

A status on gravitational waves detection and some prospects

Damir Buskulic

LHC Days in Split, september 2024

Gravitational waves

- Consequence of the theory of General Relativity (GR)
- Einstein 1916 1918
 - Geometric theory of gravitation
 - Describes the curvature of space-time and interaction btw space-time and energy-matter

688 Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. Einstein.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die g_{sv} in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_4 = it$ aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter «erster Näherung« ist dabei verstanden, daß die durch die Gleichung

$$g_{\mu\nu} = - \hat{\delta}_{\mu\nu} + \gamma_{\mu\nu}$$

definierten Größen $\gamma_{u,\tau}$, welche linearen orthogonalen Transformationen gegenüber Tensorcharakter besitzen, gegen 1 als kleine Größen behandelt werden können, deren Quadrate und Produkte gegen die ersten Deterster gegen die ersten

- Develop small perturbations $h_{\mu\nu}$ around a flat (Minkowski) metric
 - => wave equation

$$(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})h_{\mu\nu} = 0$$

Gravitational waves

Effect on a set of (free) "test" mass

Gravitational waves

Production :

Distribution of masses : acceleration of quadrupolar moment

$$h\approx 32\pi^2\cdot \frac{G}{c^4}\cdot \frac{1}{r}\cdot M\cdot R^2\cdot f_{orb}^2$$

- Examples
 - M = 1000 kg, R = 1 m, f = 1 kHz, r = 300 m

 $h \sim 10^{-35}$

M = 1.4
$$M_{\odot}$$
, R = 20 km, f = 400 Hz,
r = 10²³ m (15 Mpc = 48,9 Mlyr)

 $h \sim 10^{-21}$

Gravitational waves sources and detectors

http://gwplotter.com

The observed : LIGO-Virgo-Kagra results

LVK Gravitational waves detector network

Michelson interferometer : a "sensor" of gravitational waves

LIGO-Virgo Observing Runs

https://observing.docs.ligo.org/plan/

- Weight and the weight with the second sec
 - Distance at which a particular reference event emitted a signal which can be detected with Signal over Noise Ratio (SNR) = 8
- Reference event = binary neutron star coalescence with 1.4 M_{\odot} for each component

The observed : compact binary coalescences

Following slides : loosely inspired by W. Del Pozzo, Fermi LAT Coll. Meeting, Pisa 2022

- Single observations allow studies on:
 - Binary dynamics and component nature
 - Non linear dynamics of space-time
 - Final object nature
 - Tests of GR

LVC, arXiv:1602.03837, Phys. Rev. Lett. 116, 061102 (2016)

A path to astronomy

Cumulative detections of binary coalescences

https://gracedb.ligo.org/superevents/public/O4/

A few interesting events

- GW190814's secondary and GW230529's primary are either heavy neutron stars or light black holes
- GW190521's remnant is an intermediate-mass black hole

Astrophysics with GW

arXiv:2111.03634

Cosmology and tests of GR with GW

Measure the expansion rate of the Universe

- Compact binary coalesces are standard sirens
- Probe cosmological model

Test General Relativity

- GW propagation
 - Already tight constraints from GW170817 et al.
 - GW and light propagate at the same speed
 - GW and light are affected by background gravitational potentials in the same way
 - Any sign of dispersion waveform distortion due to different frequencies propagating at different speeds?
 - Constrain hypothetical graviton mass!

$$m_g \le 1.27 \times 10^{-23} \mathrm{eV}/c^2$$

GW polarization

Are signals recorded in different detectors consistent with two tensor polarizations?

Source dynamics

- Waveforms consistent with GR prediction?
- Test BH no-hair theorem via ringdown spectroscopy

The (near) future for LVK

https://observing.docs.ligo.org/plan/

The quasi-observed : Pulsar Timing Arrays

Looking at many pulsars

Ingredient : ToA and residuals

Radio pulses -> ToA (time of arrival)

Predict arrival time -> timing residuals

Ingredient : Hellings and Downs

Correlation of residuals between two pulsars

Ingredient : Hellings and Downs

elation in puls

- Example : NANOGrav 15 years data
 - 67 pulsars => 2211 pulsar pairs
 - 15 angular bins => 2211/15 = 147 pairs per bin on average
 - Deviations from the H-D curve due to :
 - Measurement noise
 - Finite set of pulsars
 - Cosmic variance

Various PTAs

Individual results of various PTAs

ΡΡΤΑ 18 yrs, 30 pulsars, 2 *σ*

EPTA+InPTA 14 yrs, 25 pulsars, 3 σ

 $\frac{\text{NANOGrav}}{\text{15 yrs, 68 pulsars, 3} - 4 \sigma}$

arXiv:2309.00693

D. Buskulic – LHC Days in Split '24

Interpretation

Very difficult to interpret :

any quadrupolar perturbation that falls in the nHz band is good

- Stochastic gravitational waves background (SGWB)
- Could be :
 - GW signal from the population of super massive black hole binaries (SMBHB) in the local Universe ?
 - Network of cosmic strings ?
 - Superposition of continuous gravitational waves (CGW) ?
 - Due to inflation, phase transitions, primordial black holes... ?
 - Anything else ?

Next : IPTA

- Yet to come : IPTA Data Release 3
- 121 pulsars
 « the biggest dataset ever made »

The yet unobserved : dark matter searches

Boson cloud superradiance

- Utralight bosons
 - predicted under multiple theoretical frameworks
 - scalar or vector or massive tensor
 - Dark Matter candidates
- Can form clouds around rotating black holes
 - emit gravitational waves by a superradiance mechanism
 - quasi-continuous
 - short duration

Boson cloud superradiance

- Utralight bosons
 - produced by quantum fluctuations near the BH horizon
- Conditions for superradiant instability
 - Superradiance : $\omega_V < m \Omega_{BH}$ (*m* = azimuthal index)
 - \blacktriangleright Confinement : $\lambda_V pprox r_{BH}$
 - => boson field forms a resonant cavity
 - extracts energy from the rotation of the BH
 - cloud dissipates through gravitational wave emission

Continuous Waves search methods

Direct searches for ultralight bosonic dark matter

- **Dark photon :** massive vector exerting force on test masses.
 - Changes in lengths of cavities [1, 2, 3]
 - Composition-dependent force on different mirrors in KAGRA [4, 5]
- **Dilaton** : massive scalar exerting force on test masses.
 - Changes in lengths of cavities [6, 7]
 - Varying widths of mirrors [8, 9, 10]
- Axion : massive scalar particle modulating polarization of laser light [11, 12]
- Searched with Continuous Waves techniques

References

[1] A. Pierce, K. Riles, Y. Zhao, PRL **121**, 061102 (2018). [2] *SM et al.*, PRD **103** 5, L051702 (2021). [3] LVK, PRD **105**, 063030 (2022).
[4] Y. Michimura *et al.*, PRD **102**, 102001 (2020). [5] LVK, PRD **110**, 042001 (2024). [6] *SM* and T. Suyama, PRD **100**, 123512 (2019).
[7] K. Fukusumi, *SM*, and T. Suyama, PRD **108**, 095054 (2023). [8] H. Grote and Y. V. Stadnik, PRR **1**, 033187 (2019).
[9] S. M. Vermeulen *et al.*, Nature 600, 424–428 (2021). [10] A. S. Göttel *et al.*, PRL **133**, 101001 (2024).
[11] K. Nagano *et al.*, PRL **123**, 111301 (2019). [12] K. Nagano *et al.*, PRL **123**, 111301 (2019).

Summary

- Extremly successful three observing runs of LIGO / Virgo
 - ▶ ~ 200 BBH, 2 NS-BH, 2 BNS
 - Insights on gravity, black holes, cosmology, nuclear physics,...
- ▶ GW170817 BNS event was a fundamental milestone... and still is
- O4 run ongoing
 - A few (2-5) BBH detections per week
 - No other multimessenger observation... yet
- Searching for other GW signals
 - (quasi-)Continuous Waves from rotating neutron stars or other sources
 - SGWB with LIGO-Virgo-Kagra and various PTAs
- Searching for some dark matter particles

BNS systems

arXiv:2001.01761, ApJ Letters, 892:L3 (24pp), 2020 March 20

Two NS-BH binaries

Two eventsPoor localization

Spins loosely constrained

First BNS system : GW170817

- Coincident short GRB
- First direct evidence some BNS mergers <> progenitors of short GRBs

A curious event : GW190814

- $\blacktriangleright\,$ Primary mass : $m_1\sim 23\,M_\odot$
- Secondary mass : $m_1 \sim 2.6\,M_{\odot}$
- Sec. mass in the hypothesized mass gap $2.5-5\,M_{\odot}$
- New low mass BH population ?
- Extreme NS population ?
 - Exotic object ?
 - Equation of state ?

arXiv:2006.12611, ApJL 896 L44

The heaviest : GW190521

arXiv:2009.01075

• Merger => $m_1(85 M_{\odot}) + m_2(66 M_{\odot}) \rightarrow m_f(145 M_{\odot})$

- Studies :
 - Possible eccentricity ? (e.g. Iglesias et al, arXiv:2208.01766)
 - Possible dynamical capture ? (Gamba et al, arXiv:2106.05575)?

GW170817 : EM counterpart

- Observed optical/UV/infrared counterpart
 - Origin : NGC4993 galaxy
 - Kilonova (arXiv:1710.05833, ApJ Letters, 848:L12 (59pp), 2017 October 20)
 - Speed of GW (arXiv:1710.05834, ApJ Letters, 848:L13 (27pp), 2017 October 20)

$$-3 \times 10^{-15} \leq \frac{\Delta v}{v_{\rm EM}} \leq +7 \times 10^{-16}.$$
$$\Delta v = v_{\rm GW} - v_{\rm EM}$$

- Other outcomes :
 - EoS constraints
 - Jet morphology
- Cosmology : H₀
 - NGC4993 spectroscopic redshift
 - Cosmic-ladder-Independent
 H₀ measurement

$$H_0 = 70^{+12}_{-8} \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

GWs + GRBs, conservative approach												
model	$\mathcal{R}(0)$	0) GW GW+EM (prompt)										
			Swift/BAT		Fermi/GBM		INTEGRAL/IBIS		SVOM/ECLAIRs			
			uniform	structured	uniform	structured	uniform	structured	uniform	structured		
	Gpc ⁻³ yr ⁻¹	yr ⁻¹	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr ⁻¹	yr^{-1}		
A1	31	1	0.0006 (0.0023)	0.014-0.020	0.003 (0.013)	0.070-0.11	0.0001 (0.0004)	0.0024-0.0035	0.0005 (0.0019)	0.013-0.017		
A3	258	5	0.003 (0.01)	0.07-0.10	0.017 (0.068)	0.35-0.54	0.0005 (0.002)	0.01-0.02	0.002 (0.01)	0.06-0.08		
A7	765	13	0.008 (0.031)	0.18-0.26	0.045 (0.18)	0.91-1.42	0.001 (0.005)	0.031-0.046	0.006 (0.025)	0.17-0.22		

GWs + GRBs, optimistic approach

model	$\mathcal{R}(0)$	GW	GW+EM (prompt)								
1			Swift/BAT		Fermi/GBM		INTEGRAL/IBIS		SVOM/ECLAIRs		
			uniform	structured	uniform	structured	uniform	structured	uniform	structured	
	$Gpc^{-3}yr^{-1}$	yr ⁻¹	yr ⁻¹	yr^{-1}	yr ⁻¹	yr^{-1}	yr ⁻¹	yr ⁻¹	yr^{-1}	yr^{-1}	
A1	31	5	0.002 (0.01)	0.05-0.08	0.014 (0.06)	0.27-0.46	0.0005 (0.002)	0.009-0.014	0.002 (0.008)	0.05-0.07	
A3	258	22	0.01 (0.04)	0.24-0.37	0.06 (0.26)	1.17-2.00	0.002 (0.008)	0.04-0.06	0.009 (0.04)	0.22-0.32	
A7	765	61	0.03 (0.12)	0.67-1.05	0.18 (0.74)	3.28-5.65	0.006 (0.02)	0.11-0.18	0.02 (0.10)	0.63-0.90	

Testing GR

- Test consistency of predictions vs data
 - residuals (when wavef. removed from data)
 - checks of GW emission model
 - using different portions of waveforms (inspiral / merger / ringdown)
 - Remnant properties
 - GW propagation (testing beyond GR)

1.0

Cumulative fraction of events 70 00 800 800

0.2

0.0

1.5

1.0

0.5

0.0

-0.5

-1.0

 $A_{\alpha} \left[10^{-20} \text{ peV}^{2-\alpha} \right]$

0.0

0.2

0.4

p-value

dispersion during propagation

Null hypothesis GWTC-3 Measurement

residuals

0.8

1.0

39

0.6

No evidence of non-GR physics

Expected rates and localization

- R_D (= detection rate) $\propto d$ (= range)³
- Example :
 - $d: 100 \,\mathrm{Mpc} \rightarrow 160 \,\mathrm{Mpc} \Rightarrow R_D \times 4$

https://dcc.ligo.org/public/0094/P1200087/058/ObservingScenarios.pdf

Neutron stars: internal structure

41

Neutron stars: internal structure

Equation(s) of state

D. Buskulic – LHC Days in Split '24

Advanced Virgo+

