DESI – Year 1

Etienne Burtin, CEA - Paris Saclay On behalf of the DESI Collaboration

LHC Split Days, Hvar – Sept. 30, 2024

Dark Energy Spectroscopic Instrument

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

- **1. Baryonic Acoustic Oscillations (BAO)**
- 2. Overview of DESI
- **3.** Status of DESI Year 1
- 4. BAO with galaxies and quasars

Baryonic Acoustic Oscillations

J. Peebles Nobel Prize in Physics 2019 Inaugural Lecture

Succes of ΛCDM

The Universe is described by:

- laws of physics
- ordinary matter standard model particles
- "dark matter" that interacts only through gravitation
- "dark energy" in the form of a cosmological constant
 - -> responsible for the accelerated expansion of the Universe first observed with SN1a Nobel Prize 2011

BAO, a probe for Dark Energy

Acoustic propagation of an over-density

- Sound waves propagates through relativistic plasma (baryons, electrons, photons).
- Baryon and photon perturbations travel together till recombination (z~1100) with a speed $\sim c/\sqrt{3}$ that depends on species densities
- Radius of the baryonic overdensity frozen at $r_d \sim 150$ cMpc (comoving).

BAO, a standard ruler

A special distance

- Galaxies form in the overdense regions.
- Small excess of galaxies at r_d ~150 cMpc away from other galaxies.
- Measure this BAO "standard ruler" over cosmic history => Constrain the nature of Dark Energy

Observation of baryonic acoustic peak

First observation

- In 2005: First observations of baryonic oscillations by 2 teams (2dFGRS and SDSS)
- SDSS observe a peak at ~150 Mpc
- SDSS: ~50 000 LRGs, <z> ~ 0.35
 "Luminous Red Galaxies"

- A 3D measurements
- Position of acoustic peak
- Transverse direction:
- $\Delta \theta = r_d/(1+z)/D_A(z) = r_d/D_M(z)$
- \Rightarrow Sensitive to angular distance $D_A(z)$
- Radial direction (along the line of sight): $\Delta z = r_s \cdot H(z)/c$
- \Rightarrow Sensitive to Hubble parameter H(z).

Overview of DESI

Dark Energy Spectroscopic Instrument

DESI Project

Scientific project

- 3D map for 0<z<4
- Footprint ~ 14000 deg²
- International collaboration
- 72 institutions (46 non-US)
- ~900 members

Instrument

10 spectrographs

- 4-m telescope at Kitt Peak (Arizona)
- Wide Field-of-View (~ 8 deg²)
- Multi-Object Spectrograph
 - Robotic positioner with 5000 fibers
 - 10 spectrographs x 3 bands (blue, visible, red-NIR) →360-1020 nm

<u>cea</u> irfu

LHC Split Days, Sept. 30, 2024

E. Burtin

0.0 < z < 0.4

<u>cea</u> irfu

Focal Plane – 5000 robotic fiber positioners

Configuration

- 10 petals in focal plane
- 500 fibers each (5000 total)
 - 10.4 mm pitch
 - 2 motors per positioner

Challenge

- Reposition the 5000 fibers in less than 2mns
- Position of each fiber better than 10 μm

Ten spectrographs

Ten 3-channel spectrographs $\lambda = 360 \text{ nm}$ to 980 nm

Dark Energy Spectroscopic Instrument

Rolling observations – Redshift factory

Target Selection

...of 5000 objects ... every ~20mins...

Dark Energy Spectroscopic Instrument

Status of DESI

Year One (Y1)

Dark Energy Spectroscopic Instrument

DESI and DESI-II Timelines

- **DESI-I** is ~4 months ahead of schedule, DESI should finish in 2025
 - Analysis of Year 1 Dataset
 - Year 3 Dataset completed in April 2024
- ~ 2-year transition period with extension of the footprint and the passes
- DESI-II starts in 2028-2029

DESI Y1 footprint

- Grey area: DESI footprint over 5 years, ~14000 deg²
- On average 5 passes
- In Y1, only 1500 deg² with 5 passes

DESI Y3 footprint

- In April 2024, Y3 dataset is completed and frozen
- ~70% of the final dataset (much more ELGs)
- In Y3, already 7300 deg² with 5 passes

DESI Y1 dataset

- Already biggest ever BAO dataset (both in N_{tracer} and volume)
 - 5.7M discrete tracers (BG, LRG, ELG and QSO)
 - Effective cosmic volume V_{eff}= 18 Gpc³
- 3 times bigger than SDSS (20 years of data)

BAO with galaxies and quasars

Dark Energy Spectroscopic Instrument

Methodology for DESI Y1

- Blind analysis to mitigate observer/confirmation biases (catalog-level blinding)
- Unified BAO pipeline applied to all (discrete) tracers/redshifts consistently
- Common modeling of BAO used for all tracers
- Reconstruction method applied to all tracers
- Analytic covariance matrices (validated with mocks)
- Extensive tests of systematics, done before unblinding
- Results given for 6 redshift bins over 0.1<z<2.1

Density Field Reconstruction

Reconstruction

- BAO peak distorted by movements of tracers due to density field
- Estimation of the Zel'dovich (1st order) displacements from the observed field
- Reconstruction: correction of the displacements
- Improve both precision and accuracy

Systematics Error Budget

- Observational effects in data (imaging, fiber assignment,...)
- Reconstruction algorithm
- Covariance matrix construction
- Incomplete theory modelling
- Choice of fiducial cosmology
- Galaxy-halo (HOD) model uncertainties

Example of systematics: Imaging

- Non-homogeneity in target selection due variations of imaging catalogs (depth, dust contaminants,...)
- Regression methods developed to correct those effect
- BAO almost insensitive to imaging effects

Systematics Error Budget

- Observational effects in data (imaging, fiber assignment,...)
- Reconstruction algorithm
- Covariance matrix construction
- Incomplete theory modelling
- Choice of fiducial cosmology
- Galaxy-halo (HOD) model

No effect on BAO

Systematics Error Budget

- Observational effects in data (imaging, fiber assignment,...)
- Reconstruction algorithm
- Covariance matrix construction
- Incomplete theory modelling $\sigma_{theo} = 0.1\%$
- Choice of fiducial cosmology $\sigma_{fid} = 0.1\%$
- Galaxy-halo (HOD) model $\sigma_{HOD} = 0.2\%$

All systematics much smaller than statistical errors $\sigma_{total} = 1.05\sigma_{stat.}$

 $\sigma_{sys} = 0.25\%$

Negligible effect on BAO

Stability of the results

- Comparison with the baseline analysis for different configurations (with/without reconstruction, power-spectrum, without SGC, priors damping parameters, broadband modeling and reconstructions)
- Robust results

DESI Year 1: BGS

- Friedman equation for a flat Universe $H(z) \equiv H_0 \sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}$
- Limitation due the cosmic variance (small part of the visible Universe)

DESI Year 1: BGS + LRG

- LRG: Main tracer in SDSS, precise measurement

DESI Year 1: BGS + LRG + ELG

 ELG: Main tracer in DESI, precise measurement, but only a small fraction was observed in DESI Y1

DESI Year 1: BGS + LRG + ELG + QSO

QSO: huge volume but small density (shot noise limitation)

DESI Year 1: BGS + LRG + ELG + QSO + Ly- α

- Different dependence as a function of redshift (Ω_m, r_d)
- Break the degeneracy without knowing r_d

DESI Year 1 - Hubble diagram

- ~6 million discrete tracers
- 0.1 < z < 2.1
- 3 times bigger than SDSS
- Measurement with Ly- α forest of QSOs at higher redshift
- Total precision on BAO: 0.52%
- Consistent with Λ CDM
- Agreement with Planck: 1.9σ
- BAO -very iow systematics
- Cosmological constraints
 - \Rightarrow Next talk by Dragan Huterer

Dark Energy Spectroscopic Instrument

E. Burtin LHC Split Days, Sept. 30, 2024

Additional Slides

Dark Energy Spectroscopic Instrument

Evolution of density perturbations

Slide 36

E. Burtin

Comparison DESI/SDSS

- 2.5σ to 3.0σ discrepancy depending on the correlations
 between the two samples
- Same redshift for the overlap catalog
- SDSS measurements identical when we use DESI pipeline

E. Burtin

Main science at DESI

• Baryonic Acoustic Oscillations (BAO)

- $\sigma(BAO) \sim 0.2 \%$ for 0.0<z<1.1
- $\sigma(BAO) \sim 0.3\%$ for 1.1<z<1.9
- $\sigma(BAO) \sim 0.5\%$ for 1.9<z<3.5
- SDSS(BOSS+eBOSS) few % measurements

Redshift Space Distorsion (RSD)

- Multiple few % measurements over wide redshift range (z<2)
- ~10x better compared to SDSS
- Neutrino masses
 - $\sigma(\Sigma m_v) \sim 20 \text{ meV}$
 - Current limit : $\Sigma m_v < \sim 100 \text{ meV}$, @ 95 CL
- Non-Gaussianity (f_{NL})
 - $\sigma(f_{NL})$ ~4 with k dependence of bias
 - As precise as Planck with a different technique

Baryonic Acoustic Oscillations (BAO)

BAO distance

- Non-uniform distribution of galaxies, they form in overdense shells about 100 Mpc.h⁻¹ in radius.
- Excess in the correlation function at ~100 Mpc.h⁻¹

\Rightarrow Standard Ruler

3D measurement

- Position of acoustic peak
- Transverse direction:
 - \Rightarrow Sensitive to angular distance $D_A(z)$
- **Radial direction** (along the line of sight):
 - \Rightarrow Sensitive to Hubble parameter H(z)

Redshift Space Distorsion (RSD)

•

RSD origins

- Acceleration toward overdense regions
- Flattening in radial direction from real space to redshift space (over tens Mpc)
- Allow us to measure action of gravity (10-40 Mpc) at cosmological distance (Gpc)

irfu

Cea

BOSS Collaboration Alam et al. (2016)