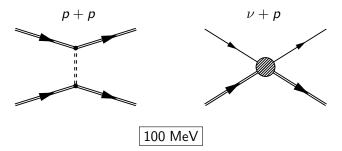
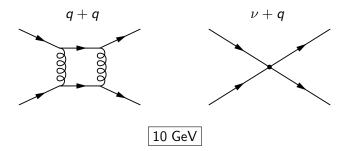
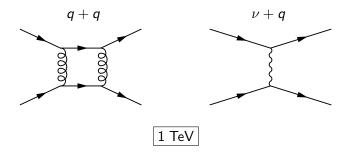

Perspectives of Multi-Boson Physics

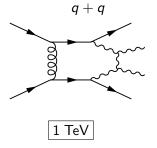
Wolfgang Kilian


CPPS, University of Siegen

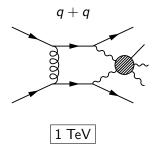
MBI 2024 - Toulouse, Sep 27, 2024


Nuclear + weak interactions = local on atomic scales


Nuclear + weak interactions \Rightarrow non-local via bosonic fields


Nuclear + weak interactions \Rightarrow non-local via bosonic fields

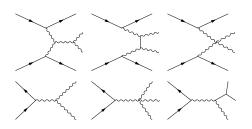
Nuclear + weak interactions \Rightarrow non-local via bosonic fields

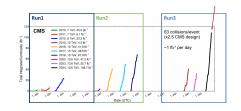

Nuclear + weak interactions \Rightarrow non-local via bosonic fields

LHC: probe EW interactions in detail (pCM up to O(1 TeV))

2/20

Nuclear + weak interactions \Rightarrow non-local via bosonic fields

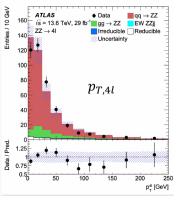


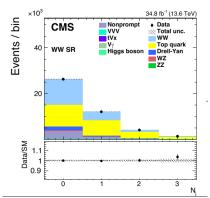

LHC: probe EW interactions in detail (pCM up to O(1 TeV)) Interactions within interactions? Local? New fields?

W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 2/20

(2) Interactions within interactions **@LHC**

LHC data and analyses: VBS and di-(multi-) boson production

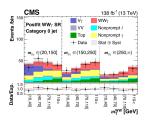

 \Rightarrow HL-LHC \Rightarrow ???

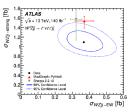

3/20

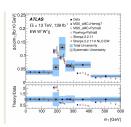
W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024

(2) Interactions within interactions **@LHC**

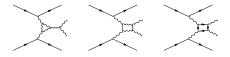
Looking at: EW gauge and Higgs interaction + (N)NLO QCD (NLO EW): diboson production

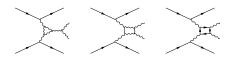

CMS (**Talk:** Sergio Blanco Fernandez): WW, WZ, $\gamma\gamma$, ZZ^* ATLAS (**Talk:** Xingyu Wu): ZZ


W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 4/20

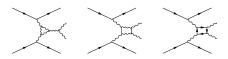

(2) Interactions within interactions **@LHC**

Looking at: EW trilinear / quartic / Higgs interplay: triboson and VBS Saptaparna Bhattacharya (CMS); Eirini Kasimi, Iro Koletsou (ATLAS):


- WWjj, Zγjj, WZjj, ZZjj
- \blacktriangleright WZ γ , WW γ , W $\gamma\gamma$



LHC theory: Loop corrections to scattering


LHC theory: Loop corrections to scattering

+ multi-boson production/decay and non-resonant terms

LHC theory: Loop corrections to scattering

+ multi-boson production/decay and non-resonant terms

+ QCD (NNLO) + parton shower $+ \dots$

- SM perturbation theory as basis
- Unified NLO-SM 6-fermion final state (triboson / VBS at NLO-SM)
 [cf. Denner, Lombardi, Chavez, Pelliccioli 2024]
- Calculations/tool accessibility towards fully automated NLO accuracy + QCD (N)NLO + QCD environment
 Sherpa, MG5, Powheg, Whizard, VBFNLO, MATRIX, ...
- ▶ QCD (+QED) Shower at NNLO+ \Rightarrow Talk: Melissa van Beekveld
- Separation of QCD vs EW in hard processes to disappear

W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 7/20

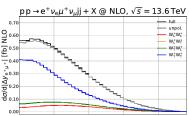
- ► Asymptotically: transition $W/Z + h \rightarrow (W_T/Z_T) + (h/W_L/Z_L)$
- Approximate separation via pole expansion of amplitudes
- ► Implemented in matrix-element/MC generators
 - ⇒ Polarization workshop Monday

- ► Asymptotically: transition $W/Z + h \rightarrow (W_T/Z_T) + (h/W_L/Z_L)$
- ► Approximate separation via pole expansion of amplitudes
- ▶ Implemented in matrix-element/MC generators
 ⇒ Polarization workshop Monday
- ► LHC: polarized diboson analysis **Talk:** Miaoran Lu (ATLAS)

Process	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		
W_0Z_0	222 ± 5	47.6 ± 1.5		
$W_0Z_T + W_TZ_0$	323 ± 12	23.7 ± 0.8		
$W_T Z_T$	856 ± 31	124 ± 4		
Prompt background	169 ± 18	24.1 ± 2.7		
Non-prompt background	68 ± 29	2.8 ± 1.1		
Total Expected	1640 ± 60	222 ± 8		
Data	1740	236		

- ▶ Asymptotically: transition $W/Z + h \rightarrow (W_T/Z_T) + (h/W_L/Z_L)$
- ► Approximate separation via pole expansion of amplitudes
- ▶ Implemented in matrix-element/MC generators⇒ Polarization workshop Monday
- ► LHC: polarized diboson analysis **Talk:** Miaoran Lu (ATLAS)

Process	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
W_0Z_0	222 ± 5	47.6 ± 1.5
$W_0Z_T + W_TZ_0$	323 ± 12	23.7 ± 0.8
$W_T Z_T$	856 ± 31	124 ± 4
Prompt background	169 ± 18	24.1 ± 2.7
Non-prompt background	68 ± 29	2.8 ± 1.1
Total Expected	1640 ± 60	222 ± 8
Data	1740	236

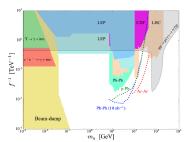

► Caveat (LHC): production near threshold dominates ⇒ HL-LHC

W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 8/20

► Talk: Giovanni Pellicioli; Christoph Haitz

			•					
code	OS approx.	LO	loop-ind.	NLOQCD	NNLOQCD	NLOEW	LOPS	NLOPS
MoCaNLO	DPA	/	/	/	X	/	X	Х
STRIPPER	DPA	/	/	/	/	X	X	X
MulBos	DPA	1	/	/	X	/	X	X
BBMC	DPA	/	X	/	X	/	Х	X
Sherpa	NWA	/	X	(✓)	X	X	/	(✓)
MadGraph	NWA	1	/	` x ′	X	X	/	` x ′
PowHeg-Box	DPA	1	X	/	X	X	/	/

► Calculations for diboson production — and VBS $(\Delta y(e\mu))$:

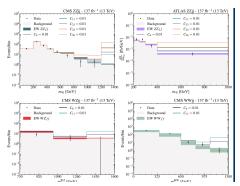


9/20

Many unsolved particle/cosmology problems: no known connection to physical (including undetected) particles

...dark energy, dark matter, neutrino mixing, strong CP, EW transition, ...

 Look for interactions hidden within EM/EW/Higgs interactions possibly, not necessarily short-range


► **Talk:** Christophe Royon: new interactions/particles in elastic pp

W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 10 / 20

Potential significant deviations in bosonic (heavy-particle) self-interactions \Rightarrow gauge symmetry as a technical device at TeV-scale

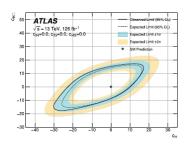
1980s (Weinberg; Appelquist; Longhitano,...): HEFT/SMEFT

▶ Talk: Oscar Eboli: HEFT parameterization of quartic gauge couplings

W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024

11 / 20

New interactions more local than EW scale (decoupling property)

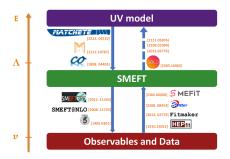

 \Rightarrow Power-counting $v/\Lambda \Rightarrow$ SMEFT

(do not expect power counting to be reliable; cf. SM Yukawa sector)

Higgs-pair production

Talk: Anna Tegetmeier (ATLAS)

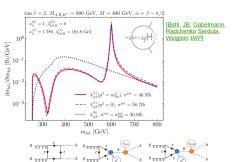
 $|hhh, h(\partial h)(\partial h)|$, hWW, hZZ, hgg couplings

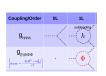


 $c_H: (\varphi^\dagger \varphi)^3$

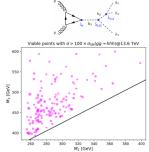
 $c_{\Box H}: (\varphi^{\dagger}\varphi)\partial^{2}(\varphi^{\dagger}\varphi)$

The relation between new local interactions (with decoupling property) and SMEFT Lagrangian parameters can be computed by automated tools.

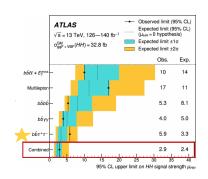

Talk: Alejo Rossia

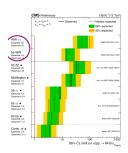


W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 13 / 20

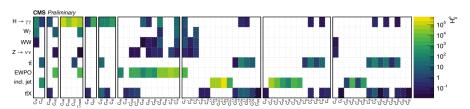

Large modifications to the Higgs self-coupling(s) are completely reasonable

Talk: Johannes Braathen


Talk: Osama Karkout

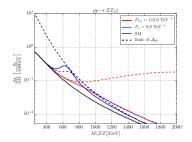

W. Kilian (U Siegen)

Large modifications to the Higgs self-coupling(s) are completely reasonable


Talk: Giulia Di Gregorio (ATLAS)

Talk: Lisa Paspalaki (CMS)

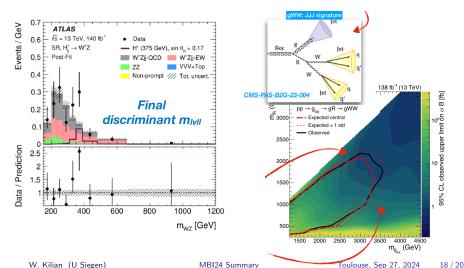
- Complete account of (accessible) form factors / SMEFT coefficients
- Angular observables give access to C/P violating effects
- ► Talk:
 - ▶ Hesham El Faham: TGC in diboson: a SMEFT view from every angle
 - Leo Boudet (ATLAS): study of CP violating bosonic operators
 - ► Fabian Stäger: combined EFT fits in ATLAS and CMS



W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 16 / 20

Interlude: how not to apply (SM)EFT

Example: heavy scalar-isoscalar resonance at LHC vs EFT

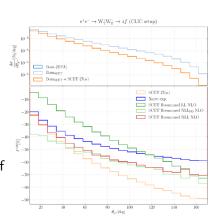


[WK, Ohl, Reuter, Sekulla 2015; see also: Lang, Schäfer-Siebert, Zeppenfeld 2021]

W. Kilian (U Siegen) MBI24 Summary Toulouse, Sep 27, 2024 17 / 20

Talk: Antonio Giannini

⇒ direct searches for interactions embedded in EW interactions @ ATLAS


(6) Interactions . . . ad infinitum (CLIC, FCC-hh, μ Col)

 Multi-boson production and radiation transform into a QCD-like conglomerate of PDF, hard interactions, shower, . . .

Talk: Ansgar Denner

► EW-symmetric inclusive cross sections (in SM) rise only moderately
⇒ asymptotic suppression of any exclusive final state:
Sudakov

 Sudakov logs dominates all fixed-order EW corrections

(7) Interim report – 10(11) years after MBI #1 (#0)

Multi-boson physics is about identifying interactions within interactions, directly.

Theory calculations and tools make these effects accessible to data analysis with high accuracy.

EFT parameterizations provide a universal language for dealing with new and unknown effects.

LHC analyses extract all possible information out of actual data. (Accessibility is limited by LHC environment and parameters. HL-LHC on the horizon.)

(7) Interim report – 10(11) years after MBI #1 (#0)

Multi-boson physics is about identifying interactions within interactions, directly.

Theory calculations and tools make these effects accessible to data analysis with high accuracy.

EFT parameterizations provide a universal language for dealing with new and unknown effects.

LHC analyses extract all possible information out of actual data. (Accessibility is limited by LHC environment and parameters. HL-LHC on the horizon.)

Genuine multi-boson physics to be seen with pCM $\gtrsim 10 \text{ TeV} \dots$