James Webb Space Telescope: Status and Perspective

Sandro Tacchella University of Cambridge

Cavendish Laboratory **UIMIVEIVOLI BRIDGE** Department of Physics

History of the Universe

adapted from NAOJ

redshift

Cosmology: Evolution of the Universe

2 $Rg_{\mu\nu} + \Lambda g_{\mu\nu} =$ 8*πG c*4 $T_{\mu\nu}$

General Relativity: *^Rμν* [−] ¹

Cosmology: Evolution of the Universe

2 $Rg_{\mu\nu} + \Lambda g_{\mu\nu} =$ 8*πG c*4 $T_{\mu\nu}$

General Relativity: *^Rμν* [−] ¹

Cosmological Principle: universe is uniformly isotropic and homogeneous when viewed on a large enough scale

 $\Rightarrow ds^2 = -c^2 dt^2 + a(t)^2$ $\overline{}$ *dr*² $\frac{du}{1 - kr^2} + r^2 d\Omega^2$

) FLRW metric

Cosmology: Evolution of the Universe

General Relativity:

$$
R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
$$

Scale factor a(t) depends on energy density of the Universe… need to measure the expansion of the Universe to infer its energy content via "standard rulers" (e.g., CMB, baryon acoustic oscillations [BAO]) or "standard candles" (e.g., supernovae).

Cosmological Principle: universe is uniformly isotropic and homogeneous when viewed on a large enough scale $\implies ds^2 = -c^2$ *dt* $^{2} + a(t)$ 2 $\overline{}$ *dr*² $\frac{du}{1 - kr^2} + r^2 d\Omega^2$) FLRW metric

$$
\implies ds^2 = -c^2dt^2 + a(t)^2 \left(\frac{dr^2}{1 - kr^2}\right)
$$

Standard cosmological model (ΛCDM)

Structure formation in ΛCDM

Cosmic Microwave Background (CMB) the view of the universe 380,000 yr after the Big Bang

dark matter fluctuations \rightarrow formation of haloes

Structure formation in ΛCDM

Springel et al. (2005)

cosmic web

Cosmic Microwave Background (CMB) the view of the universe 380,000 yr after the Big Bang

dark matter fluctuations \rightarrow formation of haloes

Correctly predicts the large-scale structure of the Universe

Springel et al. (2005)

cosmic web

Structure formation in ΛCDM Geller & Huchra (1989)

Cosmic Microwave Background (CMB) the view of the universe 380,000 yr after the Big Bang

cosmic web (~Gpc)

125 Mpc/h

cosmic web (~Gpc)

dark matter halos (~Mpc) /

125 Mpc/h

galaxies $(\sim kpc)$
1 pc = 3 ly = 3x10¹⁶ m

black holes (0.01pc)

cosmic web (~Gpc)

star formation (~pc)

black hole activity

black hole growth

galaxies $(\sim kpc)$
1 pc = 3 ly = 3x10¹⁶ m

black holes (0.01pc)

interstellar medium

radiation fields

stellar winds

formation of stars molecular clouds

supernova explosions

magnetic fields

dark matter halos (~Mpc) /

125 Mpc/h

formation and diffusion of cosmic rays

gas flow & cooling

- **→ baryonic physics cannot be ignored**
- ➜ galaxy growth needs to be regulated, i.e. inefficient star formation at low and high halo masses

galaxies probe dark matter via structure formation (and via lensing and DM-baryon interactions)

Paradigm of galaxy formation

- 1) Growth of dark matter fluctuations
- 2) Baryons "follow" dark matter, cool and form stars
- 3) Feedback from stars and black holes prevent overcooling

Star formation in the Universe

Star formation in the Universe

James Webb Space Telescope (JWST) the next generation space telescope

- mission duration: >10 years.
- cost: 10 billion US-\$
- 4 science instruments
	- NIRCam (0.6-5 μm)
	- NIRSpec (0.6-5 μm)
	- MIRI (5-30 μm)

 \cdot

- NIRISS (0.6-2.5 μm)
- I am team member of the NIRCam science team

James Webb Space Telescope (JWST) the next generation space telescope

- mission duration: >10 years
- cost: 10 billion US-\$
- 4 science instruments
	- NIRCam (0.6-5 μm)
	- NIRSpec (0.6-5 μm)
	- MIRI (5-30 μm)
	- NIRISS (0.6-2.5 μm)
- I am team member of the NIRCam science team

Extragalactic Surveys in Cycle 1 & 2

List of surveys (incomplete):

UNCOVER (GO; Bezanson+22)

JADES (GTO; Eisenstein+23a) JADES Origins Field (GO; Eisenstein+23b) JEMS (GO; Williams, Tacchella+23)

> \rightarrow large diversity of pointings, depths, filters (and spectroscopic component)

PEARLS (GTO; Windhorst+23)

COSMOS-Web (GO; Casey+23)

CEERS (ERS; Finkelstein+ in prep.)

GLASS (ERS; Treu+23)

NGDEEP (GO; Leung+23)

Extragalactic Surveys in Cycle 1 & 2

List of surveys (incomplete):

UNCOVER (GO; Bezanson+22)

JADES (GTO; Eisenstein+23a) JADES Origins Field (GO; Eisenstein+23b) JEMS (GO; Williams, Tacchella+23)

PEARLS (GTO; Windhorst+23)

COSMOS-Web (GO; Casey+23)

CEERS (ERS; Finkelstein+ in prep.)

GLASS (ERS; Treu+23)

NGDEEP (GO; Leung+23)

Synergy photometry & spectroscopy (Eisenstein+23) **DR:** Rieke+23, Bunker+23, D'Eugenio+24, Eisenstein+24

Extragalactic Surveys in Cycle 1 & 2

List of surveys (incomplete):

UNCOVER (GO; Bezanson+22)

JADES (GTO; Eisenstein+23a) JADES Origins Field (GO; Eisenstein+23b) JEMS (GO; Williams, Tacchella+23)

PEARLS (GTO; Windhorst+23)

COSMOS-Web (GO; Casey+23)

CEERS (ERS; Finkelstein+ in prep.)

GLASS (ERS; Treu+23)

NGDEEP (GO; Leung+23)

Synergy photometry & spectroscopy (Eisenstein+23) **DR:** Rieke+23, Bunker+23, D'Eugenio+24, Eisenstein+24 in Cambridge: Maiolino (NIRSpec) & Tacchella (NIRCam)

 $3^{''}$

¹⁴ JADES (Eisenstein+ 2023)

JADES NIRCam

F090W F200W F444W

Example spectra for a z = 4.65 galaxy from the JADES Deep/HST observations

JADES (Eisenstein+ 2023)

Redshift frontier with JWST

Redshift frontier with JWST

Abundance of galaxies in the first 500 Myr

bright-end of UV LF remarkably constant Donnan+24

• large number of groups constrained the UV LF and luminosity density at z>8:

Finkelstein+22; Castellano+22; Naidu+23; Adams+23; Atek+23; Austin+23; Donnan+23; Hainline+23; Harrikane+23; $\hat{\pi}$ McLeod+23

• bright-end of UV LF remarkably constant, with luminosity density >2× larger than using constant star formation efficiency models

• large number of groups constrained the UV LF and luminosity density at z>8:

Finkelstein+22; Castellano+22; Naidu+23; Adams+23; Atek+23; Austin+23; Donnan+23; Hainline+23; Harrikane+23; $\hat{\pi}$ McLeod+23

- Challenges:
	- selection techniques:
	- same data → different candidates!
	- comparison to models

• bright-end of UV LF remarkably constant, with luminosity density >2× larger than using constant star formation efficiency models

Too many UV-bright galaxies at z=9-12… possible explanations:

Too many UV-bright galaxies at z=9-12… possible explanations:

- Cosmology:
	- enhance matter power spectrum (Sabti+ 24)
	- Early Dark Energy (Shen+ [incl. ST] 24)
	- ➜ but degeneracy with baryonic physics (Khimey, Bose & Tacchella 21)

September 30, 2024 Sandro Tacchella 21

Shen+ [incl. ST] (2024)

- Hubble tension (see review by Abdalla+ 22): discrepancy between inferences of the current expansion rate of the Universe based on CMB and directly measuring the expansion locally from supernovae
- increased expansion at early times is "Early Dark Energy" (EDE) can solve the Hubble tension…
	- … and it also increases the number of dark matter halos

September 30, 2024 Sandro Tacchella 22

Khimey, Bose & Tacchella (2021)

• Explore the impact of Warm Dark Matter (WDM) on the first galaxies

Our results suggest that it is challenging to constrain the nature of dark matter, because their is a degeneracy between the baryonic physics and the dark matter model!

Too many UV-bright galaxies at z=9-12… possible explanations:

- Cosmology:
	- enhance matter power spectrum (Sabti+ 24)
	- Early Dark Energy (Shen+ [incl. ST] 24)
	- ➜ but degeneracy with baryonic physics (Khimey, Bose & Tacchella 21)

Too many UV-bright galaxies at z=9-12… possible explanations:

- Cosmology:
	- enhance matter power spectrum (Sabti+ 24)
	- Early Dark Energy (Shen+ [incl. ST] 24)
	- ➜ but degeneracy with baryonic physics (Khimey, Bose & Tacchella 21)

• Baryonic physics:

- increasing the SFE in halos ("feedback-free starbursts"; Dekel+23; Li [incl. ST]+23)
- decreasing dust attenuation towards high redshifts (Ferrara+23; Lu+24)
-
-
- non stellar sources (e.g. AGN; dark stars; Inayoshi+22; Trinca+24; Hegde+24; Ilie+23)

- increase the scatter between halos and UV (Shen [incl ST]+ 23; Mason+23; Kravtsov & Belokurov 24) - vary initial mass function (IMF) at high redshifts (Inayoshi+22; Cueto+24; Trinca+24; Ventura+24)

Frontiers with JWST

Frontiers with JWST

neighbouring galaxy is clearly at a different redshift

Carniani+24, Nature

redshift z=14.32 via Lyman break (damping wing!)

 \rightarrow extended (~200 pc), no indication for an AGN!

Frontiers with JWST

Nature of GN-z11

Tacchella+ (2023)

- But GN-z11 also host an accreting black hole!
- \rightarrow central point source is an AGN
- ➜ several spectral features (CIV1549; continuum spectral slope; density implied from permitted lines) point to Broad Line Region of AGN

- Compact, but can decompose light into point source + extended component
- **→ luminosity** is dominated by central point source, while the **stellar mass** is dominated by the extended component ("outshining")
- ➜ nuclear star-burst; bulge/core/GC formation?

Dark stars?

- Dark Stars, powered by dark matter (DM) heating super massive $(\sim 10^6$ M_☉)
- candidates
- But better data revealed emission lines in the spectrum, inconsistent with dark stars

September 30, 2024 Sandro Tacchella 30

Curtis-Lake, Carniani+ (2023) Robertson, Tacchella+ (2023)

 $GS-z12-0$ rest frame λ/Å

Too many UV-bright galaxies at z=9-12… possible explanations:

- Cosmology:
	- enhance matter power spectrum (Sabti+ 24)
	- Early Dark Energy (Shen+ [incl. ST] 24)
	- ➜ but degeneracy with baryonic physics (Khimey, Bose & Tacchella 21)
- Baryonic physics:
	- increasing the SFE in halos ("feedback-free starbursts"; Dekel+23; Li [incl. ST]+23)
	- decreasing dust attenuation towards high redshifts (Ferrara+23; Lu+24)
	-
	-
	- non stellar sources (e.g. AGN; dark stars; Inayoshi+22; Trinca+24; Hegde+24; Ilie+23)

- increase the scatter between halos and UV (Shen [incl ST]+ 23; Mason+23; Kravtsov & Belokurov 24) - vary initial mass function (IMF) at high redshifts (Inayoshi+22; Cueto+24; Trinca+24; Ventura+24)

➜ z>10 galaxies are diverse: sizes, attenuation, SFR, AGN, intense star formation

Conclusions

- JWST delivers exquisite data \rightarrow first time that we can do high-resolution (NIR) spectroscopy in space
- JWST surprised us: more UV bright galaxies in the early universe, galaxies with accreting black holes, massive quiescent galaxies, mature systems with dense cores…
- Over-abundance of UV bright galaxies:
	- ➜ could explain with changing cosmological model (f.e. Early Dark Energy), but "baryonic" solutions are more reasonable
	- \rightarrow galaxies are complicated systems... need to understand first the internal working of those before putting constraints on cosmology