

III' SHNTH I'RII.

ATLAS Standard Model Higgs Measurements

Hava Rhian Schwartz University of California, Santa Cruz

LHC Days - September 30, 2024

Outline

Overview of Recent Results

Higgs Production Measurements

Mass & Total Width Measurements

CP and Quantum Properties

Future Outlook

General Studies			VBF/VH Studies	
			VBF H→WW*→evµv, Run 2	November 2023
H→γγ, Run 2	December 2023		VH H→ττ, Run 2	December 2023
Off-shell H→ZZ, Run 2	December 2023		VBF H→γγ, Run 2	December 2023
$H \rightarrow \gamma \gamma + H \rightarrow ZZ$, Runs 1 + 2	<u>January 2024</u>		VBF WH Production, Run 2	February 2024
H→γγ + H→ZZ, Run 3	February 2024		High-p _⊤ VH→qqbb, Run 2	<u>April 2024</u>
H→Zγ, ATLAS+CMS, Run 2	<u>March 2024</u>		VBF H→ZZ→4ℓ, Run 2	<u>May 2024</u>
H(→γγ) + c, Run 2	<u>July 2024</u>	ן ו	VH H→bb/cc, Run 2	July 2024
H→ττ, Run 2	July 2024			
			ttH Studies	
Gluon Fusion Studies			ttH + tH H→bb CP, Run 2	<u>April 2024</u>
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$, Run 2	September 2023		ttH H→bb, Run 2	<u>July 2024</u>
H. Schwartz (LIC Santa Cruz ATLAS)			ttH + 4-top, Run 2	<u>July 2024</u>

Overview of Recent Results

- Growing numbers of Higgs production and decay modes have been combined to investigate interactions
 - Third-generation Higgs couplings well measured
 - Second-generation coupling measurements emerging
 - Remarkable alignment with SM predictions, constraining BSM models
- Coupling definition for particle p: $\circ \kappa_p^2 = (\sigma_p / \sigma_p^{SM}) \text{ or } (\Gamma_p / \Gamma_p^{SM})$
- Signal strength definition: • $\mu_{it} = (\sigma_i / \sigma_i^{SM})(B_t / B_t^{SM})$

140

160

Search for Higgs Boson Decay to a Z Boson and a Photon (CMS + ATLAS)

First evidence of $H \rightarrow Zy!$

- Combined ATLAS and CMS Result
 - ATLAS signal strength: $\mu_{H \rightarrow Zv} = 2.0^{+1.0}_{-0.8}$ 0

10-2

- CMS signal strength: $\mu_{H \rightarrow Z\gamma} = 2.4^{+1.0}_{-0.9}$ Ο
- Combined: $\mu_{H \rightarrow Zv} = 2.2 \pm 0.7$ 0
- **Observed significance**
 - Relative to $\mu=0$ null 0 hypothesis: 3.4o
 - Relative to SM prediction: 0 1.9σ (p-value=6%)
- Measured branching fraction: $(3.4 \pm 1.1) \times 10^{-3}$

Measurements of VH Higgs Production with Decays to Bottom and Charm Quarks

First observation of $Z \rightarrow cc$ with greater than 5σ !

- VZ measurements performed as validation
 - VZ, Z \rightarrow cc measured with significance 5.2 σ
 - \circ VZ, Z→bb measured with greater than 10σ
- VH Signal Strengths

$$\sim \mu_{VH,bb} = 0.91^{+0.16}_{-0.14}$$

- \circ $\mu_{VH,cc} = 1.0^{+5.4}$ -5.2
- VH, H→bb Significance
 - \circ Combined: 7.4 σ
 - ο ZH: 4.9σ
 - $\circ \quad \text{WH: } 5.3\sigma$

First observation of WH, $H \rightarrow bb$ with more than $5\sigma!$

ATLAS-CONF-2024-010

Measurement of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ at $\sqrt{s}=13.6$ TeV

- $H \rightarrow yy$: Extrapolated Higgs Cross-section ○ $\sigma_{pp \to H} = 67^{+12}$ pb
- $H \rightarrow 4\ell$: Extrapolated Higgs Cross-section $\sigma_{pp \rightarrow H}$ = 46 ± 12 pb 0
- Combined: $\sigma_{pp \rightarrow H} = 58.2 \pm 8.7 \text{ pb}$
 - SM prediction: $\sigma^{SM} = 59.9 \pm 2.6 \text{ pb}$ 0

Higgs Mass Measurement from $H{\rightarrow}\gamma\gamma$ and $H{\rightarrow}ZZ^*{\rightarrow}4\ell$ Runs 1 and 2

With precision of 0.09%, most precise Higgs mass measurement to date!

- Measured m_H=125.11 ± 0.09(stat.) ± 0.06(syst.) GeV
- Major improvements in $H \rightarrow \gamma \gamma$ channel
 - 4x better photon energy calibration
 - Most precise mass measurement in a single decay mode (0.11% precision)
- 4 combined measurements are compatible with a p-value of 18%

Phys. Rev. Lett. 131 (2023) 251802

Mass Width Measurement

Evidence of Off-shell H \rightarrow ZZ* and Constraints on Higgs Total Width

ZZ→4ł

- $ZZ \rightarrow 2l2v$
- Phys. Lett. B 846 (2023) 138223

- Evidence of off-shell H→ZZ* production, consistent with CMS experimental result
- $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ channels combined, with $m_{ZZ} \ge 200 \text{ GeV}$

$$\quad \mu_{\text{off-shell}} = 1.1^{+0.7}_{-0.6}$$

- Observed (exp) signif. = 3.3σ (2.2 σ)
- Higgs Total Width Measurement

$$\circ$$
 $\Gamma_{\rm H} = 4.5^{+3.3}_{-2.5} \,{\rm MeV}$

Γ_H ≤ 10.5 (10.9) MeV

Higgs Total Width Constraint from On-shell and Off-shell Higgs Boson Measurements

First Higgs total width constraint using both on-shell and off-shell Higgs production measurements

- Combination uses 4-top and ttH Higgs production measurements
- Observed (Exp) 95% CL Upper Limit:
 - Γ_H ≤ 450 (75) MeV
- If assuming only SM particles in loop processes:
 - Γ_H ≤ 160 (55) MeV
- Sensitivity dominated by modeling uncertainties, predominantly of 4-top-quark production

CP and Quantum Properties

CP-Invariance in Higgs Electroweak Couplings via VBF Higgs to 4 Leptons

Fit to shapes of *optimal observables* Normalized interference terms, CP-odd by Ο construction Shape-only contributions avoid uncertainties in cross-section measurements Some of the tightest HVV vertex EFT operator constraints to date ATLAS ATLAS H→ZZ*→4I H→ZZ*→4 Uncertainty √s = 13 TeV 139 fb √s = 13 TeV 139 fb = -1.5 ggF c Data Mean: 0.03+0.0 Data Mean: -0.06±0.1 00 HWB

H. Schwartz (UC Santa Cruz, ATLAS)

CP and Quantum Properties

CP-Nature of top-Higgs Yukawa Coupling via ttH and tH with Higgs to bb

- First study of CP properties of top-Higgs Yukawa coupling in this decay mode
- Fit to dedicated CP-sensitive variables
 - Reliant on angular separations between 0 reconstructed top guarks or lepton candidates
- Dominated by modeling uncertainties of the tt + \geq 1b background

$$b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

where p_i are the momenta of the event top quarks (tend to be produced closer to beamline in CP-odd scenario)

Phys. Lett. B 849 (2024) 138469

CP and Quantum Properties

-0.5

Phys. Rev. Lett.

-1

▲ (±1, ∓1)

20 exp. 20 obs.

5σ exp. • 5σ obs.

Higgs comb. Best Fit

K7

13

₽ SM pred.

VBF WH

Best Fit

0.5

Determination of the Relative Sign of HW and HZ Couplings via VBF WH

- Observed signal strength:
 - μ =0.9 ± 2.5(stat.) ± 3.3(syst.) Ο

Future Outlook

Exciting measurements to look out for in Run 3:

- Boosted Higgs
- Di-Higgs and Multi-Higgs Measurements
- ZH production
- Off-shell Higgs and Total Width Measurements
- STXS Measurements with binning modifications
- CP Violation via ttH

Upcoming improved tools:

- GN2 Tagging
- N³LO PDF's
- Improved ggZH MC
- Controlled PS Uncertainties

Concluding Remarks

- ★ Many wonderful Higgs results in the last year from ATLAS. We witnessed:
 - $\circ \quad \text{First evidence of } H{\rightarrow} Z\gamma$
 - First observation of WH H→bb
 - Most precise Higgs mass measurement to date
 - Strongest constraints to date on CP properties and coupling modifiers

★ Having already achieved double the data with Run 3, results will push above the evidence and observation thresholds in the near future!

H. Schwartz (UC Santa Cruz, ATLAS)

Nature 607, 52-59 (2022)

