1,1)_0$						
\mathcal{S}_1	$(1,1)_1$	E	$(1,1)_{-1}$	\mathcal{B}_1	$(1,1)_{1}$						
ϕ	$(1,2)_{1/2}$	Δ_1	$(1,2)_{-1/2}$	\mathcal{W}	$(1,3)_0$						
Ξ	$(1,3)_0$	Δ_3	$(1,2)_{-3/2}$	\mathcal{W}_1	$(1,3)_1$						
Ξ_1	$(1,3)_{1}$	Σ	$(1,3)_0$	${\cal G}$	$(8,1)_{0}$						
ω_1	$(3,1)_{-1/3}$	Σ_1	$(1,3)_{-1}$	\mathcal{H}	$(8,3)_0$						
ω_4	$(3,1)_{-4/3}$	U	$(3,1)_{2/3}$	\mathcal{Q}_5	$\left(8,3 ight)_{0}$						
ζ	$(3,3)_{-1/3}$	D	$(3,1)_{-1/3}$	\mathcal{Y}_5	$(ar{6},2)_{-5/6}$						
Ω_1	$(6,1)_{1/3}$	Q_1	$(3,2)_{1/6}$								
Ω_4	$(6,1)_{4/3}$	Q_7	$(3,2)_{7/6}$								
Υ	$(6,3)_{1/3}$	T_1	$(3,3)_{-1/3}$								
Φ	$(8,2)_{1/2}$	T_2	$(3,3)_{2/3}$								
		Q_5	$(3,2)_{-5/6}$								

UV Couplings

	Scalars	F	ermions		Vectors
Model	UV couplings	Model	UV couplings	Model	UV couplings
S	$\kappa_{\mathcal{S}}$	N	$(\lambda^e_N)_3$	${\cal B}$	$(g^u_B)_{33},(g^q_B)_{33},g^{\varphi}_B,$
ϕ	$\lambda_{\phi},\;(y^u_{\phi})_{33}$	E	$(\lambda_E)_3$		$(g^e_B)_{11},(g^e_B)_{22},(g^e_B)_{33},$
Ξ	κ_{Ξ}	Δ_1	$\left(\lambda_{\Delta_1} ight)_3$		$\left(g_B^\ell\right)_{22},\ \left(g_B^\ell\right)_{33}$
Ξ_1	κ_{Ξ_1}	Δ_3	$\left(\lambda_{\Delta_3} ight)_3$	\mathcal{B}_1	$g^{arphi}_{B_1}$
ω_1	$\left(y^{qq}_{\omega_1} ight)_{33}$	Σ	$(\lambda_{\Sigma})_3$	\mathcal{W}	$\left(g_{\mathcal{W}}^{l}\right)_{11} = 2 \left(g_{\mathcal{W}}^{l}\right)_{22}, \left(g_{\mathcal{W}}^{l}\right)_{33}$
ω_4	$(y^{uu}_{\omega_4})_{33}$	Σ_1	$\left(\lambda_{\Sigma_1} ight)_3$		$g^{arphi}_{\mathcal{W}},~(g^q_{\mathcal{W}})_{33}$
ζ	$\left(y^{qq}_{\zeta} ight)_{33}$	U	$\left(\lambda_U ight)_3$	\mathcal{W}_1	$g^{arphi}_{\mathcal{W}_1}$
Ω_1	$\left(y^{qq}_{\Omega_1} ight)_{33}$	D	$(\lambda_D)_3$	${\cal G}$	$\left(g^q_{\mathcal{G}} ight)_{33}, \left(g^u_{\mathcal{G}} ight)_{33}$
Ω_4	$(y_{\Omega_4})_{33}$	Q_1	$\left(\lambda^u_{\mathcal{Q}_1} ight)_3$		
Υ	$(y_\Upsilon)_{33}$	Q_7	$\left(\lambda_{\mathcal{Q}_7} ight)_3$	${\cal H}$	$(g_{\mathcal{H}})_{33}$
Φ	$(y^{qu}_{\Phi})_{33}$	T_1	$(\lambda_{T_1})_3$	\mathcal{Q}_5	$\left(g^{uq}_{\mathcal{Q}_5} ight)_{33}$
		T_2	$(\lambda_{T_2})_3$	\mathcal{Y}_5	$(g_{\mathcal{Y}_5})_{33}$

Dataset

Catagory	Processos	$n_{ m dat}$						
Category	Frocesses	SMEFIT2.0	SMEFIT3.0					
	$t\bar{t} + X$	94	115					
	$t\bar{t}Z,t\bar{t}W$	14	21					
	$tar{t}\gamma$	-	2					
Top quark production	single top (inclusive)	27	28					
	tZ, tW	9	13					
	$tar{t}tar{t}$, $tar{t}bar{b}$	6	12					
	Total	150	191					
	Run I signal strengths	22	22					
Higgs production	Run II signal strengths	40	36 (*)					
and decay	Run II, differential distributions & STXS	35	71					
	Total	97	129					
	LEP-2	40	40					
Diboson production	LHC	30	41					
	Total	70	81					
EWPOs	LEP-2	-	44					
Baseline dataset	Total	317	445					

Correlations in linear fit

Correlation: NLO $\mathcal{O}\left(\Lambda^{-2}\right)$

Impact of new LHC Run 2 data

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

A11.

HL-LHC impact in detail

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

FCC-ee Energy runs

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

FCC-ee Energy runs

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

		LEP	$t\bar{t}$ 8 TeV	$tar{t}$ 13 TeV	$t\bar{t}\gamma$	$t\bar{t}W$	$t\bar{t}Z$	t 8 TeV	$t \ 13 {\rm TeV}$	tW	tZ	$t\bar{t}A_c$	W helicities	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$	Higgs-run I	Higgs-run II	VV	$t\bar{t}$ 13 TeV HL-LHC	t <i>t</i> W HL-LHC	$t\bar{t}Z$ HL-LHC	t 13 TeV HL-LHC	tW HL-LHC	tZ HL-LHC	$t\bar{t} A_c HL-LHC$	W helicities HL-LHC	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$ HL-LHC	Higgs HL-LHC	VV HL-LHC	FCC-ee 161 GeV	FCC-ee 240 GeV	FCC-ee 365 GeV
	c^{1}_{QQ} c^{8}_{QQ}					EI	D -I	۲L	Η					14.0 15.1						-11	_		H	С		86.0 4.9		÷			
AН	c_{Qt}^1										/			18.1			1		-		_	_		<u> </u>	_	81.9		:		e e	
	c_{Ql}°													14.1												85.9			(Ú	
	$c_{Oq}^{1,8}$	•	0.4	8.4	0.2	1.6	1.3	•		•		9.1	• •	0.0	0.0	0.1	•	22.7	7.9	6.3	-			41.7	•	0.1	0.1	17		Ū	
	$c_{Qq}^{1,1}$		0.3	10.4								11.6		0.0				31.2					_	46.4		0.2		1		<u> </u>	
	$c_{Qq}^{3,8}$		0.3	2.2	0.3	1.9	1.0	1.2	0.3			13.6		0.0	0.0	0.1		4.3	9.2	4.6	1.3			59.6		0.1	0.0	÷			
	$c_{Qq}^{3,1}$		0.0	0.0	1.0	41	23	15.2	7.7		4.8	0.1		0.0	0.0	0.0		0.1 7.0	20.1	10.4	40.0		31.6	0.4 38.6		0.0	0.0				
	c_{tq}		0.2	10.1								12.3		0.0	0.0			29.1						48.2		0.1	•	1			
2L2H	c_{tu}^{8}		0.4	8.9	0.3		0.1					13.5		0.0	0.0	0.1		14.9		0.8				60.7		0.2	0.1				
	c_{tu}^1		0.2	8.9								12.7		0.0				26.9						51.1		0.2					
	c_{Qu}^8		0.8	3.7	2.5		1.0					13.7		0.1	0.0	0.4		6.9		5.2				64.8		0.7	0.2				
	c_{Qu}^1		0.3	11.0								12.4		0.0				27.7						48.5		0.1					
	c_{td}^8		0.7	14.4	0.3		0.4					9.7		0.0	0.0	0.2		29.1		2.0				42.8		0.2	0.1				
	c _{td}		1.5	8.7	0.2		24					9.0		0.0	0.0	0.5		21.2		12.1			_	42.9		0.2	0.2				
	c_{Qd}^1		0.4	13.8								10.2		0.0				35.6						40.0		0.1		•			
	$C_{C\varphi}$	•		•••		•		•			• •		••	•	0.0	0.0			•		•			•	•	• •	0.1	•••	••	78.8	21.1
	$c_{b\varphi}$														0.0	0.1											0.3	1		70.5	29.1
	$c_{t\varphi}$														0.5	3.9											16.9			53.6	25.1
	$c_{\tau \varphi}$														0.0	0.1											0.0			78.7	21.2
	c_{tG}		1.8	1.3	0.1	0.0	0.1			0.0		0.0	0.0	0.1	1.3	9.1	1	7.5	0.1	0.9		0.0		0.0	0.0	0.4	39.9			25.4	11.9
	c_{tW}				0.0		0.0	0.0	0.0	0.0	0.0		1.9		2.3	12.5				0.0	0.1	0.0	0.0		4.1		41.8			26.1	10.9
	C_{tZ} (3)	32			0.0	0.0	0.0	0.0	0.0		0.0				2.5	0.1	0.0		0.0	0.0	0.0		0.0				1.8	0.5	8 34	27.9	2.7
	$c_{\varphi q}^{(3)}$	1.8					0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0			0.0	0.0	0.0	0.0				0.0	0.0 98	1	0.0	0.0
າ⊏່	C (−) C (−)	1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.3	0.0	2	14.5	1.5
	$c_{\omega O}^{(-)}$	1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.0	0.0 80	7	16.1	1.6
	$c_{\varphi u}$	3.8					0.0								0.0	0.1	0.0			0.0							1.1	0.0	1	0.0	0.0
	$c_{\varphi d}$	4.5					0.0								0.0	0.0	0.0			0.0							0.2	0.0 95	2	0.0	0.0
	$c_{\varphi t}$						11.2				0.1				0.3	1.8				74.8			0.5				6.2			3.6	1.5
	$c_{\varphi l_1}$	1.6													0.0	0.0	0.0										0.0	0.0 7	ə 0.0	15 4	27.2
	$c_{\varphi l_2}$	3.1													0.0	0.0	0.0										0.0	0.0	4	13.9	1.5
	$c^{(3)}$	0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0 3.	1 4.2	2 79.6	12.9
	$c^{(3)}_{ij}$	0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	1 5.1	82.5	11.2
	$c_{\omega l_2}^{(3)}$	2.4													0.0	0.0	0.0										0.0	0.0 68	5 6.7	16.2	6.3
	$c_{\varphi e}$	1.5													0.0	0.0	0.0										0.0	0.0 31	0.0	41.5	25.9
	$c_{\varphi\mu}$	4.3													0.0	0.0	0.0										0.0	0.0 78	6	15.4	1.7
	$c_{\varphi\tau}$	3.5					0.0	0.5							0.0	0.0	0.0				0.0	0.0					0.0	0.0	7	13.3	1.5
	c _{ll}	0.0		• •	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	• •	• •	0.0	2.5	0.0		.0	0.0	0.0	0.0	0.0		•	• •	10.0	0.0 0.	2.5	52.9	27.6
Ros	$c_{\varphi G}$														2.5	13.2											44.1			28.6	11.7
003	Core Core														1.1	5.8											19.4			46.4	27.3
	$c_{\varphi WB}$	0.0			0.0		0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.1	0.0	0.0	88.6	11.1
	CWWW	0.2									0.0						0.1						0.0					4.8	0.0	63.4	31.4
	$c_{\varphi \Box}$														0.0	0.1											0.2			75.2	24.5
	$c_{\varphi D}$	0.1			0.0		0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.0	0.0 0.	1 0.0	88.8	11.0

Fisher Information matrix

- Quantifies which datasets have more sensitivity to given operator
- Proxy for linear individual fit
- FCC-ee dominates nearly all operators except 4-quark operators, only accessible in pp collisions (tree level)
- Combination of 91 GeV and 240 GeV runs important to pin down 2-fermion and gauge operators
- FCC-ee run at 161 GeV is the least useful for the SMEFT

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}, \qquad i, j = 1, \dots, n_{\text{eft}},$$

The University of Mancheste

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Normalized Value

The power of multi(di)-boson

