

Status and perspective of ESSnuSB+

Budimir Kliček On behalf of the ESSnuSB+ project budimir.klicek@irb.hr

Ruđer Bošković Institute, Zagreb, Croatia

1 October 2024

ESSnuSB / ESSnuSB+

A design study for a long baseline accelerator neutrino oscillation experiment to precisely measure leptonic CP violation amplitude at the 2nd neutrino oscillation maximum.

Neutrino oscillations

Neutrino flavour can effectively change between its creation and interaction.

Neutrino oscillations

CP violation in neutrino oscillations

Oscillation probability for neutrinos is different than oscillation probability for anti-neutrinos in vaccum.

probability of oscillation $P_{\nu_\alpha} \! \to \! \nu_\beta \, \neq P_{\overline{\nu}_\alpha} \! \to \! \overline{\nu}_\beta$ neutrino flavour at production

neutrino flavour at detection

CP violation in ESSnuSB

$$P_{\nu_{\mu} \to \nu_{e}} \neq P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}$$

We will study v_e and \overline{v}_e appearance in v_{μ} and $\overline{v_{\mu}}$ beam, respectively

The plan:

- 1. Run with v_{μ} and look at v_{e} appearance, then
- 2. Run with v_{μ} and look at v_{e} appearance

Why 2nd maximum?

Large signal and small matter effects

Neutrino oscillations (3 generations)

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{cp}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{cp}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{cp}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{cp}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{cp}} & c_{23}c_{13} \end{pmatrix} \begin{bmatrix} \mu \\ \mu \\ \tau \end{bmatrix}$$

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left(A_{ij}^{\alpha\beta} \right) \sin^{2} \frac{\Delta m_{ij}^{2}L}{4E} \pm 2 \sum_{i>j} \operatorname{Im} \left(A_{ij}^{\alpha\beta} \right) \sin \frac{\Delta m_{ij}^{2}L}{4E}$$

$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2} \longrightarrow \Delta m_{31}^{2} = \Delta m_{32}^{2} + \Delta m_{21}^{2}$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^{*}U_{\alpha j}U_{\beta i}U_{\beta j}^{*}$$

$$Six \text{ parameters in total: } \Delta m_{21}^{2}, \Delta m_{32}^{2}, \theta_{12}, \theta_{13}, \theta_{23}, \delta_{cp}$$

$$CPV \text{ hint} @ 3 \text{ sigmation of } Sign \text{ unknown}$$

Oscillation pattern

(L = 360 km)

2nd maximum

ESSnuSB project

How to observe the CP violation in the 2nd oscillation maximum

Can we go to 2nd maximum?

A very intense proton linac is in construction near Lund, Sweden.

ESS proton linac

- The ESS will be a copious source of spallation neutrons.
- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10¹⁵ protons).
- Duty cycle 4%.
- 2.0 GeV kinetic energy protons
 - 0 up to 3.5 GeV with linac upgrades
- >2.7x10²³ p.o.t/year.

First beam on target expected in 2026.

450 mg of protons/year at 95% speed of light!

Neutrino beam production

ESSnuSB target station design

ESSvSB v energy distribution (after optimisation)

Flux at 360 km (positive polarity)

$N_{\rm v}\,/\,cm^2$ 0.02 GeV 200 days 10 10⁵ 10⁴ 10³ 10² 10 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 E_v / GeV

Flux at 360 km (negative polarity)

- almost pure v_{μ} beam
- small v_e

 contamination which will be used to measure v_e cross-sections in a near detector

Flavour	u Mode		$\overline{\mathbf{v}}$ Mode		
	$N_{ m v}~(10^5/~{ m cm^2})$ %		$N_{ m u}$ (10 ⁵ / cm ²)	%	
$ u_{\mu}$	520.06	97.6	15.43	4.7	
ν_e	3.67	0.67	0.10	0.03	
$ar{ u}_{\mu}$	9.10	1.7	305.55	94.8	
$\bar{\nu}_e$	0.023	0.03	1.43	0.43	

at 360 km from the target and per year (in absence of oscillations)

ESSvSB v energy distribution (after optimisation)

• almost pure v_{μ} beam

• small v_e contamination which will be used to measure v_e crosssections in a near detector

Flavour	ν Mode		$\overline{ u}$ Mode	
	$N_{ m v}~(10^5/~{ m cm^2})$ %		$N_{ m u}$ (10 ⁵ / cm ²)	%
$ u_{\mu}$	520.06	97.6	15.43	4.7
ν_e	3.67	0.67	0.10	0.03
$ar{ u}_{\mu}$	9.10	1.7	305.55	94.8
$\bar{\nu}_e$	0.023	0.03	1.43	0.43

at 360 km from the target and per year (in absence of oscillations)

1.6

E_v / GeV

 $\overline{\nu}_{\mu}$

ve

 ν_{μ}

1.2

1.4

NINJA-like water-emulsion detector (1 t fiducial)

Near detectors

ESSnuSB neutrino baseline

Zinkgruvan mine, 360 km from the source, partly covernig 1st and 2nd maximum

24

Far detector

Far detectors

Design

- 2 x 270 kt fiducial volume (~2x HyperK)
- Readout: 2 x 38k 20" PMTs
- 30% optical coverage
 - design here for 40% with an option that ¼ PMTs will not be installed

Can also be used for other purposes:

- Proton decay
- Astroparticles
- Galactic SN v
- Diffuse supernova neutrino background
- Solar Neutrinos
- Atmospheric Neutrinos

Expected number of events at FD

Events per 1 y of operation (200 days)

Neutrino mode

Channel	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = -\pi/2$
$\nu_{\mu} \rightarrow \nu_{\mu}$	10 509	10 431	10 430
$\nu_{\mu} \rightarrow \nu_{e}$	768	543	1 159
$\nu_e \rightarrow \nu_e$	178	178	178

Antineutrino mode

Channel	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = -\pi/2$
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$	1 898	1 899	1 899
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	116	164	57
$\overline{\nu}_e \rightarrow \overline{\nu}_e$	18	18	18

Discovery potential and precision

ESSnuSB conceptual design report

 Most up to date evaluation of the CPV discovery potential

Alekou, A., Baussan, E., Bhattacharyya, A.K. et al. "The European Spallation Source neutrino super-beam conceptual design report". Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epis/s11734-022-00664-w arXiv: https://arxiv.org/abs/2203.08803 (includes costing)

The ESSnuSB+ project

- Continuation of the ESSnuSB
- Goals:
 - Neutrino interaction cross-section measurement
 - Extra physics
 - Civil engineering

Neutrino interaction cross-sections

 Inclusive CC xsec for ν_µ per nucleon

Neutrino interaction cross-sections

- Inclusive CC xsec for v_{μ} per nucleon
 - don't you need v_e ?
 - proton or neutron?
 - nuclear effects, final state interactions, ...?
- We need to measure v xsec for each nucleus (target) separately

ESS Upgrades to Host the ESSnuSB+

Timeline

Conclusions

- ESSnuSB/ESSnuSB+ are design studies for a neutrino project in Europe
- Aim is to precisely measure the CP violation in the leptonic sector
- Uses the 5 MW ESS linear accelerator
- Estimated start of data taking around 2040

Thank you for your attention

Oscillation coverage

Expected event spectra

Effect of energy calibration uncertainty on CPV measurements

Effect of bin-to-bin uncorrelated uncertainty on CPV measurements

Hierarchy and octant determination

From: DOI:10.1140/epjc/s10052-021-09845-8, arXiv:2107.07585

Precision for Δm_{31} vs θ_{23}

From: DOI:10.1140/epjc/s10052-021-09845-8, arXiv:2107.07585

• Plot ranges are approximately current limit on parameters

ESSvSB at the European level

• A H2020 EU Design Study (Call INFRADEV-01-2017)

- **Title of Proposal**: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
- Duration: 4 years
- Total cost: 4.7 M€
- Requested budget: 3 M€
- 15 participating institutes from
 11 European countries including CERN and ESS
- 6 Work Packages

ESSvSB and (R&D) synergies

Super Beam

Neutrino Factory

Muon Collider

Neutrino oscillations

Flavour state evolution

Relativistic space-time translation operator

Neutrino oscillations Oscillation probability in vacuum

Oscillation probability:

$$P_{\alpha \to \beta} = \left| \left\langle \nu_{\beta} \middle| \nu_{\alpha}; t = T, \vec{x} = \vec{L} \right\rangle \right|^2$$

Assuming:

$$\vec{L}$$
 parallel to $\vec{p_i}$
 $T = L/\beta \approx L$
 $E_i + p_i \approx 2E$
- neutrino travels in the direction of its momentum

One gets the final relation:

 $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$ $A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^2 \frac{\Delta m_{ij}^2 L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

PMNS matrix parametrization (Dirac **neutrino)** Standard parametrization used in modern literature:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$s_{ij} \equiv \sin \theta_{ij}$$

 $c_{ij} \equiv \cos \theta_{ij}$

- Analogue to Euler matrices used for 3D rotations
- This is **not** the most general unitary matrix parametrization a 3x3 unitary matrix has 6 phases
 - 5 phases can be canceled by rephasing charged lepton and neutrino fields
- A single leftover phase is always present in the middle factor

Hot Cell

strin-lines horns L

- Able to manipulate/repair hadronic collector
- Work under Radioactive Environment ٠

Power Supply Unit

- 16 modules (350 kA)
- Located above the switchyard
- Outside of radioactive part of Facility

Granular Target Concept

Target made of 3 mm titanium spheres cooled by transverse helium gas cooling

Neutrino beam production

(Positive polarity) (Negative polarity)

Horn parametrisation

 $\underbrace{\underbrace{9}_{-20}}_{-40} \underbrace{100}_{-150} \underbrace{-100}_{-100} \underbrace{-50}_{-50} \underbrace{0}_{-50} \underbrace{100}_{-100} \underbrace{150}_{-150} \underbrace{100}_{-150} \underbrace{100}_{-15$

Optimisation based on Genetic Algorithm

Neutrino flux composition.							
	10 ¹⁰ .m ⁻²	%	10 ¹⁰ .m ⁻²	%			
	674	97.6	20	4.7			
	11.8	1.7	396	94.8			
	4.76	0.67	0.13	0.03			
	0.03	0.03	1.85	0.43			

3

Zinkgruvan mine

Site 2 is considered as best considering access to main transport infrastructure and located in an area less disturbed by mining activities

Potential location in Site 2

ESSnuSB in the international context – CPV discovery

ESSnuSB March 2022 with 5% normalization error

ESSnuSB in the international context – CPV resolution

normalization error

DUNE Snowmass March 2022

Hyper-Kamiokande Snowmass March 2022

Table 5.5: The number of expected μ^{ID} events per running year, per level of the analysis, per flavour and interaction type, and per each horn polarity.

Positive polarity								
	$ u_{\mu} \operatorname{\mathbf{CC}} \mu^{\operatorname{\mathbf{ID}}}$	$v_e \operatorname{CC} \mu^{\operatorname{ID}}$	$ar{ u}_{\mu} \operatorname{\mathbf{CC}} \mu^{\operatorname{\mathbf{ID}}}$	$\bar{\nu}_e \operatorname{CC} \mu^{\operatorname{ID}}$	$\nu_{\mu} \operatorname{NC} \mu^{\operatorname{ID}}$	$v_e \operatorname{NC} \mu^{\operatorname{ID}}$	$\bar{\nu}_{\mu} \operatorname{NC} \mu^{\operatorname{ID}}$	$\bar{\nu}_e \ \mathbf{NC} \ \mu^{\mathbf{ID}}$
All interactions	5.19×10^{7}	2.88×10^{4}	1.43×10^{5}	19.7	2.29×10^{7}	1.44×10^{5}	8.44×10^{4}	159
Trigger	5.13×10^{7}	2.71×10^{4}	1.42×10^{5}	18.1	1.98×10^{6}	1.36×10^{4}	6150	10.2
Sub-Cherenkov criterion	3.10×10^{7}	2.00×10^{4}	1.06×10^{5}	12.6	5.40×10^{4}	678	179	0.2
Reconstruction quality criteria	2.59×10^{7}	1.43×10^{4}	9.29×10^{4}	8.7	2.69×10^{4}	407	111	0.1
Cherenkov-ring resolution criterion	2.12×10^{7}	1.03×10^{4}	7.69×10^{4}	6.3	2.11×10^{4}	327	93.6	0.1
Pion-like criteria	2.12×10^{7}	1.03×10^{4}	7.69×10^{4}	6.3	2.11×10^{4}	327	93.6	0.1
Multi-subevent criterion	2.10×10^{7}	1.03×10^{4}	7.69×10^{4}	6.3	2.11×10^{4}	326	93.4	0.1
Negative polarity								
regative polarity	$\nu_{\mu} \operatorname{\mathbf{CC}} \mu^{\operatorname{\mathbf{ID}}}$	$v_e \operatorname{CC} \mu^{\operatorname{ID}}$	$\bar{\nu}_{\mu} \ \mathbf{CC} \ \mu^{\mathbf{ID}}$	$\bar{\nu}_e \ \mathbf{CC} \ \mu^{\mathbf{ID}}$	$\nu_{\mu} \mathbf{NC} \mu^{\mathbf{ID}}$	$\nu_e \operatorname{NC} \mu^{\operatorname{ID}}$	$\bar{\nu}_{\mu} \mathbf{NC} \mu^{\mathbf{ID}}$	$\bar{\nu}_e \ \mathbf{NC} \ \mu^{\mathbf{ID}}$
All interactions	5.17×10^{5}	179	8.36×10^{6}	2610	2.62×10^{5}	983	5.05×10^{6}	2.08×10^{4}
Trigger	5.10×10^{5}	168	8.31×10^{6}	2400	2.20×10^{4}	86.9	3.46×10^{5}	1410
Sub-Cherenkov criterion	3.12×10^{5}	125	5.55×10^{6}	1690	799	4.9	5490	33.4
Reconstruction quality criteria	2.65×10^{5}	89.0	4.71×10^{6}	1170	456	3.1	3050	15.7
Cherenkov-ring resolution criterion	2.17×10^{5}	65.5	3.87×10^{6}	806	372	2.5	2720	12.8
Pion-like criteria	2.17×10^{5}	65.5	3.87×10^{6}	806	372	2.5	2720	12.8
Multi-subevent criterion	2.13×10^{5}	65.5	3.86×10^{6}	806	371	2.5	2720	12.8

Positive polarity								
	$\nu_{\mu} \ \mathbf{CC} \ e^{\mathbf{ID}}$	$v_e \ \mathbf{CC} \ e^{\mathbf{ID}}$	$\bar{\nu}_{\mu} \ \mathbf{CC} \ e^{\mathbf{ID}}$	$\bar{\nu}_e \ \mathbf{CC} \ e^{\mathbf{ID}}$	$\nu_{\mu} \text{ NC } e^{\text{ID}}$	$v_e \text{ NC } e^{\text{ID}}$	$\bar{\nu}_{\mu} \text{ NC } e^{\text{ID}}$	$\bar{\nu}_e \text{ NC } e^{\text{ID}}$
All interactions	1.50×10^{7}	5.33×10^{5}	4.28×10^{4}	382	2.44×10^{7}	1.65×10^{5}	7.87×10^{4}	142
Trigger	1.50×10^{7}	5.33×10^{5}	4.28×10^{4}	382	2.44×10^{7}	1.65×10^{5}	7.87×10^{4}	142
Sub-Cherenkov criterion	2.57×10^{6}	5.14×10^{5}	1.00×10^{4}	359	8.93×10^{5}	8570	3060	3.7
Reconstruction quality criteria	2.11×10^{6}	4.69×10^{5}	8380	327	7.62×10^{5}	7360	2630	3.2
Cherenkov-ring resolution criterion	6.22×10^{5}	3.70×10^{5}	2190	256	6.55×10^{5}	6390	2200	2.7
Pion-like criteria	9.63×10^{4}	3.32×10^{5}	209	234	7.19×10^{4}	718	313	0.3
Multi-subevent criterion	3.95×10^{4}	3.22×10^{5}	80.9	234	7.09×10^{4}	691	307	0.3
No obtine to a lo si tes								
Negative polarity	U CC ID	U CC ID	= CC ID	= CC ID	NC ID	NC ID	= NC ID	= NC ID
	$v_{\mu} CC e^{\omega}$	V _e CC e ^{ib}	$v_{\mu} CC e^{\omega}$	V _e CC e ^{LD}	v_{μ} NC $e^{i\omega}$	V _e NC e ^{tb}	v_{μ} NC e^{ω}	V _e NC e ^m
All interactions	1.66×10^{5}	3260	2.49×10^{6}	5.29×10^{4}	2.68×10^{5}	1070	4.61×10^{6}	1.93×10^{4}
Trigger	1.66×10^{5}	3260	2.49×10^{6}	5.29×10^{4}	2.68×10^{5}	1070	4.61×10^{6}	1.93×10^{4}
Sub-Cherenkov criterion	2.87×10^{4}	3140	4.31×10^{5}	5.09×10^{4}	9860	53.2	1.22×10^{5}	574
Reconstruction quality criteria	2.39×10^{4}	2860	3.49×10^{5}	4.66×10^{4}	8500	45.8	1.06×10^{5}	492
Cherenkov-ring resolution criterion	8000	2260	6.89×10^{4}	3.66×10^{4}	7330	39.7	8.95×10^{4}	426
Pion-like criteria	1100	2020	9640	3.34×10^4	940	4 5	1.14×10^4	437
I Ion-like criteria	1180	2020	9040	3.34×10	240	<i>J</i>	1.14 ~ 10	45.7

Table 5.4: The number of expected e^{ID} events per running year, per level of the analysis, per flavour and interaction type, and per each horn polarity.

Table 5.13: Expected number of neutrino interactions in 538 kt FD fiducial volume at a distance of 360 km (Zinkgruvan mine) in 200 days (one effective year). Shown for positive (negative) horn polarity.

	Channel	Non oscillated	Oscillated					
	Channel	Non oscillated	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = -\pi/2$			
	$\nu_{\mu} \rightarrow \nu_{\mu}$	22 630.4 (231.0)	10 508.7 (101.6)	10 430.6 (5.8)	10 430.6 (100.9)			
	$\nu_{\mu} \rightarrow \nu_{e}$	0 (0)	768.3 (8.6)	543.8 (5.8)	1 159.9 (12.8)			
	$v_e \rightarrow v_e$	190.2 (1.2)	177.9 (1.1)	177.9 (1.1)	177.9 (1.1)			
CC	$v_e \rightarrow v_\mu$	0 (0)	$5.3(3.3 \times 10^{-2})$	$7.3 (4.5 \times 10^{-2})$	$3.9(2.4 \times 10^{-2})$			
cc	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$	62.4 (3 640.3)	26.0 (1 896.8)	26.0 (1 898.9)	26.0 (1 898.9)			
	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$	0 (0)	2.6 (116.1)	3.5 (164.0)	1.4 (56.8)			
	$\overline{\nu}_e \to \overline{\nu}_e$	$1.3 \times 10^{-1} (18.5)$	$1.3 \times 10^{-1} (17.5)$	$1.3 \times 10^{-1} (17.5)$	$1.2 \times 10^{-1} (17.5)$			
	$\overline{\nu}_e \rightarrow \overline{\nu}_\mu$	0 (0)	$3.0 \times 10^{-3} (4.0 \times 10^{-1})$	$1.5 \times 10^{-3} \ (2.1 \times 10^{-1})$	$4.1 \times 10^{-3} (5.6 \times 10^{-1})$			
	ν_{μ}	16 015.1 (179.3)						
NC	ve	103.7 (0.7)						
NC	$\overline{\nu}_{\mu}$	55.2 (3 265.5)						
	\overline{v}_e	1×10^{-1} (13.6)						

	Channel	L = 540 km	L = 360 km
Signal	$ \nu_{\mu} \rightarrow \nu_{e} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) $	272.22(63.75)	578.62 (101.18)
	$ u_{\mu} \rightarrow \nu_{\mu} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) $	$31.01 \ (3.73)$	67.23 (11.51)
Background	$ u_e \to \nu_e \ (\bar{\nu}_e \to \bar{\nu}_e) $	$67.49\ (7.31)$	151.12(16.66)
	$\nu_{\mu} \text{ NC } (\bar{\nu}_{\mu} \text{ NC})$	18.57(2.10)	41.78 (4.73)
	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e} \ (\nu_{\mu} ightarrow \nu_{e})$	1.08(3.08)	1.94(6.47)

Table 1: Signal and major background events for the appearance channel corresponding to positive (negative) polarity per year for $\delta_{CP} = 0^{\circ}$.

	Channel	L = 540 km	L = 360 km
Signal	$ u_{\mu} ightarrow u_{\mu} \ (ar{ u}_{\mu} ightarrow ar{ u}_{\mu})$	4419.69(733.31)	7619.16(1602.02)
	$ u_e \to \nu_e \ (\bar{\nu}_e \to \bar{\nu}_e) $	7.77(0.02)	17.08(0.05)
Background	$\nu_{\mu} \text{ NC} (\bar{\nu}_{\mu} \text{ NC})$	69.23(8.24)	155.77 (18.54)
	$\nu_{\mu} \rightarrow \nu_{e} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$	14.68(0.06)	61.30(0.17)
	$ar{ u}_{\mu} ightarrow ar{ u}_{\mu} \; (u_{\mu} ightarrow u_{\mu})$	12.35(41.00)	21.39(72.59)

Table 2: Signal and major background events for the disappearance channel corresponding to positive (negative) polarity per year for $\delta_{CP} = 0^{\circ}$.

Neutrino oscillations

Neutrino flavor eigenstate is not a mass eigenstate

flavour eigenstate mixing matrix mass eigenstates

 $|\nu_i\rangle$ has a mass m_i

- $U_{\alpha i}$ is called the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix
- U_{ai} must be unitary for probability conservation
 - for *n* generations of neutrinos it is a *n* x *n* complex matrix
 - here we focus on standard 3 neutrino generations

CP violation in vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^{2}\frac{\Delta m_{ij}^{2}L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin\frac{\Delta m_{ij}^{2}L}{4E}$$

CP violationT violationCPT symmetry
$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}} \neq P_{\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}}$$
 $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} \neq P_{\nu_{\beta} \rightarrow \nu_{\alpha}}$ $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = P_{\overline{\nu}_{\beta} \rightarrow \overline{\nu}_{\alpha}}$

All three equations can be proven using the formula above.

CP violation "amplitude":

$$P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} = 4 \sum_{i>j} \operatorname{Im} \left(A_{ij}^{\alpha\beta} \right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

Jarlskog invarian

$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$$

$$\operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \equiv \pm J \quad \longleftarrow \quad \operatorname{Defin}$$

Definition of Jarlskog invariant

Imaginary part of is constant up to a sign for all and , else it is zero

• this is a "measure" of CP violation in 3-generation neutrino model

 $J = s_{12}c_{12}s_{13}c_{13}s_{23}c_{23}c_{13}\sin\delta_{\rm CP} \quad \leftarrow$

Jarlskog invariant in standard 3-gen PMNS parametrization

- J = 0 if any of the mixing angles is 0 or , or is 0 or
 - in that case there is no CP violation
- assuming current PDG central values

CP violation "amplitude":

$$P_{\alpha \to \beta} - P_{\overline{\alpha} \to \overline{\beta}} = 4 \sum_{i > j} \operatorname{Im} \left(A_{ij}^{\alpha \beta} \right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

CP violation in ESSnuSB

$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$$

ESSnuSB CP violation

$$P_{\nu_{\mu} \to \nu_{e}} - P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}} = 4J \left(\sin \frac{\Delta m_{31}^{2} L}{2E} - \sin \frac{\Delta m_{32}^{2} L}{2E} - \sin \frac{\Delta m_{21}^{2} L}{2E} \right)$$
$$= -16J \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E}$$
$$J = s_{12}c_{12}s_{13}c_{13}s_{23}c_{23}c_{13} \sin \delta_{\rm CP}$$

To have CP violation we must have , but also --> all three masses must be different

Sensitivity improvements since project start

- Near detectors optimized for flux and cross-section measurement 5% systematics within easy reach
- Far detectors' response optimized for ESSnuSB flux very high efficiency and purity at ESSnuSB energies
- Genetic Algorithm for Target Station optimization more neutrinos

r (cm)

80 60 40 20 0 -20 -40 -60 -80

-150

-100

-50

Updated physics performance of the ESSnuSB experiment,

Eur.Phys.J.C 81 (2021) 12, 1130 DOI:10.1140/epjc/s10052-021-09845-8, arXiv:2107.07585

Intermediate result, state of analysis in June 2021

High precision of δ_{cP} measurement

Neutrino detection efficiency at FD

