A Theory of Neutrino Mass: Left-Right Symmetry and Lepton Number Violation

2024 LHC Days

Vladimir Tello, ICTP

Parity violation in SM

- Principle of the conservation of parity (Wigner '27)
- Parity Not a Symmetry of Weak Interactions. Maximally broken. Lee-Yang '56, Wu '56
- V-A theory, Marshak-Sudarshan '57, Feynman-Gell-Mann '57

This is not a flaw in the SM but a feature — nature just works this way at low energies

What if nature isn't maximally asymmetric?

Could there be a hidden symmetry at higher energies?

Neutrino Mass Problem

- Neutrinos are extremely light compared to other fermions
- Experimental evidence confirms neutrino oscillations \Rightarrow Neutrinos have mass
- SM predicts massless neutrinos. Needs beyond SM explanations

Parity Restoration: A path to Neutrino Mass

$$\left(\begin{array}{c}\nu_L\\e_L\end{array}\right)\leftrightarrow \left(\begin{array}{c}\nu_R\\e_R\end{array}\right)$$

Left-Right Symmetry

Automatically implies massive neutrinos

 $m_{\nu} \overline{\nu_L} \nu_R$

Pati, Salam '74 Mohapatra, Pati '74 Mohapatra, Senjanović '75

Senjanović '79

Parity Restoration: A path to Neutrino Mass

- LR symmetry solves parity violation and predicted neutrino mass decades before experimental confirmation.
- Offers a natural explanation for neutrino masses.
- Lepton Number Violation: A Window into New Interactions?
- The search for lepton number violation (neutrinoless double beta decay, LHC signatures) could reveal the dynamics of the Left-Right model.

Left-Right Model

 $SU(2)_L imes SU(2)_R imes U(1)_{B-L}$ Gauge Bosons: W_L, W_R, Z, Z', γ

$$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \quad q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix}$$

Symmetric Representations for quarks and leptons

$$\ell_L = \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right), \quad \ell_R = \left(\begin{array}{c} \nu_R \\ e_R \end{array}\right)$$

Left-Right Symmetry $P \longrightarrow q_L \leftrightarrow q_R, \ \ell_L \leftrightarrow \ell_R, \ W_L \to W_R$

Is not just aesthetic but also leads to a solution for the neutrino mass problem through the seesaw mechanism

Left-Right Model

Symmetric representations for scalar fields: bidoublet, triplets

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & -\phi_2^{0*} \end{pmatrix} \quad \Delta_L = \begin{pmatrix} \frac{\Delta_L^+}{\sqrt{2}} & \Delta_L^{++} \\ \Delta_L^0 & -\frac{\Delta_L^+}{\sqrt{2}} \end{pmatrix}, \quad \Delta_R = \begin{pmatrix} \frac{\Delta_R^+}{\sqrt{2}} & \Delta_R^{++} \\ \frac{\Delta_R^0}{\sqrt{2}} & -\frac{\Delta_R^+}{\sqrt{2}} \end{pmatrix}$$

Pattern of symmetry breaking

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \xrightarrow{\langle \Delta_R \rangle} SU(2)_L \times U(1)_Y \xrightarrow{\langle \Phi \rangle} U(1)_{EM}$$

$$\frac{M_{W_L}}{M_{W_R}} \propto \frac{\langle \Phi \rangle}{\langle \Delta_R \rangle} \ll 1$$

Left-Right Symmetry

- Right-handed quark mixing matrix
- Dirac Matrix of neutrinos
- Lepton Flavor Violation: LHC, neutrinoless double beta decay
- Lepton Number Violation

Right-Handed Quark Mixing Matrix

 $(V_R)_{ij} = (V_L)_{ij} - i\epsilon \frac{(V_L)_{ik}(V_L^{\dagger}m_u V_L)_{kj}}{m_{d_k} + m_{d_j}}$ $\theta_R^{12} - \theta_L^{12} \simeq -\epsilon \frac{m_t}{m_s} s_{23} s_{13} s_{\delta},$ $\theta_R^{23} - \theta_L^{23} \simeq -\epsilon \frac{m_t}{m_b} \frac{m_s}{m_b} s_{12} s_{13} s_{\delta}$ $\theta_R^{13} - \theta_L^{13} \simeq -\epsilon \frac{m_t}{m_b} \frac{m_s}{m_b} s_{12} s_{23} s_{\delta},$

- Right-handed Quark mixing matrix closely matches left-handed CKM.
- Small deviations due to parity breaking.

Conclusion: the LR symmetry relates the left and right quark mixing matrices

Neutrino Masses in LRSM

Dirac-like interaction

$$Y_{\Phi} \overline{\ell_L} \Phi \ell_R + \text{h.c.}$$

$$Y_L \ell_L^T \epsilon \Delta_L \ell_L + Y_R \ell_R^T \epsilon \Delta_R \ell_R + \text{h.c.}$$

$$M_{\nu} = -M_D^T \frac{1}{M_N} M_D \qquad \qquad M_D \propto \langle \Phi \rangle = v = \text{scale of } W_L$$
$$M_N \propto \langle \Delta_R \rangle = v_R = \text{scale of } W_R$$

Seesaw relation: As mN increases, mv decreases.

- Natural explanation for tiny neutrino masses due to large mN.
- Small neutrino mass = near maximal P violation

$$m_{\nu} \propto \frac{M_{W_L}^2}{M_{W_R}}$$

Minkoswski '77 Mohapatra, Senjanović '79

- Yanagida '79
- Glashow '79
- Gell-man et al. '79

Determination of MD

The Dirac mass matrix is determined $M_D = \text{symmetric matrix}$ by its inherent symmetry properties

$$M_D = i M_N \sqrt{\frac{1}{M_N} M_\nu}$$

 $M_{\nu} = V_L^* m_{\nu} V_L^{\dagger}$ $M_N = V_R m_N V_R^T$

Probed by low energy experiments, oscillations, NDBD Can be determined at high energy colliders, next slides

Dirac neutrino couplings are predicted and in turn a plethora of particle decays

Fermion masses and mixings

Standard Model V_L^{CKM}, m_q, m_ℓ

Left-Right Model additional masses and mixings:

 $V_{R}(q), \{V_{L}^{PMNS}, m_{\nu}\}, \{V_{R}(\ell), m_{N}\}, M_{D}$

Left-Right model predictions

 $V_R = f_1(V_L^{CKM}, m_q), \ M_D = f_2(V_L^{PMNS}, m_\nu, V_R(l), m_N)$

LHC Signatures

- Potential for discovery of right-handed charged gauge boson WR.
- Production of heavy right-handed neutrinos at LHC.

• Same-sign lepton pairs as a signal of lepton number violation.

Production of RH neutrino: Keung-Senjanovic process

- Production and decay of heavy Majorana neutrinos at hadron colliders
- Same-sign charged leptons (l+l+) without missing energy, indicating lepton number violation.
- Key process for probing the Majorana nature of neutrinos
- Allows for the determination of the RH neutrino masses and mixings (in turns allows for the determination of the Dirac Yukawa couplings)

Keung, Senjanovic '83

Decay of the RH neutrinos

Nemevšek, Senjanović, VT '13

Probes Dirac Couplings and allows for probing the origin of neutrino mass (self contained seesaw)

Probing the origin of neutrino mass

The SM decays allows probing the charged lepton masses

$$\Gamma(h \to \bar{f}f) \propto \frac{m_f^2}{M_W^2} m_h$$

The LR decays model allows probing the neutrino masses

$$\Gamma(N \to W\ell) \propto \frac{m_N^2}{M_W^2} m_{\nu} \,.$$

This is thus a predictive theory of neutrino mass

Neutrinoless Double Beta Decay

- A key test for Majorana nature of neutrinos
- Experimental efforts and bounds GERDA, EXO-200, Cuore, KamLAND-Zen

u .

 $T_{1/2} > 1.8 \times 10^{26} \text{yr}$ $|(M_{\nu})_{ee}| \le 0.18 \text{ eV}$ GERDA

 $< 180 \,\mathrm{meV} \,(^{76}\mathrm{Ge})(\mathrm{GERDA}), < 350 \,\mathrm{meV} (^{130}\mathrm{Te})(\mathrm{CUORE}), < 165 \,\mathrm{meV} (^{136}\mathrm{Xe})(\mathrm{KamLAND-Zen})$

Neutrinoless Double Beta Decay

Mohapatra, Senjanović,'79,'81 VT et all '11

LR symmetry enhances the process via right-handed currents.

 e_R

 e_R

 W_R

N

Contributions from both light and heavy neutrinos.

$$|T_{1/2}|^{-1} \propto \left|\frac{M_{\nu}^{ee}}{p^2}\right|^2 + \left|\frac{M_{W_L}^4}{M_{W_R}^4}\frac{1}{M_N^{ee}}\right|^2$$

 $m_N \propto m_{
u}$

Signal from Neutrinoless Double Beta Decay?

Nemevšek, Nesti, Senjanović, VT '11

If outgoing right-handed electrons is the LR model.

$$\frac{M_{W_L}^4}{M_{W_R}^4} \frac{p^2}{m_N} \sim 100 \,\mathrm{meV} \longrightarrow M_{W_R} \lesssim 20 \,\mathrm{TeV}$$
$$(m_N \simeq 1 \,\,\mathrm{GeV})$$

Would suggest a WR within the reach of the LHC or future colliders

Probe of new physics scale

Lepton Flavor Violation

$$\Delta_L^{++} \to \ell_i^+ \ell_j^+, \ \Delta_R^{++} \to \ell_i^+ \ell_j^+$$

Triplet-Fermion Interactions $Y_L \ell_L^T \epsilon \ell_L \Delta_L + Y_R \ell_R^T \epsilon \ell_R \Delta_R$

RH neutrino mass $M_N = v_R Y_R$

Left and Right triplet interactions governed by the RH neutrino mass matrix

$$Y_L = Y_R \propto \frac{M_N}{M_{W_R}}$$

Lepton Flavor Violation

Cirigliano, Kurylov, Ramsey-Musolf, Vogel '04 VT, PHD thesis '12

- For light WR, can be under control with light or degenerate N
- Does not probe the WR scale: light doubly charged scalars can be doing the job

Lepton Flavor Violation

Cirigliano, Kurylov, Ramsey-Musolf, Vogel '04 VT, PHD thesis '12

MEG

 μ

 $B(\mu \to e \gamma) < 4.2 \times 10^{-13}$

 $B(\mu Au \rightarrow e Au) < 7 \times 10^{-13}$ SINDRUM II

same flavour structure

e

 $B(\mu X \to eX) \simeq B(\mu \to e\gamma)$

Message

- Neutrinoless double beta decay (right-handed electrons) signals new physics beyond the Standard Model at the LHC or future colliders
- Lepton number violation at colliders, through the Keung-Senjanović process, can probe the Majorana nature of neutrinos.
- The Left-Right model can be considered a theory of neutrino mass, just as the Standard Model is considered a theory of charged lepton masses
- The discovery of right-handed gauge bosons at colliders would be a significant test of Left-Right symmetry, offering direct evidence for parity restoration at higher energies

Thank you