

Probing the Neutrino Mass Scale with the KATRIN Experiment

Alexander Marsteller for the KATRIN Collaboration

KIT - The Research University in the Helmholtz Association

www.kit.edu

Access to the absolute neutrino mass scale

			Ho Ho Ho Ho
	Cosmology	Search for 0vββ	β-decay & electron capture
Observable	$M_ u = \sum_i m_i$	$m^2_{etaeta}=\left \sum_i U^2_{ei}m_i ight ^2$	$m_eta^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	0.072 eV*	0.18 eV*	0.8 eV
Model dependence	Multi-parameter cosmological model	 Majorana v nuclear matrix elements, g_A 	Direct, only kinematics; no cancellations in incoherent sum
	ADAME, A. G., et al. Desi Collaboration arXiv preprint arXiv:2404.03002, 2024.	M. Agostini et al., Phys. Rev. Lett. 125, 252502 S. Abe et al., Phys. Rev. Lett. 130, 051801	M. Aker et al., Nat. Phys. 18, 160–166 (2022)

Tritium Laboratory Karlsruhe, Institute for Astroparticle Physics, Karlsruhe Institute of Technology

2 October 1, 2024 Alexander Marsteller

3 October 1, 2024 Alexander Marsteller

KATRIN, Nat. Phys. 18 (2022) 160

3 Oc

Complementarity and need for direct mass measurements

Standard neutrino picture: observations have to be found in colored regions

Beta decay $0\nu\beta\beta$ decay Cosmology 10⁰ 10⁰ **KATRIN(2022)** 10⁰ KamLAND-Zen (2023) 10-1 m_{etaeta} (eV) Inverted ordering (eV) m_eta (eV) **Planck (2020)** 10⁻¹ Inverted ordering 10-2 10⁻¹ $\sum m_{ u}$ Inverted ordering **DESI (2024**) Planck (2020) Planck (2020) Normal ordering Normal ordering ^{Planck} (2020) 10⁻² 10⁻³ Normal ordering 10^{-3} 10-4 10⁻² 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10⁻³ 10⁻² 10⁻¹ 10-4 10⁰ 10⁻⁴ 10⁻³ 10⁻² 10^{-1} 10^{0} Lightest neutrino mass (eV) Lightest neutrino mass (eV) Lightest neutrino mass (eV) Tie-breaker needed to exclude exotic models in neutrino nature or cosmology

KamLAND-Zen, PRL **130,** 051801 (2023)

Planck, Astron. Astrophys. **641** (2020) A6 *DESI, 2406.14554 (2024)*

Tritium Laboratory Karlsruhe, Institute for Astroparticle Physics, Karlsruhe Institute of Technology

Inspired by IUPAP neutrino panel white paper, www.iupapneutrinopanel.org

Tritium β-decay

Continuous β-decay spectrum described by Fermi's Golden Rule

Simple structure allows accurate theoretical modelling

KATRIN requirements

- Low probability for decays to be in interesting energy region → small rate
 Source with high luminosity
 - Low background
- Distortion is on the scale of the neutrino mass
 - Good energy resolution required
- Source not single atom in complete vacuum
 Exact understanding of spectrum shape and all contributing effects

The KATRIN experiment

Tritium Source

- Stabilzed tritium gas column
 - Temperature (80 ± 0.01) K
 - Throughput < 0.1%
- Magnetic guiding of decay electrons with nominal field strength of 2.5 T
- Activity of $\approx 10^{11}$ Bq

Optimum with regards to opacity

The Experimental Spectrum

Karlsruhe Institute of Technology

KATRIN measurement principle

Alexander Marsteller October 1, 2024

10

KATRIN Analysis Strategy

- Blinding procedure involving multiple steps
 - Establish analysis strategy on Asimov twins
 - First analysis of the data using model blinding
- Two independent analysis methods
 - KaFit (fast direct model evaluation)
 - Netrium (neural network)

EPJ C 82, 439 (2022)

Overview of data taking

Previous neutrino mass results

First measurement campaign (KNM1)

• Best fit: $m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{ eV}^2$

• Upper limit: $m_{\nu} < 1.1 \ eV \ (90\% \ C.L.)$

Second measurement campaign (KNM2)
 Best fit: m²_v = (0.26^{+0.34}_{-0.34}) eV (90% C.L.)
 Upper limit: m_v < 0.9 eV (90% C.L.)

Combined result: $m_{\nu} < 0.8 \ eV \ (90\% \ C.L.)$

Newest analysis release

• KNM1: $m_{\nu} < 1.1 \ eV (90\% \ C.L.)$ M. Aker et al., Phys. Rev. Lett. 123, 221802 (2019

• KNM1-2: $m_{\nu} < 0.8 \ eV \ (90\% \ C. L.)$ M. Aker et al., Nat. Phys. 18, 160-166 (2022)

KNM1-5 Key Points:

- 259 measurement days
- 36 million electrons in 40 eV analysis window (6 times KNM1-2) [E₀ - 40 eV, E₀ + 135 eV]
- Rigorous reevaluation of systematics
- Expected sensitivity $m_{\nu} < 0.5 \ eV \ (90\% \ C.L.)$

Spectra KNM1-5

15 October 1, 2024 Alexander Marsteller

Uncertainty breakdown

- Uncertainty dominated by statistical uncertainty
- Thorough reevaluation of systematic uncertainties
- Efforts to minimize systematic uncertainties continue

Individual systematics in final KATRIN analysis (post 2025) expected to be <0.01 eV² range

Karlsruhe Institute of Technology

New best fit

Best fit:
$$m_{\nu}^2 = \left(-0.14^{+0.13}_{-0.15}\right) \text{eV}^2$$

- Compatible with 0 within $\sim 1\sigma$
- Parallel analysis with two different codes in good agreement
- Negative mass values allowed to obtain continuous likelihood in case of statistical fluctuations

Karlsruhe Institute of Technology

Limit Setting

• Upper limit by Lokhov-Tkachov construction: $m_{\nu} < 0.45 \ eV (90\% \ C.L.)$

- Returns sensitivity for negative m_{ν}^2 best fits
- Statistical underfluctuations do not produce stricter limit
- More conservative approach than Feldman-Cousins

• Upper limit by Feldman-Cousins construction: $m_{\nu} < 0.31 \ eV (90\% \ C.L.)$

Newest best fit and upper limit

Best fit: $m_{\nu}^2 = (-0.14^{+0.13}_{-0.15}) \,\mathrm{eV^2}$

Upper limit: $m_{\nu} < 0.45 \ eV \ (90\% \ C.L.)$

Factor 6 times the statistics

Rigorous reevaluation of systematics

Improvement of direct neutrino mass bound by factor 2

Overview of data taking

Karlsruhe Institute of Technology

Statistical uncertainty outlook

- Collected data until summer 2024 improves statistical sensitivity to 0.3 eV
- Computational challenge grows
 - 6313 data points and 682 free fit parameters (KATRIN Final)
 - Additional analysis steps on Asimov data

Future projection of data taking

- >75% of entire KATRIN statistics on tape
- KATRIN projected to conclude neutrino mass data taking <u>end of 2025</u>
- KATRIN final sensitivity after 1000 measurement days expected to be below 0.3 eV

Thank you for your attention

Tritium Laboratory Karlsruhe, Institute for Astroparticle Physics, Karlsruhe Institute of Technology ٨

KATRIN beyond KATRIN

 TRISTAN (TRItium Sterile Anti-Neutrino)
 keV-scale sterile Neutrinos

Coming 2026

KATRIN++

Next generation m_{ν} experiment

Tristan

- Atomic tritium source
- Differential detectors
- R&D Phase

m_l (eV)