

ICEPP

Measurements of Higgs boson production with a vector boson with the ATLAS detector

Aoto Tanaka, The University of Tokyo (ICEPP) on behalf of the ATLAS Collaboration

LHC Days in Split 30 Sep. 2024

Vector boson associated Higgs (VH) production

LHC Days in Split

Physics motivation of Higgs precise measurement

- Search the deviation from the SM by:
 - Coupling constant of Higgs
 - Fiducial differential cross-section
- Difficulty of VH measurement
 - \succ Low VH cross-section \times branching ratio
 - H \rightarrow bb channel earns enough statistic
 - \rightarrow Need to constrain huge background
- Thanks to LHC's huge statistic, able to challenge other channels
 Other Higgs decays (eg. WW, ττ, cc ...)
- Key of VH analysis to measure properties with higher precision
 - ➔ Improving particle identification performance
 - ➔ Better constraint on background

Aoto Tanaka (U-Tokyo)

VH analyses overview with full Run2 in ATLAS

- Identification framework upgraded: b-jet, c-jet, τ ID, etc...
- **1st** VH measurements performed with full Run2 dataset
 - Integrated luminosity: 140 fb⁻¹, Centre of mass: 13 TeV
- Some 2nd updated analyses also performed exploiting improved analysis techniques for better precision
- All major Higgs decays in VH production are analysed
- All results are consistent with SM prediction within their uncertainties

- ,H(bb/cc) : ATLAS-CONF-2024-010
 - : Phys. Rev. Lett. 132 (2024) 131802
 - : ATLAS-CONF-2022-067
 - : Phys. Lett. B 855 (2024) 138817
 - : arXiv:2407.16320
 - : Eur. Phys. J. C 80 (2020) 957
 - : JHEP 07 (2023) 088
 - : Phys. Lett. B 812 (2021) 135980

LHC Days in Split

30 Sep. 2024

VH,H→bb/cc

Very latest V(lep)H->hadron analysis in ATLAS

ATLAS Experiment © 2018 CERN

LHC Days in Split

30 Sep. 2024

What's new in VH, H→bb/cc analysis?

- Analysis strategy and techniques
 - > Combined fit with VH,H \rightarrow bb and VH,H \rightarrow cc
 - \rightarrow Better constraint on background events with CRs in VH,H \rightarrow cc
 - New flavour tagging algorithm
 - \rightarrow Better tagging performance for hadronic final states
 - ➢ Final discriminant MVA: Re-optimize in resolved VH,H→bb

and first apply in VH, $H\rightarrow$ cc, boosted VH, $H\rightarrow$ bb

Results

Aoto Tanaka (U-Tokyo)

> Updated precise measurement of signal strength (μ_{VH}^{bb} , μ_{VH}^{cc}) from previous result *1*2

- Differential cross-section measurement for VH production
 - Updated result from previous result *1
 - New result with new additional split bins

Analysis strategy

Flavour tagging

- Updated the flavour tagging algorithm (MV2c \rightarrow DL1r)
 - > Deep neural network to tag b-, c-, light-jets using b-, c-jet kinematic features as training inputs

ATLAS Simulation

 $\sqrt{s} = 13$ TeV, $t\bar{t}$ events

Anti- $k_T R = 0.4$ PFlow jets

20 GeV < p_T < 250 GeV, $|\eta|$ < 2.5

MV2c10

DL1 ($f_c = 0.018$)

DL1r ($f_c = 0.018$)

light-flavour jet rejection

c-jet rejection

b-tag working point (WP) and c-tag WP are obtained orthogonally

Inclusive result of VH,H→bb

- Fitted signal and background get good closure with data
- Uncertainty of signal strength estimation (VH,H \rightarrow bb) ~15 %
 - Improved ~14 % from previous analysis [ATLAS-CONF-2021-051]
- WH,H→bb observed first time

Aoto Tanaka (U-Tokyo)

Inclusive result of VH,H→cc

- Fitted signal and background get good closure with data
- VH,H→cc observed (expected) limits at 95 % CL: 11.2 (10.4) x SM
 - Improved x 3 from previous analysis [Eur. Phys. J. C 82 (2022) 717]
- As cross-check of this analysis, VZ,Z \rightarrow cc first observed; 5.2 σ

All plots [ATLAS-CONF-2024-010]

Fiducial differential cross-section measurement

- Since enough statistic available in V(lep)H,H->bb,
 fiducial differential cross-section measurement also performed
- Simplified Template Cross-Section (STXS) framework
 - Divide phase space into simplified "bins"
 - STXS bins defined by whole LHC group
 - Minimize theoretical dependency
 - Maximize BSM sensitivity
 - Combine ATLAS and CMS results to verify theory models
- p_T^v bin
 - BSM sensitivity in High p_T^V region after SMEFT interpretation
- ISR nJet bin
 - Reduce QCD scale's huge variation

Updated STXS result (only split in p_T^V)

- Added new bin; WH, $75 < p_T^{W,t} < 150 \text{ GeV}$
- New split in high p_T region; $p_T > 600 \text{ GeV}$
- Good agreement with SM prediction
- Uncertainty of observed cross-section in major bins: ~30 ~80 %

New STXS result (split in $p_T^V x$ nJet)

New split with number of additional jets (nJets)

- The statistics of ZH is enough to split with nJets
- Good agreement with SM prediction

Aoto Tanaka (U-Tokyo)

- Uncertainty of ZH, nJ = 0 bins: ~50 %
- Uncertainty of ZH, nJ \geq 1 bins: ~60 ~400 %
- In the future, STXS bin in WH will split with nJets with enough statistic

$p_T^V \times nJ(ZH)$ spectrum cross-section plot $B_{\rm lep}^{\sf V}$ [fb] 10° **ATLAS** Preliminary VH, $H \rightarrow bb$, $V \rightarrow leptons$ cross-sections Observed Stat. unc. Tot. unc. √s=13 TeV, 140 fb⁻¹ 10 Theo. unc. Expected 10 V = ZV = WХ ≥ 1 J i 0 J ≥ 1 J i 0 J ≥ 1 J i т В 10 10 Х ю⁻ 10-Ratio to SM 75 TISO Gev T50 0 2 1 1 50 ,

[ATLAS-CONF-2024-010]

Latest results of the other VH measurements

Thanks to

- Improved particle identification framework in the ATLAS
- (For rare decays' analyses) LHC's huge statistic

Analyses of other channels

■ V(had)H, H→ bb analysis [Phys. Rev. Lett. 132 (2024) 131802]

$$\mu_{VH}^{bb} = 1.39 \,{}^{+1.02}_{-0.88} \, \begin{pmatrix} +0.63 \\ -0.63 \end{pmatrix} stat. \begin{pmatrix} +0.80 \\ -0.61 \end{pmatrix} syst.$$

Measured signal strength is consistent with SM prediction

Systematic uncertainty is dominant

Major uncertainties: b-tag scale factor, data-driven multi-jet estimation

 \rightarrow More chance for precise measurement in boosted all-hadronic phase space

- V(lep/had)H, H→WW analysis [<u>ATLAS-CONF-2022-067</u>] $\mu_{VH}^{WW} = 0.92 \stackrel{+0.25}{_{-0.23}} \binom{+0.21}{_{-0.20}} stat. \binom{+0.13}{_{-0.11}} syst.$
 - Combined V(leptonic decay)*¹ and V(hadronic decay) analyses
 - Measured signal strength is consistent with SM prediction
 - Statistical uncertainty is dominant

LHC Days in Split

*1 Phys. Lett. B 798 (2019) 134949

30 Sep. 2024

Analyses relating to $H \rightarrow \tau \tau$

- Hadronic tau (τ_{had}) identification upgraded from BDT-based to RNN-based
 - \succ New framework, widely used in $\tau_{had}\text{-}related$ analyses in the ATLAS
- V(lep)H, H→ $\tau\tau$ analysis [Phys. Lett. B 855 (2024) 138817] $\mu_{VH}^{\tau\tau} = 1.28 \substack{+0.39 \\ -0.36} \binom{+0.30}{-0.29} stat. \binom{+0.25}{-0.21} syst.$
 - Measured signal strength is consistent with SM prediction
 - Statistical uncertainty is dominant
- V(had)H, H→ττ analysis [<u>arXiv:2407.16320</u>]

$$\mu_{VH}^{\tau\tau} = 0.91 \stackrel{+0.63}{_{-0.60}} \binom{+0.53}{_{-0.51}} stat. \binom{+0.35}{_{-0.33}} syst.$$

- > Measured signal strength is consistent with SM prediction
- Statistical uncertainty is dominant

Recap of full Run2 VH measurement results

	VH Anal	yses	Inclusive Signal strength (μ)	Observed Significance	References
<mark>2nd</mark>	V(lep)	,H(bb/cc)	$\mu_{VH}^{bb} = 0.91 \stackrel{+0.16}{_{-0.14}}$ $\mu_{VH}^{cc} = 1.0 \stackrel{+5.4}{_{-5.2}}$	7.4 σ (95% CL upper limit) 11.3 xSM	ATLAS-CONF-2024-010
<mark>1st</mark>	V(had)	,H(bb)	$\mu_{VH}^{bb} = 1.39 {}^{+1.02}_{-0.88}$	1.7 σ	<u>Phys. Rev. Lett. 132 (2024) 131802</u>
<mark>2nd</mark>	V(lep/had	d),H(WW)	$\mu_{VH}^{WW} = 0.92 {}^{+0.25}_{-0.23}$	4.6 σ	ATLAS-CONF-2022-067
<mark>1st</mark>	V(lep)	,Η(ττ)	$\mu_{VH}^{\tau\tau} = 1.28 {}^{+0.39}_{-0.36}$	4.2 σ	<u>Phys. Lett. B 855 (2024) 138817</u>
<mark>2nd</mark>	V(had)	,Η(ττ)	$\mu_{VH}^{\tau\tau} = 0.91 {}^{+0.63}_{-0.60}$	(Not published)	<u>arXiv:2407.16320</u>
<mark>1st</mark>	V(lep/had	d),H(ZZ)	$\mu_{VH}^{ZZ} = 1.43 {}^{+1.16}_{-0.94}$	(Not published)	<u>Eur. Phys. J. C 80 (2020) 957</u>
<mark>1st</mark>	V(lep/had	d),H(үү)	$\mu_{WH}^{\gamma\gamma} = 1.5 ^{+0.6}_{-0.5}$ $\mu_{ZH}^{\gamma\gamma} = -0.2 ^{+0.6}_{-0.5}$	(Not published)	<u>JHEP 07 (2023) 088</u>
<mark>1st</mark>	V(lep)	,H(μμ)	$\mu_{VH}^{\mu\mu} = 5.0 {}^{+3.5}_{-3.5}$	(1.2σ) (combined H production)	Phys. Lett. B 812 (2021) 135980
	* 1st :The first p	ublication for the	e mode with full Run2, <mark>2nd</mark> :The se	econd publication for t	he mode with full Run2
	Aoto Tanaka (U-	Tokyo)	LHC Days in Sp	blit	30 Sep. 2024 16 /17

Conclusion

- Latest and wonderful results for VH production measurement are available with full Run2 dataset with the ATLAS experiment
 - > Thanks to LHC's huge statistic and updated particle identification used in the ATLAS
- All results are consistent with SM prediction

H→bb : Systematic uncertainty dominant; New analysis technique demanded

Other decays : Statistic limited; Looking forward to seeing results with Run3 dataset !!

by Steve Jurvetson - The Spanish Fortress in Hvar, Croatia

LHC Days in Split

30 Sep. 2024

18

Backup

LHC Days in Split

30 Sep. 2024

V(lep/had)H, H→WW analysis - results

[ATLAS-CONF-2022-067]

- Statistical uncertainty is dominant in all POIs
- Inclusive (VH) signal strength is consistent with SM prediction within its uncertainty

V(lep)H, $H \rightarrow \tau \tau$ analysis

- τ_{had} identification upgraded from BDT-based to RNN-based
- Fit simultaneously in 4 regions (ZH, WH) \times ($\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had}$)
- Neural Network used for final discriminant variable
- Fitted signal and background get good agreement with data

Ē

Statistical uncertainty is still dominant

Aoto Tanaka (U-Tokyo)

V(had)H, $H \rightarrow \tau \tau$ analysis

This analysis focused on the STXS measurement in ggF, VBF production, which have enough statistic

VH results

Aoto Tanaka (U-Tokyo)

No big update from previous analysis [JHEP 08 (2022) 175]

Statistical uncertainty is dominant

						<u>7.10520</u>
			ATLAS	H→τı	τ √s = 13 Te	∍V, 140 fb ⁻¹
			-Tot. Syst.	Theory p-value	ue = 99%	
Production mode	VH				Tot. (Stat.	Syst.)
Best-fit value Total uncertainty	0.91 ±0.62	ggF	P	0.94	+ 0.32 (+0.15 - 0.27 (-0.15	+0.28 -0.22)
Statistical uncertainty Total systematic uncertainty	± 0.52 ± 0.34	VH	I	- 0.91	+ 0.63 - 0.60 (+0.53 -0.51	+0.35 _0.33)
Samples size Theoretical uncertainty in signal	± 0.25 ± 0.13	VBF	H <mark>ar</mark> i	0.93	+ 0.17 (+0.12 - 0.15 (-0.11	+0.12 -0.10)
Jet and $E_{\rm T}^{\rm miss}$ Hadronic τ -lepton decays	±0.11 ±0.04	ttH	•	0.77	+ 1.01 (+0.87 - 0.92 (-0.77	+0.52 -0.50)
Misidentified τ -lepton background Luminosity	± 0.11 ± 0.02	Combined	 M	0.93	+ 0.12 (+0.07 - 0.11 (-0.06	+0.10 -0.09)
Theoretical uncertainty in top-quark processes Theoretical uncertainty in Z + jets processes	± 0.02 ± 0.02		0 1	2 3	4	5 6
Electrons and muons	±0.01 ±0.02				(σ×B) ⁿ	^{neas} /(σ×B) SM
LHC Davs	in Spl	lit	3	80 Sep. 2024	23	< M-

[arViv:2407 16220]

VH, H→bb/cc

* V(lep)H(bb/cc) shown in the ICHEP 2024 by Francesco

* V(had)H(bb) shown in the Higgs Hunting 2023 by Andrea

LHC Days in Split

30 Sep. 2024

24

Profit of STXS measurement

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(D)}}{\Lambda^{D-4}} Q_{i}^{(D)},$$

Wilson coefficient	Operator	Impacted ver	rtex
		Production	Decay
C _{HWB}	$Q_{HWB} = H^{\dagger} \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	HZZ	
c_{HW}	$Q_{HW} = H^{\dagger} H W^{I}_{\mu\nu} W^{\mu\nu}_{I}$	HZZ, HWW	
$c_{Hq}^{(3)}$	$Q_{Hq}^{(3)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} H) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	qqZH, qq'WH	
$c_{Hq}^{(1)}$	$Q^{(1)}_{Hq} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	qqZH	
c_{Hu}	$Q_{Hu} = (H^{\dagger} i \overleftrightarrow{D_{\mu}} H) (\bar{u}_p \gamma^{\mu} u_r)$	qqZH	
C _{Hd}	$Q_{Hd} = (H^{\dagger} i \overleftrightarrow{D_{\mu}} H) (\bar{d}_p \gamma^{\mu} d_r)$	qqZH	
C _{dH}	$Q_{dH} = (H^{\dagger}H)(\bar{q}dH)$		Hbb

Wilson coefficient	Eigenvalue	Eigenvector
c_{E0}	2000	$0.98 \cdot c_{Hq}^{(3)}$
c_{E1}	38	$0.85 \cdot c_{Hu} - 0.39 \cdot c_{Hq}^{(1)} - 0.27 \cdot c_{Hd}$
c_{E2}	8.3	$0.70 \cdot \Delta BR/BR_{SM} + 0.62 \cdot c_{HW}$
<i>CE</i> 3	0.2	$0.74 \cdot c_{HWB} + 0.53 \cdot c_{Hq}^{(1)} - 0.32 \cdot c_{HW}$
c_{E4}	$6.4 \cdot 10^{-3}$	$0.65 \cdot c_{HW} - 0.60 \cdot \Delta BR/BR_{SM} + 0.35 \cdot c_{Hq}^{(1)}$

Aoto Tanaka (U-Tokyo)

[Eur. Phys. J. C 81 (2021) 178]

LHC

Main background events

30 Sep. 2024

Event categorization

Aoto Tanaka (U-Tokyo)

Higgs candidate jet 1

Channel	Region	BB	$C_{T}N \mid C_{T}C_{L} \mid C_{T}C$	$\mathbf{z}_{\mathrm{T}} \mid \mathrm{BC}_{\mathrm{T}}$	C_LN
	High- ΔR CR	No			
0-lepton	$\mathrm{BC}_{\mathrm{T}}\mathrm{Top}~\mathrm{CR}$		—	$m_{j_1j_2}$	—
	$V + lf \operatorname{CR}$			Norm. Only	
	Low- ΔR CR	$BDT_{Low-\Delta R CR}$		_	
	High- ΔR CR	p_{T}^{V}	$m_{j_1 j_2}$		
1-lepton	$\mathrm{BC}_{\mathrm{T}}\mathrm{Top}~\mathrm{CR}$		$m_{j_1j_2}$	_	
	$V + lf \operatorname{CR}$		_		p_{T}^{V}
	High- ΔR CR	p_{T}^{V}	$m_{j_1 j_2}$		_
2-lepton	Top e μ CR	—	Norm. Only	-	
	$V + lf \operatorname{CR}$				p_{T}^{V}

30 Sep. 2024

Constrain on background events

[ATLAS-CONF-2024-010]

Detailed analysis regions

g A

MC sample list

Process	ME generator		PS and Hadronisation	UE tune	Cross-section order				
Signal, mass set to 125GeV and $b\bar{b}$ branching fraction to 58%									
$qq \rightarrow VH$	Powheg Box v2 $[53] +$ GoSAM $[54]+$ MiNLO $[65,66]$	NNPDF3.0NLO ^(*) [55]	Рутніа 8.245 [56]	AZNLO [57]	NNLO(QCD) ^(\dagger) + NLO(EW) [58,59,60,61,62,63,64]				
$gg \rightarrow ZH$ Powheg Box v2		NNPDF3.0NLO $^{(\star)}$	Pythia 8.245 AZNLO		NLO+ NLL [67,68,69,70,71]				
Top quark, mass set t	o $172.5\mathrm{GeV}$								
$t\bar{t}$ s-chan. single top t-chan. single top Wt	Powheg Box v2 [72] Powheg Box v2 [75] Powheg Box v2 [75] Powheg Box v2 [78]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [73] A14 A14 A14 A14	NNLO+NNLL [74] NLO [76] NNLO [77] Approx. NNLO+NNLL [79]				
Vector boson + jets									
V + jets	Sherpa 2.2.11 [81,82,83]	NNPDF3.0NNLO	Sherpa 2.2.11 [84,85]	Default	NNLO [80]				
Diboson									
$\begin{array}{c} qq \rightarrow VV \\ gg \rightarrow VV \end{array}$	SHERPA 2.2.11 SHERPA 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.11 Sherpa 2.2.2	Default Default	NLO ^(‡) NLO ^(‡)				

LHC Days in Split

30

Jet energy correction

[ATLAS-CONF-2024-010]

Event migration in STXS measurement

[ATLAS-CONF-2024-010]

Aoto Tanaka (U-Tokyo)

Background fraction in every analysis region

[ATLAS-CONF-2024-010]

0-lepton, Resolved VH, $H\rightarrow$ bb,cc

Aoto Tanaka (U-Tokyo)

1-lepton, Resolved VH, $H\rightarrow$ bb,cc

33

Background fraction in every analysis region

[ATLAS-CONF-2024-010]

Aoto Tanaka (U-Tokyo)

Input variables for the MVA final discriminant variable

-	Resolv	edVH, H –	$ ightarrow b\bar{b},c\bar{c}$	$\operatorname{Boosted}_{0} VH, H \to b\bar{b}$			
Variable	0-lepton	1-lepton	2-lepton	0-lepton	1-lepton	2-lepton	
m_H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$m_{j_1 j_2 j_3}$	\checkmark	\checkmark	\checkmark				
$p_{T}^{j_{1}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$p_{\rm T}^{j_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$p_{\mathrm{T}}^{\mathbf{j}_{3}}$				\checkmark	\checkmark	\checkmark	
$\frac{1}{\sum p_{\mathrm{T}}^{j_i}, i > 2}$	\checkmark	\checkmark	\checkmark				
$\qquad \qquad $	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\qquad \qquad $	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	\checkmark	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark		\checkmark	\checkmark		
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			\checkmark				
$ \Delta \phi(ec{V},ec{H}) $	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$ \Delta y(ec V,ec H) $		\checkmark	\checkmark		\checkmark	\checkmark	
$\Delta R(ec{j_1},ec{j_2})$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\min[\Delta R(\vec{j_i}, \vec{j_1} \text{ or } \vec{j_2})], i > 2$	\checkmark	\checkmark					
N(track-jets in J)				\checkmark	\checkmark	\checkmark	
N(add. small R-jets)				\checkmark	\checkmark	\checkmark	
colour ring				\checkmark	\checkmark	✓	
$ \Delta \eta(\vec{j_1}, \vec{j_2}) $	\checkmark						
$H_{\rm T} + E_{\rm T}^{\rm miss}$	\checkmark						
m_{T}^{W}		\checkmark					
$m_{ m top}$		\checkmark					
$\min[\Delta \phi(ec{\ell},ec{j_1} ext{ or } ec{j_2})]$		\checkmark					
p_{T}^{ℓ}					\checkmark		
$(p_{\rm T}^{\ell} - E_{\rm T}^{\rm miss})/p_{\rm T}^{V}$					\checkmark		
$m_{\ell\ell}$			\checkmark				
$\cos\theta^*(\vec{\ell^-},\vec{V})$			\checkmark			\checkmark	

Aoto Tanaka (U-Tokyo)

Diboson cross-check fit results

[ATLAS-CONF-2024-010]

	ATLAS	ATLAS Preliminary VZ, Z→ bb/cc̄, √s=13 TeV, 140.0							
	_Tota	I -Stat.		Tot.	(Stat., S	yst.			
WZ, Z→ c̄c		⊢	- 1.46	+0.48 -0.41	(+0.24 , +0 -0.24 , -0	.42 .34)			
ZZ, Z→ c̄c	⊦⊦-●- }-		0.71	+0.28 -0.24	(+0.17 , +0 -0.17 , -0	.22 .18			
Comb. VZ, Z→ c̄c	H -4		0.97	+0.25 -0.22	(+0.13 , +0 -0.13 , -0	.22 .18			
	0.5	1 1.5	2 2	.5	3 3.5				
						μ_{v}^{cc}			

LHC Days in Split

 μ_{VZ}^{cc}

Aoto Tanaka (U-Tokyo)

Diboson MVA post-fit plots

[ATLAS-CONF-2024-010]

MVA Post-fit plots – Resolved VHbb

[ATLAS-CONF-2024-010]

LHC Days in Split

30 Sep. 2024

MVA Post-fit plots – Boosted VHbb

[ATLAS-CONF-2024-010]

MVA Post-fit plots - VHcc

[ATLAS-CONF-2024-010]

VHbb mu (Comb & WH & ZH)

VHbb and VHcc

[ATLAS-CONF-2024-010]

where B_{hbb}^{SM} and B_{hcc}^{SM} are the $H \to b\bar{b}$ and $H \to c\bar{c}$ branching fraction prediction in the SM.

First, the direct κ_c constraint from the $VH, H \rightarrow c\bar{c}$ process is extracted by setting $\kappa_b = 1$ in Eq. 2 and not parameterising μ_{VH}^{bb} . Constraints on κ_c are set using the profile-likelihood ratio test statistic and are

Aoto Tanaka (U-Tokyo)

VHcc mu and limit

Aoto Tanaka (U-Tokyo)

Breakdown table of μ uncertainty

LHC Days in Split

CMS	VHbb [Phys. Rev.	D 109 (2024) 092011]
		$\Delta \mu$
	Background (theory)	+0.043 - 0.043
	Signal (theory)	+0.088 - 0.059
	MC sample size	+0.078 - 0.078
	Simulation modeling	+0.059 - 0.059
	b tagging	+0.050 - 0.046
	Jet energy resolution	+0.036 - 0.028
	Int. luminosity	+0.032 - 0.027
	Jet energy scale	+0.025 - 0.025
	Lepton ident.	+0.008 - 0.007
	Trigger ($\vec{p}_{\rm T}^{\rm miss}$)	+0.002 - 0.001

CMS VHcc [Phys. Rev. Lett. 131 (2023) 061801]

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
c jet identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Integrated luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

Aoto Tanaka (U-Tokyo)

	AILAJ	[AILAS-CONF-2024-010]							
Source of un	certainty	σ_{μ}							
Source of un		$VH, H \to b\bar{b}$	$WH, H \rightarrow b\bar{b}$	$ZH,H\to b\bar{b}$	$VH, H \to c\bar{c}$				
Total		0.151	0.200	0.220	5.29				
Statistical		0.097	0.139	0.151	3.94				
Systematic		0.116	0.144	0.160	3.53				
Statistical u	ncertainties								
Data statist	ical	0.089	0.129	0.137	3.70				
$t\bar{t} \ e\mu \ control$	l region	0.009	0.004	0.020	0.06				
Background	floating normalisations	0.034	0.049	0.040	1.23				
Other VH f	loating normalisation	0.007	0.013	0.007	0.24				
Simulation s	samples size	0.023	0.034	0.030	\parallel 1.61				
Experimenta	al uncertainties								
Jets		0.028	0.035	0.030	1.00				
$E_{\rm T}^{\rm miss}$		0.009	0.004	0.018	0.24				
Leptons		0.004	0.004 0.002		0.23				
	b-jets	0.020	0.018	0.026	0.30				
b-tagging	<i>c</i> -jets	0.013	0.017	0.012	0.73				
	light-flavour jets	0.006	0.009	0.008	0.67				
Pile-up		0.009	0.017	0.003	0.24				
Luminosity		0.006	0.007	0.006	0.08				
Theoretical	and modelling uncertaint	ties							
Signal		0.073	0.066	0.112	0.56				
Z + jets		0.039	0.017	0.079	1.76				
W + jets		0.055	0.087	0.027	1.41				
$t\bar{t}$ and Wt		0.018	0.032	0.018	1.03				
Single top q	uark $(s-, t-ch.)$	0.010	0.018	0.003	0.15				
Diboson		0.032	0.040	0.048	0.51				
Multi-jet		0.006	0.010	0.005	0.57				

ΛΤΙ ΛΟ

30 Sep. 2024

STXS measurement (Old scheme)

Not published

30 Sep. 2024

STXS measurement (New Scheme)

[ATLAS-CONF-2024-010]

Uncertainties of STXS measurement

STXS region			SM prediction			Measurement		Stat. unc.	Sys	st. unc. [fb]		
Process	$p_{\rm T}^{V, t}$ interval	$N_{ m jet}^{ m t}$		[fb]			[fb]		[fb]	Th. sig.	Th. bkg.	Exp.
	75–150 GeV	≥ 0	79.2	±	2.8	3	±	100	41	13	88	35
	$150250~\mathrm{GeV}$	≥ 0	24.3	\pm	1.0	23	\pm	10	7	2	7	3
$W(\ell u)H$	$250400~\mathrm{GeV}$	≥ 0	5.90	\pm	0.25	7.9	\pm	2.0	1.8	0.5	0.8	0.3
	$400600~\mathrm{GeV}$	≥ 0	1.03	\pm	0.05	-0.11	\pm	0.54	0.46	0.05	0.24	0.09
	$> 600 { m ~GeV}$	≥ 0	0.20	\pm	0.01	0.26	\pm	0.21	0.20	0.02	0.04	0.03
		≥ 0	50.7	\pm	3.9	51	\pm	32	24	8	19	11
	$75150~\mathrm{GeV}$	=0	29.9	\pm	2.5	38	\pm	22	17	4	12	6
		≥ 1	20.7	\pm	2.6	6	\pm	25	25	6	9	8
		≥ 0	18.7	±	2.3	18	±	6.0	4.5	2.5	3.0	1.0
7 (00)	$150250~\mathrm{GeV}$	=0	9.0.	±	1.3	8.0	\pm	3.2	2.7	0.9	1.4	0.5
$Z(\ell\ell/\nu\nu)H$		≥ 1	9.7	\pm	1.9	11	\pm	7.3	6.0	2.1	3.4	1.5
		≥ 0	4.15	\pm	0.45	3.5	\pm	1.5	1.3	0.5	0.5	0.2
	$250400~\mathrm{GeV}$	=0	1.70	±	0.22	1.31	\pm	0.72	0.65	0.16	0.25	0.10
		≥ 1	2.45	\pm	0.45	2.6	\pm	2.1	1.9	0.4	0.7	0.3
	$400–600~{\rm GeV}$	≥ 0	0.62	±	0.05	0.60	±	0.40	0.37	0.07	0.12	0.08
	> 600 GeV	≥ 0	0.11	±	0.01	-0.10	±	0.12	0.12	0.01	0.03	0.01

[ATLAS-CONF-2024-010]

Significance of STXS measurement

[ATLAS-CONF-2024-010]

STXS region	post-fit expected	observed	STXS region	post-fit expected	observed
$WH, 75 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 150 \mathrm{GeV}$	0.7σ	0.0σ	$WH, 75 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 150 \mathrm{GeV}$	0.8σ	0.0σ
$WH, 150 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 250 \text{ GeV}$	2.4σ	2.3σ	$WH, 150 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 250 \mathrm{GeV}$	2.4σ	2.3σ
$WH, 250 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 400 \mathrm{GeV}$	3.2σ	4.4σ	$WH, 250 \text{ GeV} < p_{\mathrm{T}}^{\overline{V},t} < 400 \mathrm{GeV}$	3.2σ	4.4σ
$WH, 400 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 600 \text{ GeV}$	1.6σ	-0.2 σ	$WH, 400 \text{ GeV} < p_{\mathrm{T}}^{\overline{V},t} < 600 \mathrm{GeV}$	1.6σ	-0.2 σ
$WH,p_{ m T}^{V,t}>600{ m GeV}$	1.0σ	1.5σ	$WH, p_{\rm T}^{V,t} > 600 { m GeV}$	1.0σ	1.5σ
$ZH, 75 { m GeV} < p_{ m T}^{V,t} < 150{ m GeV}$	1.6σ	1.6σ	$ZH, 75 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 150 \mathrm{GeV}, 0 \mathrm{jet}$	1.4σ	1.8σ
$ZH, 150 { m GeV} < p_{ m T}^{V,t} < 250{ m GeV}$	3.5σ	3.4σ	$ZH, 75 \text{ GeV} < p_{\mathrm{T}}^{\tilde{V},t} < 150 \mathrm{GeV}, \geq 1 \text{ jet}$	0.9σ	0.3σ
$ZH, 250 { m GeV} < p_{ m T}^{V,t} < 400 { m GeV}$	3.3σ	2.7σ	$ZH, 150 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 250 \text{ GeV}, 0 \text{ jet}$	3.0σ	2.8σ
$ZH, 400 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 600 \mathrm{GeV}$	1.7σ	1.7σ	$ZH, 150 \text{ GeV} < p_{\mathrm{T}}^{\hat{V},t} < 250 \text{ GeV}, \geq 1 \text{ jet}$	1.4σ	1.7σ
$ZH, p_{\rm T}^{V,t} > 600 {\rm GeV}$	0.8σ	-0.7 σ	$ZH, 250 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 400 \text{ GeV}, 0 \text{ jet}$	2.7σ	$2.0 \ \sigma$
			$ZH, 250 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 400 \text{ GeV}, \ge 1 \text{ jet}$	1.3σ	1.3σ
			$ZH, 400 \text{ GeV} < p_{\mathrm{T}}^{V,t} < 600 \mathrm{GeV}$	1.7σ	1.7σ
			$ZH, p_{ m T}^{V,t} > 600 { m GeV}$	0.8σ	-0.7 σ

