

Multi-Higgs Production & Electroweak Phase Transition

Osama Karkout

Working with Jorinde van de Vis, Marieke Postma, Andreas Papaefstathiou, Gilberto Tetlalmatzi, Tristan du Pree

Project: ATLAS Higgs results → matter-antimatter asymmetry

Nikhef

MultiHiggs production and EWSB Cosama Karkout 2024 2024

?

matter-antimatter asymmetry

Cosmic rays: $\bar{p}/p = 10^{-4}$ $=$ no ambient antiprotons (\bar{p})

BIG DEAL!

Lorentz invariance + Hermitian Hamiltonian (physical observables are real) = matter-antimatter symmetry (CPT) is conserved!

True in SM and any BSM!!!!

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 3

Baryogenesis (matter-antimatter asymmetry)

Problem: we exist :(

(CPT) is conserved => need for **dynamical** mechanism to generate matter-antimatter asymmetry.

Sakharov conditions:

- Baryon number violation
- Loss of thermal equilibrium
- Break C and CP symmetries

In SM: all related to the Higgs field

<https://arxiv.org/pdf/hep-ph/0609145.pdf>

<https://arxiv.org/pdf/2301.05197.pdf> <http://www.laine.itp.unibe.ch/cosmology/lec09.pdf> **BARYOGENESIS**

James M. Cline

MultiHiggs production and EWSB MultiHiggs production and EWSB A

[Sakharov is mostly known for his political activism for](https://en.wikipedia.org/wiki/Andrei_Sakharov) individual freedom, human rights, civil liberties

MultiHiggs production and EWSB Cosama Karkout 1997 2024 1998 1999 1999 5

Baryogenesis (matter-antimatter asymmetry)

Baryogenesis (matter-antimatter asymmetry)

Problem: we exist :(

(CPT) is conserved => need for **dynamical** mechanism to generate matter-antimatter asymmetry.

Sakharov conditions:

- Baryon number violation
- **• Loss of thermal equilibrium**
- Break C and CP symmetries

<https://arxiv.org/pdf/hep-ph/0609145.pdf>

<https://arxiv.org/pdf/2301.05197.pdf> <http://www.laine.itp.unibe.ch/cosmology/lec09.pdf> **BARYOGENESIS**

James M. Cline

MultiHiggs production and EWSB Cosama Karkout 2024 2024

In thermal equilibrium: any process that generates some extra B comes with the inverse process at the same rate $X \rightarrow Y + B$ $Y + B \rightarrow X$

Out of thermal equilibrium if for example $T < m_X$ $Y + B \rightarrow X$ surpassed by $e^{-m_X/T}$

MultiHiggs production and EWSB **Osama Karkout** 2024 2024

Out of thermal equilibrium

Electroweak symmetry breaking (EWSB) is a phase transition! It can cause loss of thermal equilibrium if it is a First Order Phase Transition (FOPT)

MultiHiggs production and EWSB Cosama Karkout 2024 2024

Out of thermal equilibrium

First Order Phase Transition (FOPT)

MultiHiggs production and EWSB Cosama Karkout 2024 2024

Fig. 13. The CP asymmetry which develops near the bubble wall.

Electroweak Baryogenesis

MultiHiggs production and EWSB Cosama Karkout 2024 2024 2024

$$
V(H) = -\frac{1}{2}\mu^2 H^2 + \frac{1}{4}\lambda H^4
$$

MultiHiggs production and EWSB MultiSchen Cosama Karkout 11 and 2024 11 and 2024

Before symmetry breaking, Higgs potential is:

$$
V(H) = -\frac{1}{2}\mu^2 H^2 + \frac{1}{4}\lambda H^4
$$

Before symmetry breaking, Higgs potential is:

In Feynman diagrams:

MultiHiggs production and EWSB Cosama Karkout 12

$$
V(H) = -\frac{1}{2}\mu^2 H^2 + \frac{1}{4}\lambda H^4
$$

Before symmetry breaking, Higgs potential is:

In Feynman diagrams:

$$
V(H) = -\frac{H}{2\mu^{2}} - \frac{H}{2} - \frac{1}{2}\mu^{2}
$$

Higgs field is coupled to a thermal bath of fields. at LO, this looks like:

$$
-\frac{H}{\sim T} - \bigcirc -\frac{H}{2} -
$$

$$
V_{eff}(H,T) = -\frac{1}{2}\mu^2 H^2 + \frac{1}{4}\lambda H^4 + \frac{\alpha}{2}T^2 H^2
$$

MultiHiggs production and EWSB Cosama Karkout 2024 2024

$$
V(H) = -\frac{1}{2}\mu^2 H^2 + \frac{1}{4}\lambda H^4
$$

Before symmetry breaking, Higgs potential is:

In Feynman diagrams:

$$
V(H) = -\frac{H}{2\mu^{2}} - \frac{H}{2\mu^{2}} - \frac{2H}{2\mu^{2}}
$$

Higgs field is coupled to a thermal bath of fields. at LO, this looks like:

$$
-\frac{H}{\sqrt{T}}-\bigcirc-\frac{H}{2}
$$

$$
V_{eff}(H,T) = -\frac{1}{2}\mu^2 H^2 + \frac{1}{4}\lambda H^4 + \frac{\alpha}{2}T^2 H^2
$$

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 14

 $V_{\text{eff}}(H,T) =$ 1 2 $(-\mu^2 + \alpha T^2)H^2 - \beta T(-\mu^2 + \gamma H^2)^{3/2} +$ at NLO, the effective potential gets a cubic term

The values of (α, β, γ) depend on your theory

If you're lucky, you can get a barrier between two minima at some critical temperature $T_c^{}$

 T_n = temperature of bubble nucleation

Then at some random point in space, the VEV tunnels a bubble forms around it and expands!

MultiHiggs production and EWSB Cosama Karkout 15

Electroweak Phase Transition: Thermal QFT

first order phase transition FOPT

second order phase transition SOPT (or crossover)

MultiHiggs production and EWSB Cosama Karkout 16

 $V_{\text{eff}}(H,T) =$ ∼ 1 2 $(-m^2 + \alpha T^2)H^2 - \beta TH^3 +$ 1 4 λH^4

WE WANT TO BE FIRST!!!

Electroweak Phase Transition: Thermal QFT

Electroweak Phase Transition: SM

second order phase transition SOPT (or crossover)

No first order phase transition in SM

 $V_{\text{eff}}(H,T) =$ ∼ 1 2 $(-m^2 + \alpha T^2)H^2 - \beta TH^3 +$ 1 4 λH^4

WE WANT TO BE FIRST!!!

But we're not…

Electroweak Phase Transition: BSM

Idea:

- 1. add a scalar field S which couples to the Higgs.
- 2. This scalar field also has a phase transition! Going to a VEV for S

MultiHiggs production and EWSB Cosama Karkout 2024 2024

 $V(H) = -\frac{1}{2}$ 2 $\mu^2 H^2 +$ 1 4 λ *H*⁴ + *V*(*H*, *S*)

Electroweak Phase Transition: BSM

Idea:

- 1. add a scalar field S which couples to the Higgs.
- 2. This scalar field also has a phase transition! Going to a VEV for S
- 3. Form a potential barrier between the VEV of S and the VEV of H
- 4. Tunnel to the VEV of H: This is FOPT

MultiHiggs production and EWSB Cosama Karkout 19

 $V(H) = -\frac{1}{2}$ 2 $\mu^2 H^2 +$ 1 4 λ *H*⁴ + *V*(*H*, *S*)

Electroweak Phase Transition: BSM

Adding a scalar field can make a two-step FOPT!

$$
V=-\frac{1}{2}\mu_h^2h^2+\frac{1}{4}\lambda_hh^4+\frac{1}{2}\mu_s^2s^2+\frac{1}{4}\lambda_s s^4+\frac{1}{4}\mu_m sh^2+\frac{1}{4}\lambda_m s^2h^2+\mu_1^3s+\\
$$

 $V^{\text{high-}T}(\varphi,\varphi_S;T) = V_0(\varphi,\varphi_S) + \frac{1}{2}(\Sigma_H\varphi^2 + \frac{1}{2}\Sigma_S\varphi_S^2)T^2$

Cheng-Wei Chiang, $1, 2, 3, 4, *$ Michael J. Ramsey-Musolf, $5, 6, †$ and Eibun Senaha^{1,7,‡}

MultiHiggs production and EWSB Cosama Karkout 2024 2024 20

ATLAS Observed limit (95% CL) Expected limit (95% CL) \sqrt{s} = 13 TeV, 126-139 fb⁻¹ $(\mu_{HH} = 0$ hypothesis) $\sigma_{ggF+VBF}^{SM}(HH) = 32.7^{+2.1}_{-7.2}$ fb Expected limit ±1o Expected limit ±2o Theory prediction Obs. Exp. 130 180 $b\bar{b} \gamma \gamma$ $b\bar{b}\tau^+\tau^-$ 140 110 $b\bar{b}b\bar{b}$ 160 240 73 85 $Combined$ 2000 $2\overline{0}$ $\overline{50}$ 100 $\overline{200}$ $\overline{500}$ 1000 $\sigma_{ggF+VBF}(HH)$ [fb] \boldsymbol{H} g anniming *S* \sim g rememme \boldsymbol{H}

hef

Nik

[explored](https://arxiv.org/pdf/1409.0005) for one added scalar, answer will come

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 21

ATLAS Higgs results \rightarrow Higgs phase transition

Maybe we will see enhancement of HHH production!

MultiHiggs production and EWSB Cosama Karkout 2024 2024 22

ATLAS Higgs results \rightarrow Higgs phase transition

Simplified BSM model predicting large HHH: **TRSM**.

SM + two singlets coupling to the Higgs.

$$
V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \mu_S^2 S^2 + \lambda_S S^4 + \mu_X^2 X^2 + \lambda_X X^4
$$

+ $\lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2$.

MultiHiggs production and EWSB **COSAMA COSAMA Karkout** 2024

How to enhance HHH

Simplified BSM model predicting large HHH: **TRSM**.

SM + two singlets coupling to the Higgs.

$$
V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \mu_S^2 S^2 + \lambda_S S^4 + \mu_X^2 X^2 + \lambda_X X^4
$$

+ $\lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2$.

Scalars get VEVs! → Mixing:

$$
\Phi = \begin{pmatrix} 0 \\ \frac{\phi_h + v}{\sqrt{2}} \end{pmatrix}, \quad S = \frac{\phi_S + v_S}{\sqrt{2}}, \quad X = \frac{\phi_X + v_X}{\sqrt{2}}
$$

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}
$$

h1 can be our scalar particle of 125 GeV

Nikhef

Tania Robens, $1, *$ Tim Stefaniak, $2, †$ and Jonas Wittbrodt^{2, \ddagger}

MultiHiggs production and EWSB **Come Come Contract 1998** Osama Karkout 2024

Simplified BSM model predicting large HHH: **TRSM**.

SM + two singlets coupling to the Higgs.

$$
V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \mu_S^2 S^2 + \lambda_S S^4 + \mu_X^2 X^2 + \lambda_X X^4
$$

+ $\lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2$.

Scalars get VEVs! → Mixing:

$$
\Phi = \begin{pmatrix} 0 \\ \frac{\phi_h + v}{\sqrt{2}} \end{pmatrix}, \quad S = \frac{\phi_S + v_S}{\sqrt{2}}, \quad X = \frac{\phi_X + v_X}{\sqrt{2}}
$$

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}
$$

h1 can be our scalar particle of 125 GeV

hef

Nik

Tania Robens,^{1,*} Tim Stefaniak,^{2,†} and Jonas Wittbrodt^{2,‡}

MultiHiggs production and EWSB **Communishers** Osama Karkout 2024

Remember: Mixing requires nonzero VEV For added scalars

Simplified BSM model predicting large HHH: **TRSM**.

HHH production is enhanced through **resonance** $xsec \sim 30$ fb (\sim HH production in SM)

SM + two singlets coupling to the Higgs.

$$
V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \mu_S^2 S^2 + \lambda_S S^4 + \mu_X^2 X^2 + \lambda_X X^4
$$

+ $\lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2$.

Scalars get VEVs! → Mixing:

$$
\Phi = \begin{pmatrix} 0 \\ \frac{\phi_h + v}{\sqrt{2}} \end{pmatrix}, \quad S = \frac{\phi_S + v_S}{\sqrt{2}}, \quad X = \frac{\phi_X + v_X}{\sqrt{2}}
$$

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}
$$

Osama Karkout, 1 Andreas Papaefstathiou, 2 Marieke Postma, 1,3 Gilberto Tetlalmatzi-Xolocotzi, 4,5 Jorinde van de Vis, 6 Tristan du Pree 1 https://arxiv.org/pdf/2404.12425

h1 can be our scalar particle of 125 GeV

hef

Nik

Tania Robens, $1, *$ Tim Stefaniak, $2, †$ and Jonas Wittbrodt^{2, $‡$}

MultiHiggs production and EWSB **Communishers** Osama Karkout 2024

We updated this conclusion using better theoretical bounds (perturbativity) and newest experimental bounds!

Simplified BSM model predicting large HHH: **TRSM**.

SM + two singlets coupling to the Higgs.

$$
V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \mu_S^2 S^2 + \lambda_S S^4 + \mu_X^2 X^2 + \lambda_X X^4
$$

+ $\lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2$.

Scalars get VEVs! → Mixing:

$$
\Phi = \begin{pmatrix} 0 \\ \frac{\phi_h + v}{\sqrt{2}} \end{pmatrix}, \quad S = \frac{\phi_S + v_S}{\sqrt{2}}, \quad X = \frac{\phi_X + v_X}{\sqrt{2}}
$$

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}
$$

Osama Karkout, 1 Andreas Papaefstathiou, 2 Marieke Postma, 1,3 Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

h1 can be our scalar particle of 125 GeV

hef

Nik

Tania Robens,^{1,*} Tim Stefaniak,^{2,†} and Jonas Wittbrodt^{2,‡}

MultiHiggs production and EWSB **Communishers** Osama Karkout 2024

Viable points with $\sigma > 100 \times \sigma_{SM}(gg \rightarrow hhh)$ @13.6 TeV

Physical parameter space: ${M_2, M_3, v_s, v_x, \theta_1, \theta_2, \theta_3}$

 $M_1 = 125 \text{ GeV}, v = 246 \text{ GeV}$

Mixing:

Nikhef

$$
\Phi = \begin{pmatrix} 0 \\ \frac{\phi_h + v}{\sqrt{2}} \end{pmatrix}, \quad S = \frac{\phi_S + v_S}{\sqrt{2}}, \quad X = \frac{\phi_X + v_X}{\sqrt{2}} \qquad \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}
$$

Can we have First-Order Phase Transition (FOPT)? For which parameters? Does it come with HHH enhancement?

Electroweak Phase Transition: TRSM

$$
V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \mu_S^2 S^2 + \lambda_S S^4 + \mu_X^2 X^2 + \lambda_X^2 + \lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2.
$$

TRSM: HHH production and Higgs FOPT

Need nonzero VEV for two added scalars for double resonance

MultiHiggs production and EWSB Cosama Karkout 2024 2024 29

PT in TRSM: start with thermal QFT

At LO: only masses get T contribution

$$
m_1^2(T) = -\mu_1^2 + \frac{T^2}{48} \left(3g_1^2 + 9g_2^2 + 2(6y_t^2 + 12\lambda_1 + \lambda_{12} + \lambda_{13}) \right),
$$

\n
$$
m_2^2(T) = -\mu_2^2 + \frac{T^2}{24} \left(4\lambda_{12} + \lambda_{23} + 6\lambda_2 \right),
$$

\n
$$
m_3^2(T) = -\mu_3^2 + \frac{T^2}{24} \left(4\lambda_{13} + \lambda_{23} + 6\lambda_3 \right),
$$

resulting in an *effective* finite-temperature potential:

Nikhef

$$
V_{\text{eff},\text{LO}}(\phi_i, T) = \frac{1}{2} \sum_i m_i^2(T) \phi_i^2 + \frac{1}{4} \sum_{i \leq j} \lambda_{ij} \phi_i^2 \phi_j^2.
$$

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 30

PT in TRSM: start with thermal QFT

$$
m_1^2(T) = -\mu_1^2 + \frac{T^2}{48} \left(3g_1^2 + 9g_2^2 + 2(6y_t^2 + 12\lambda_1 + \lambda_{12} + \lambda_{13}) \right),
$$

\n
$$
m_2^2(T) = -\mu_2^2 + \frac{T^2}{24} \left(4\lambda_{12} + \lambda_{23} + 6\lambda_2 \right),
$$

\n
$$
m_3^2(T) = -\mu_3^2 + \frac{T^2}{24} \left(4\lambda_{13} + \lambda_{23} + 6\lambda_3 \right),
$$

resulting in an *effective* finite-temperature potential:

hef

Nik

$$
V_{\text{eff},\text{LO}}(\phi_i,T)=\frac{1}{2}\sum_i m_i^2(T)\phi_i^2+\frac{1}{4}\sum_{i\leqslant j}\lambda_{ij}\phi_i^2\phi_j^2.
$$

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 31

At LO: only masses get T contribution Started using Mathematica to numerically solve RGEs (differential equations as a function of T)

We tried points with large HHH xsec: No FOPT!

Intuition: I don't think there will be FOPT… Can we prove it?

Continuous transition

hef

MultiHiggs production and EWSB Cosama Karkout 2024 2024

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

Extrema at: $\partial_H V = 0$, $\partial_S V = 0$

Takeaway: Since there is a barrier between the two axes (fields) You cannot put a minimum there! So the field S must end up with a zero VEV **Therefor: No Mixing! No resonant HHH production!**

Extrema at: $\partial_H V = 0$, $\partial_S V = 0$

PT in TRSM: with both scalars

Call the fields *xi*

$$
V(x_1,x_2,x_3)=\frac{1}{2}\sum_i m_i^2x_i^2+\frac{1}{4}\sum_{i,j}c_{ij}x_i^2x_j^2,
$$

Find all extrema by taking $\partial_i V = 0$

- Origin: $\mathbf{x}_0 \equiv (0, 0, 0)$.
- Axial extremum $\mathbf{x}_1 \equiv (x_1, 0, 0)$ with

$$
x_1 = \sqrt{-m_1^2/c_{11}}.
$$

• Planar extremum $\mathbf{x}_{12} \equiv (x_1, x_2, 0)$ with

$$
x_1 = \sqrt{\frac{c_{12}m_2^2 - c_{22}m_1^2}{c_{11}c_{22} - c_{12}^2}}, \quad x_2 = \sqrt{\frac{c_{12}m_1^2 - c_{11}m_2^2}{c_{11}c_{22} - c_{12}^2}}
$$

• Bulk extremum $\mathbf{x}_{123} \equiv (x_1, x_2, x_3)$ with

$$
x_1 = \frac{\sqrt{(c_{23}^2 - c_{22}c_{33})m_1^2 + (c_{12}c_{33} - c_{13}c_{23})m_2^2 + (c_{13}c_{22} - c_{12}c_{23})m_3^2}}{\sqrt{D}},
$$

\n
$$
x_2 = \frac{\sqrt{(c_{12}c_{33} - c_{13}c_{23})m_1^2 + (c_{13}^2 - c_{11}c_{33})m_2^2 + (c_{11}c_{23} - c_{12}c_{13})m_3^2}}{\sqrt{D}},
$$

\n
$$
x_3 = \frac{\sqrt{(c_{13}c_{22} - c_{12}c_{23})m_1^2 + (c_{11}c_{23} - c_{12}c_{13})m_2^2 + (c_{12}^2 - c_{11}c_{22})m_3^2}}{\sqrt{D}},
$$

where

Nik

$$
D = c_{11}c_{22}c_{33} + 2c_{12}c_{13}c_{23} - c_{13}^2c_{22} - c_{11}c_{23}^2 - c_{12}^2c_{33},
$$

is the determinant of c_{ij} .

hef

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 34

$$
x_3) = (m_k^2 + \sum_i c_{ik} x_i^2) \delta_{kl} + 2c_{kl} x_k x_l. \tag{4.16}
$$

$$
\frac{(ch1^{2} - 2 c12 ch1 ch2 + c11 ch2^{2} + c12^{2} chh - c11 c22 chh)^{2} m1^{6} - (ch1^{2} + 2c12 ch1 ch2 + c11 ch2^{2} + c12^{2} chh + c22 (ch1^{2} - c11 chh))^{2})^{3/2},
$$
\n
$$
\frac{(ch1^{2} - 11 c122 chh)^{2} m1^{6} - 7 c12 c22^{3} ch1^{7} ch2^{4} \sqrt{-((ch1000)^{2} m1^{6} + (ch22600) + ((ch2600)^{2} m1^{2} + 11^{3} \& 2)}) m1^{2} + m1^{3} \& 2}}{h1^{2} - 2 c12 ch1 ch2 + c11 ch2^{2} + c12^{2} chh - c11 c22 chh)^{2} m1^{6} - (ch1^{2} - 2 c12 ch1 ch2 + c11 ch2^{2} + c12^{2} chh - c11 c22 chh)^{2} m1^{6} - (ch1^{2} - 2c12 ch1 ch2 + c11 ch2^{2} + c12^{2} chh + c22 (ch1^{2} - c11 chh))^{2})^{3/2}}
$$

PT in TRSM: with both scalars

The extremum is a minimum if the eigenvalues of the Hessian of the potential h_{kl} , i.e. the mass matrix, evaluated at the extremum are all positive, with

 $h_{kl}(x_1,x_2,x_3)\equiv \partial_{x_k}\partial_{x_l}V(x_1,x_2,x_3)$

|≔ curve = Simplify[Eigenvalues[Simplify[hessian /. Solutions[16]]]]

Not even mathematica could help… insight needed.

MultiHiggs production and EWSB Cosama Karkout 2024 2024

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

• Z_2 symmetry: $(x \to -x)$ does not change the potential! I can focus on the positive x_i and generalise. • The shape of the potential (whether an extremum is minimum) does not change if I scale the axes: $x^2 \to x$

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_i m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

Insights:

-
-

Now the Hessian is simple:

MultiHiggs production and EWSB Cosama Karkout 2024 2024 2025

• Z_2 symmetry: $(x \to -x)$ does not change the potential! I can focus on the positive x_i and generalise. • The shape of the potential (whether an extremum is minimum) does not change if I scale the axes: $x^2 \to x$

$$
V(x_1, x_2, x_3) = \frac{1}{2}c_{kl}.
$$

$$
D>0, \tag{4.18}
$$

 $_2c_{33},$

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_i m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

Insights:

-
-

Now the Hessian is simple: $h_{kl}(x_1, x_2, x_3) \equiv \partial_{x_k} \partial_{x_l}$ For resonant HHH:

We demand that x_{123} is today's vacuum. The eigenvalues of the rescaled Hessian should then be positive. Sylvester's criterion, stating that a square Hermitian matrix is positive definite if and only if all the leading principal minors are positive, then gives

$$
c_{ii} > 0, \quad \& \quad C_{ij} \equiv c_{ii}c_{jj} - c_{ij}^2 > 0, \quad \&
$$

where

hef

$$
D=c_{11}c_{22}c_{33}+2c_{12}c_{13}c_{23}-c_{13}^2c_{22}-c_{11}c_{23}^2-c_{12}^2
$$

is the determinant of c_{ij} .

MultiHiggs production and EWSB Cosama Karkout 2024 2024

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_i m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

$$
c_{ii} > 0, \quad & \sum \left(C_{ij} \equiv c_{ii} c_{jj} - c_{ij}^2 > 0, \right) \quad & \sum \quad D >
$$

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_i m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

$$
c_{ii} > 0, \quad & \sum \sum_j m_i^2 x_j^2 - \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2, \quad & D > 0,
$$

MultiHiggs production and EWSB Cosama Karkout 2024 2024 2025 19

Continuous transitions

Each extrema 'comes out' of a previous one: only one minimum at a time, no barriers

Final minimum at (v_H, v_S, v_x)

Case 2: NO FOPT! Yes resonant HHH production!

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_{i} m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

$$
c_{ii} > 0, \quad & C_{ij} \equiv c_{ii} c_{jj} - c_{ij}^2 > 0, \quad & D
$$

Case 1: Yes FOPT! No resonant HHH production!

hef

Nik

MultiHiggs production and EWSB Osama Karkout 2024 41

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_{i} m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

$$
c_{ii} > 0, \& C_{ij} \equiv c_{ii} c_{jj} - c_{ij}^2 > 0, \& D
$$

Nightmare! If we want FOPT, we cannot detect it with HHH

Case 1: Yes FOPT! No resonant HHH production!

hef

Nik

PT in TRSM: with both scalars

$$
V(x_1, x_2, x_3) = \frac{1}{2} \sum_{i} m_i^2 x_i^2 + \frac{1}{4} \sum_{i,j} c_{ij} x_i^2 x_j^2,
$$

$$
c_{ii} > 0, \& C_{ij} \equiv c_{ii} c_{jj} - c_{ij}^2 > 0, \& D
$$

Silver lining:

Final minimum at $(v_H, v_s, 0) \rightarrow$ resonant HH production!!

MultiHiggs production and EWSB Cosama Karkout 2024 2024 22

TRSM can accommodate both HH enhancement and FOPT!

Nikhef

MultiHiggs production and EWSB Cosama Karkout 2024 2024 13

TRSM can accommodate both HH enhancement and FOPT!

MultiHiggs production and EWSB **Communishers** Osama Karkout 2024

Nik hef

MultiHiggs production and EWSB Osama Karkout 2024 45

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

• Z₂ symmetric TRSM can accommodate First Order Phase Transitions (desired for matter-antimatter asymmetry)

Final notes

- Z_2 symmetric TRSM can enhance HHH if both scalars have nonzero VEVs at zero temperature (today)
-
- Z₂ symmetric TRSM cannot accommodate both at the same time! Zero scalar VEV required for FOPT

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

• Z₂ symmetric TRSM can accommodate First Order Phase Transitions (desired for matter-antimatter asymmetry)

Figure 5: Evolution of the field expectation values in the minimum of the potential for the third BM point in Table 2. The Higgs field is represented by gray solid, ϕ_2 by dashed pink, and ϕ_3 by dotted cyan.

presented analytic analysis for LO effective thermal potential. Going to NLO numerically showed us the same conclusion

MultiHiggs production and EWSB Cosama Karkout 2024 2024 2024

Final notes

- Z_2 symmetric TRSM can enhance HHH if both scalars have nonzero VEVs at zero temperature (today)
-
- Z₂ symmetric TRSM cannot accommodate both at the same time! Zero scalar VEV required for FOPT

Ideas to achieve both FOPT and HHH:

- Add terms that break Z_2 symmetry
- Add yet another scalar ;)

MultiHiggs production and EWSB Osama Karkout 2024 47

Osama Karkout, 1 Andreas Papaefstathiou, 2 Marieke Postma, 1,3 Gilberto Tetlalmatzi-Xolocotzi, $4,5$ Jorinde van de Vis, 6 Tristan du Pree 1 <https://arxiv.org/pdf/2404.12425>

one added scalar gets a vev, mixes with Higgs, and enhances HH production, while the other provides a barrier for FOPT • Further studies can include gravitational waves and dark matter constraints for TRSM benchmark points for HH enhancement

Final notes

- Z_2 symmetric TRSM can enhance HH and accommodate a First Order Phase Transition (FOPT):
-

MultiHiggs production and EWSB Cosama Karkout 2024 2024 2024

Electroweak Baryogenesis

Baryon number violation

In SM: left handed B+L violated!

MultiHiggs production and EWSB Cosama Karkout 2024 2024 2025 19

Fig. 8. Energy of gauge field configurations as a function of Chern-Simons number.

v is the Higgs VEV

Electroweak Baryogenesis

Baryon number violation

In SM: left handed B+L violated!

$$
\partial_\mu J^\mu_{B_L+L_L} = \frac{3g^2}{32\pi^2} \epsilon_{\alpha\beta\gamma\delta} W_a^{\alpha\beta} W_a^{\gamma\delta}
$$

where $W_a^{\alpha\beta}$ is the SU(2) field strength.

$$
\Delta B = \Delta L = \pm 3 \tag{2.2}
$$

MultiHiggs production and EWSB Cosama Karkout 2024 2024 50

Fig. 8. Energy of gauge field configurations as a function of Chern-Simons number.

v is the Higgs VEV

Baryon number violation

Electroweak Baryogenesis

Fig. 8. Energy of gauge field configurations as a function of Chern-Simons number.

v is the Higgs VEV

$$
\Gamma_{\text{sph}}(T) \sim e^{-E_{\text{sph}}/T} \sim e^{-\sqrt{v/T}}
$$

 $\Delta B = \Delta L = \pm 3$

 (2.2)

MultiHiggs production and EWSB **Osama Karkout** 2024

Rate of tunnelling to another vacuum:

Baryon number violation

Electroweak Baryogenesis

Fig. 8. Energy of gauge field configurations as a function of Chern-Simons number.

v is the Higgs VEV

$$
\Gamma_{\text{sph}}(T) \sim e^{-E_{\text{sph}}/T} \sim e^{-\sqrt{v/T}}
$$

 $\Delta B = \Delta L = \pm 3$

 (2.2)

MultiHiggs production and EWSB **Communishers** Osama Karkout 2024

Rate of tunnelling to another vacuum:

If EW symmetry is restored (VEV=0) Sphalerons everywhere!

Under C conservation: $X \to Y + B$ comes with $\bar{X} \to \bar{Y} + \bar{B}$

 $\Gamma(\bar{X}\to\bar{Y}+\bar{B})=\Gamma$

The net rate of baryon production goes like the difference of these rates,

$$
\frac{dB}{dt} \propto \Gamma(\bar{X} \to \bar{Y} + \bar{X})
$$

Charge and Charge+Parity symmetries (C and CP violation)

CP violation is a longer story but also needed

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 53

 $C: q_L \rightarrow \bar{q}_L$
 $CP: q_L \rightarrow \bar{q}_R$

$$
'(X \to Y + B)
$$

 $\overline{B}) - \Gamma(X \to Y + B)$

Charge and Charge+Parity symmetries (C and CP violation)

In SM: CP violation in CKM matrix. Not enough though! BSM CP violation is more than welcomed.

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_1 & | & -s_1c_3 & | & -s_1s_3 \\ \frac{s_1c_2 & | & c_1c_2c_3 & | & c_1c_2s_3}{-s_2s_3(e^{i\delta}) & | & +s_2c_3(e^{i\delta})}{s_1s_2 & | & c_1s_2c_3 & | & c_2s_2s_3}{-c_2c_3(e^{i\delta})} \end{pmatrix}
$$

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 54

$$
\begin{array}{c} q_L \to \bar{q}_L \\ q_L \to \bar{q}_R \end{array}
$$

Charge and Charge+Parity symmetries (C and CP violation)

MultiHiggs production and EWSB Cosama Karkout 2024 2024 55

For the actual scan we have generated 530,000 random points over the phase space defined by $M_2, M_3, v_2, v_3, \theta_{12}, \theta_{13}, \theta_{23}$. The ranges considered are as follows:

$M_2 \in [255, 700]~\text{GeV},$ $v_2 \in [0, 1000]~\text{GeV},$

For the mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ we impose the following limits on the scaling factors [38, 68 of eq. (2.4) :

MultiHiggs production and EWSB Osama Karkout 2024 2024 56

Backup Tetlalmatzi-Xolocotzi,^{4,5} Jorind

 $M_3 \in [350, 900]~\text{GeV},$ $v_3 \in [50, 1000]$ GeV.

 $0.95 \leq \kappa_1 \leq 1.00$, $0.0 \leq \kappa_2 \leq 0.25$, $0.0 \leq \kappa_3 \leq 0.25$.

Nikhef

Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma,^{1,3} Gilberto
Viable points with $\sigma > 10 \times \sigma_{SM}(gg \to hhh)$ @13.6 TeV stan du Pree¹ stan du P ree 1

Figure 2: Enhancement of the triple Higgs boson production cross section $\sigma(pp \to h_1h_1h_1)$ at 13.6 TeV, given in terms of multiples of the SM value, and the resonant fraction contribution from $pp \to h_3 \to h_2 h_1 \to h_1 h_1 h_1$. Only points with a factor 10 enhancement or greater are shown. The density of points increases from the dark blue to yellow shade.

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 57

Benchmark points for enhanced triple Higgs production

MultiHiggs production and EWSB Cosama Karkout 2024 2024 58

 $\mathsf{Backupp}$ Osama Karkout,¹ Andreas Papaefstathiou,² Marieke Postma, ^{1,3} Gilberto
Tetlalmatzi-Xolocotzi, ^{4,5} Jorinde van de Vis, ⁶ Tristan du Pree¹
<https://arxiv.org/pdf/2404.12425>

The one-loop TRSM effective potential at finite temperature is:

$$
V_T(\phi_i, T) = V(\phi_i) + V_{\text{CW}}(\phi_i) + V_{\text{c.t.}}(\phi_i) + V_{T, 1-\text{loop}}(\phi_i, T),
$$

with ϕ_i the field values defined in eq. (2.2) (with $\phi_i = v_i$ in the vacuum today). $V(\phi_i)$ is the tree-level potential of eq. (2.1) , V_{CW} the standard zero-temperature one-loop 'Coleman-Weinberg' potential and $V_{\rm c,t}$ the corresponding counterterms. The temperature-corrections are captured by $V_{T, 1-loop}$, which is given by

$$
V_{T,1-\text{loop}}(\phi,T)=\frac{T^4}{2\pi^2}\left[\sum_{\alpha=\Phi_i,W,Z}n_{\alpha}J_B[m_{\alpha}^2(\phi_i)/T^2]+n_tJ_F[m_t^2(\phi_i)/T^2]\right]
$$

MultiHiggs production and EWSB Osama Karkout 2024 2024 59

Backup Tetlalmatzi-Xolocotzi,^{4,5} Jorind

 $m_\alpha^2(\phi_i)/T^2$ as

$$
J_B(m_\alpha^2/T^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{24} \frac{m_\alpha^2}{T^2} - \frac{\pi}{6} \frac{m_\alpha^3}{T^3} - \frac{1}{32} \frac{m_\alpha^4}{T^4} \left(\log \frac{m_\alpha^2}{16\pi^2 T^2} - \frac{3}{2} + 2\gamma_E \right) \cdots ,
$$

$$
J_F(m_\alpha^2/T^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24} \frac{m_\alpha^2}{T^2} - \frac{1}{32} \frac{m_\alpha^4}{T^4} \left(\log \frac{m_\alpha^2}{\pi^2 T^2} - \frac{3}{2} + 2\gamma_E \right) \cdots ,
$$

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 60

Backup Tetlalmatzi-Xolocotzi,^{4,5} Jorind

At temperatures large compared to the mass, the functions $J_{B,F}$ can be expanded in

RGEs $\mathbf{A.3}$

The one-loop RGEs for the quartic couplings are

$$
(4\pi)^{2}\beta_{\lambda_{11}} = 24\lambda_{11}^{2} + \frac{\lambda_{22}^{2}}{2} + \frac{\lambda_{33}^{2}}{2} + \frac{3}{8}g_{1}^{4} + \frac{9}{8}g_{2}^{4} + \frac{3}{4}g_{1}^{2}g_{2}^{2} - 6y_{t}^{4} - 4\lambda_{11}\gamma_{\Phi_{1}},
$$

\n
$$
(4\pi)^{2}\beta_{\lambda_{22}} = 18\lambda_{22}^{2} + 2\lambda_{12}^{2} + \frac{\lambda_{23}^{2}}{2},
$$

\n
$$
(4\pi)^{2}\beta_{\lambda_{33}} = 18\lambda_{33}^{2} + 2\lambda_{13}^{2} + \frac{\lambda_{23}^{2}}{2},
$$

\n
$$
(4\pi)^{2}\beta_{\lambda_{12}} = 4\lambda_{12}^{2} + 12\lambda_{12}\lambda_{11} + 6\lambda_{12}\lambda_{22} + \lambda_{13}\lambda_{23} - 2\lambda_{12}\gamma_{\Phi_{1}},
$$

\n
$$
(4\pi)^{2}\beta_{\lambda_{13}} = 4\lambda_{13}^{2} + 12\lambda_{13}\lambda_{11} + 6\lambda_{13}\lambda_{33} + \lambda_{12}\lambda_{23} - 2\lambda_{13}\gamma_{\Phi_{1}},
$$

\n
$$
(4\pi)^{2}\beta_{\lambda_{23}} = 4\lambda_{23}^{2} + 6\lambda_{23}\lambda_{22} + 6\lambda_{23}\lambda_{33} + 4\lambda_{12}\lambda_{13},
$$

\n
$$
(A.5)
$$

with $\beta_{\lambda} = \mu \partial \lambda / \partial \mu$ and $\gamma_{\Phi_1} = \left(\frac{3g_1^2}{4} + \frac{9g_2^2}{4} - 3y_t^2\right)$. The running of the gauge couplings and the top quark is as in the SM

 $(4\pi)^2\beta_{g_i}=b_ig$

with $b_i = (41/6, -19/6, -7)$ for $i = 1, 2, 3$.

MultiHiggs production and EWSB **Osama Karkout** 2024 2024 61

Backup Tetlalmatzi-Xolocotzi,^{4,5} Jorind

$$
g_t^3,
$$

$$
y_t^3 - y_t(\frac{2}{3}g_1^2 + 9g_3^2) - y_t \gamma_{\Phi_1},
$$
 (A.6)

$$
\mathcal{L} = -\bar{\lambda}_{abc} h_a h_b h_c - \frac{1}{2} \bar{\lambda}_{aab} h_a^2 h_b - \frac{1}{3!} \bar{\lambda}_{aaab} h_a^3 h_b + \dots, \qquad (2.5)
$$

with

Nikhef

$$
\bar{\lambda}_{abc} = (M_a^2 + M_b^2 + M_c^2) \sum_j \frac{R_{aj} R_{bj} R_{cj}}{v_j},
$$

$$
\bar{\lambda}_{aaab} = (3!) \sum_{ijk} \frac{M_k^2}{v_i v_j} R_{ki}
$$

(up to symmetry factors)

$$
\mathcal{A}_1 \sim (\mathcal{A}_{pp\to h_1}^{\text{SM}} \kappa_3) \times \frac{\bar{\lambda}_{321} \bar{\lambda}_{211}}{D_3(p) D_2(p')},
$$

The inverse propagators are $D_a(p) = p^2 - M_a^2 + iM_a\Gamma_a$, with p the momentum flowing through the propagator, and Γ_a the decay width of h_a . On resonance, we have $|p^2 - M_a^2| \ll$ $|M_a\Gamma_a|.$

MultiHiggs production and EWSB Cosama Karkout 2024 2024 62

$$
R_{kj}(R_{ai}^2R_{aj}R_{bj}+R_{ai}R_{bi}R_{aj}^2), \qquad (2.6)
$$

and R the mixing matrix of eq. $(A.3)$. The tree-level amplitudes can then be written as

$$
\mathcal{A}_2^{(a)} \sim (\mathcal{A}_{pp \to h_1}^{\text{SM}} \kappa_a) \times \frac{\lambda_{a111}}{D_a(p)}.
$$
 (2.7)

