Performance and Upgrade of ALICE

Alexander Schmah for the ALICE Collaboration LHC Days in Split - 2024

01.10.2024

Muon arm

27 September 2023, 04:50

Inner Tracking System (ITS2)

7 layers, 10 m² silicon based on MAPS, 12.5 B pixels

0.36% X₀ per layer pixel size: $30 \times 30 \ \mu m^2$ beam pipe radius: 18mm 3x higher pointing resolution

TDR: CERN-LHCC-2013-024

Alexander Schmah - GSI

0 - C

Additional tracking in front of absorber to add charm/beauty separation capabilities.

MFT design:

- 936 ALPIDEs on 280 ladders
- 10 double-sided half-disks
- Position: 46 cm 76.8 cm from the IP.
- Spacial resolution: $5 \,\mu m$.

01.10.2024

Muon Forward Tracker (MFT)

TDR: CERN-LHCC-2015-001

Reconstructed tracks:

- Acceptance: $2.4 < \eta < 3.6$ (limitation at high rapidity because of the beam pipe).
- Pointing resolution at IP region: ~ 100 µm (to be compared to γβc B \approx 5 mm).

Time Projection Chamber (TPC)

Time Projection Chamber (TPC) $V = 88 {
m m}^3$, $\Delta T < 0.1 {
m K}$

Quadruple-GEM readout Continuous readout 3.4 TeraBytes/second

TDR: CERN-LHCC-2013-020

01.10.2024

ALICE computing

01.10.2024

Alexander Schmah - GSI

3.6 TeraBytes/s raw data
→ up to 170 GBytes/s to disk
50k CPUs
2700 GPUs
130 PetaBytes disk

New online/offline system (O²) TDR (O²): CERN-LHCC-2015-006

Pb-Pb integrated luminosity 2023

<u>Run 3 (2022 - now)</u> **2023 pp**: 9.7pb⁻¹ or 500 billion minimum bias collisions

<u>Run 1 + 2 (2009 - 2018)</u> **pp** : 0.032pb⁻¹ minimum bias collisions, 2 billion events

Pb-Pb : 315 million minimum bias collisions, 149 million 0-10% central collisions

2022 pp: 19.3pb⁻¹ or 1000 billion minimum bias collisions **2023 Pb-Pb**: 1.5nb⁻¹ or 12 billion minimum bias collisions

7

p-p integrated luminosity

TPC Performance

01.10.2024

TPC data rates in Run 3

Dense packed format ~50 kHz Pb-Pb: 800 GBytes/s (CRU - Common Readout Unit) \rightarrow still about 20% margin to readout limit

TPC data rate GB/s

01.10.2024

Intrinsic TPC resolution

TDR: CERN-LHCC-2013-020

- Very low IR p-p \rightarrow low occupancy \rightarrow mainly TPC intrinsic effects.
- clusters dominate.

• At low drift length we have a significant fraction of one pad clusters. • At larger drift length diffusion is important and therefore multi-pad

• TPC intrinsic resolution is in perfect agreement with TDR expectations!

Space Charge Distortions (SCD)

- Ions from the amplification stage move back into the drift volume
- Ions are slow (~200 ms for full drift) ullet
 - Ions from large number of events pile up (~10k events @ 50 kHz IR)
 - Significant space-charge density (SCD) in drift volume
 - Large average distortions (O(5-10 cm))
 - Intrinsic TPC resolution: $\sim 200 \,\mu m$
 - Space charge density: $\rho_{SC} \sim I_{prim} \bullet gain \bullet IBF$ (ion back flow)
- Correction strategy based on reference tracks using ITS extrapolations.
- Corrections every few ms!
- Challenge for Run 3 with continuous readout

- raw TPC cluster
- hit in ITS, TRD or TOF
- interpolated position
- actual position
- extracted distortion vector /
- ----- reconstruction with distortions
- ----- enlarged search roads
- ITS-TRD-TOF interpolation

Space charge distortion maps

01.10.2024

- Average maps calculated once per hour.
- Distortions up to ~8 cm in radial direction!

Fluctuation corrections

- distortions (DCA_r).
- Significant improvement compared to flat weight.

ALI-PERF-582916

• Space-charge-distortion fluctuation correction done by scaling the average maps with the currents measured at the TPC pad planes every millisecond. • Not all ions from the past 200 ms contribute equally to the distortions! Δt – dependent weights developed based on correlation with observed

```
Alexander Schmah - GSI
```

14

01.10.2024

Alexander Schmah - GSI

Average occupancy for pads above threshold is below 20% for 50kHz Pb-Pb.

First Physics Performance Results from Run 3

01.10.2024

ALI-PREL-557553

• Charged particle multiplicity from Run 3 in agreement with world data.

01.10.2024

Charged particle multiplicity

Alexander Schmah - GSI

17

D mesons in Pb-Pb at 5.36 TeV

• Good performance in D-meson signal extraction in Run 3.

D-meson elliptic flow

01.10.2024

- Prompt D-meson v2 measured using Pb-Pb Run3 data sample.

 $c\tau \sim 150 \ \mu m$ for D mesons $c\tau \sim 500 \ \mu m$ for B mesons

Huge pp statistics analyzed:

- 0.97 pb⁻¹ (2022) for this figure
- 0.03 pb⁻¹ in Run 2
- New ITS \rightarrow improved DCA resolution, better control of charm & beauty background!
- Promising to look for thermal radiation in pp

ALI-PREL-548566

Quarkonia in pp at 13.6 TeV

- First ψ (2S) measurement in pp at mid-rapidity.
- Run 2: TRD triggered
- Run 3: Analysis trigger
- First quarkonium results in both barrel and MUON arm.

ALI-PERF-571258

J/ψ in forward direction

 $l_{\mathrm{J/\psi}}~\mathrm{(mm)}$

• Separation of J/ψ contributions in forward direction via MFT, based on measurement of pseudo-proper decay length.

$$l_z = \frac{(z_{PV} - z_{SV}) \cdot Mc^2}{p_z c}$$

ALI-PERF-578341

B-meson production in pp

- First direct observation of B⁰ meson in ALICE.
- Measured down to $p_T = 2 \text{ GeV/c}$.
- Better constrain of the open beauty production.

Antihelium-4 in pp collisions

01.10.2024

- First signal of ${}^{4}\overline{\text{He}}$ in pp collisions
- Fundamental to constrain ${}^{4}\overline{\text{He}}$ production in
 - interactions between cosmic rays and interstellar medium
- \rightarrow dominant background for dark matter searches in space experiments (AMS observes an unusual high flux)

Paolo Zuccon (Uni Trento + TIFPA), MIAPP 2022 at TUM "ANTINUCLEI IN THE UNIVERSE?", AMS02 Results

01.10.2024

Alexander Schmah - GSI

ALICE Upgrades

Forward Calorimeter

ALICE upgrades

ITS 3

ALICE 3

Forward calorimeter

FoCal Lol: CERN-LHCC-2020-009

TDR: CERN-LHCC-2024-004

- FoCal-E: Direct photons and high p_T neutral pions in forward direction
- FoCal-H: Jets + photon isolation
- High-granular Si-W EM calorimeter + conventional hadronic sampling calorimeter
- $3.4 < \eta < 5.8$

FoCal prototype

Inner Tracking System (ITS3)

ITS3 prototype

01.10.2024

Alexander Schmah - GSI

ALICE 3

Acceptance x IR rate: new opportunities

A. Andronic et al. JHEP (2021)

- Requires recombination of multiple charm quarks.
- - \rightarrow requires high statistics and excellent vertexing!

• Multi-charm baryons: unique probe of hadron formation. • Statistical hadronisation model: very large enhancement in AA.

Detector overview

 \rightarrow Tracking precision X 3: <10 μm at $p_T > 200 \text{ MeV}/c$ \rightarrow Acceptance $\times 4.5$: $|\eta| < 4$ (with particle ID) \rightarrow A-A rate \times 5 (pp \times 25)

Enables unique physics in Runs 5-6:

- QGP thermal radiation and its time dependence
- Chiral symmetry restoration in QGP
- Multi-charm hadrons
- Charm anticharm angular (de)correlation
- Charm h-h residual interaction
- Ultra-soft photons infra red limit of QFT

• • •

Letter of Intent: CERN-LHCC-2022-009

Positive review by LHCC in March 2022 **Scoping document** soon!

- Very successful Run 2 operations + publications!
- J/ψ , etc. look very promising.
- ulletprototypes ready.
- ALICE 3 LoI endorsed by LHCC! • → Moving forward to the R&D phase, scoping document submitted for LHCC review.

Huge amount of data already collected in Run 3 (7x central, 40x MB), first results from heavy flavour, di-leptons, elliptic flow, correlation, jets, forward

Run 4: ITS3 and FoCal technical design reports endorsed by LHCC. First

01.10.2024

Alexander Schmah - GSI

BACKUP

ALI-FERF-548516

Low mass dielectrons

Antihypernuclei in small systems

01.10.2024

- Observation of $\frac{3}{\Lambda}\overline{H}$ and $\frac{4}{\Lambda}\overline{H}$ in Run 3 minimum-bias pp collisions at 13.6 TeV.
- Measurements of their yields will be crucial to constrain production models of such heavy and loosely-bound states.

- closed to $R_{inner} = 5 \text{ mm} \text{ during stable beams}$

Vertex detector

Retractable vertex detector concept inside beampipe (Iris): • opened to $R_{inner} = 16$ mm for beam injection/adjustments

Component	Material	Thickness	Radiation length	
		(µm)	(cm)	$(\% X_0)$
Sensor	Si	30	9.37	0.032
Support	Be	250	35.28	0.071
Glue		50	35	0.014
Total				0.117

Table 9: Material for the first layer of the vertex detector.

R&D focusses on

- assembly and testing
- services: reduce (eliminate) interdependence between modules \bullet $(\rightarrow$ replacement of single modules)

ALICE 3 outer tracker

60 m² silicon pixel detector

- large coverage: 8 pseudorapidity units
- compact: $R_{out} \approx 80$ cm, $z_{out} \approx \pm 400$ cm
- high-spatial resolution: $\sigma_{pos} \approx 10 \, \mu m$

 \rightarrow pixel size ~ 50x50 µm²

- low material budget: $x/X_0 \sim 1\%$ per layer
- low power density: $\approx 20 \text{ mW/cm}^2$

concept of module ~10 x 10 cm² based on industry-standard processes for

