

LHCb performance and upgrades

Biljana Mitreska TU Dortmund on behalf of the LHCb collaboration

Outline

2 LHCb performance in Run 1 and 2

3 LHCb performance in Run 3

The LHCb experiment

- Designed to perform high precision measurements in flavour physics
- Large cross section of b and c hadrons \rightarrow study all types of B and D decays
- Large physics programme regarding spectroscopy, electro-weak decays, heavy-ions

- Run 1 [2011-2012]: 7-8 TeV and 3 $\rm fb^{-1}$
- Run 2 [2015-2018]: 13 TeV and 6 $\rm fb^{-1}$
- Run 3 \rightarrow collecting data at the moment
- Upgrade II \rightarrow performance studies for detector design during the high luminosity LHC

The LHCb experiment in Run 1/2

 Forward detector specialised in measuring properties of b and c hadrons
 > JINST 3 (2008) 508005

Biljana Mitreska October 3, 2024 LHC days

Data taking strategy in Run 1 and Run 2

- New trigger model developed in Run 2 \rightarrow real time analysis model

- Events buffered on disk while performing real-time alignment and calibration
- Physics analysis performed directly from the trigger output
- No offline processing in Run 2

Performance in Run 2: trigger + PID

PV resolution and trigger efficiency
JINST 14 (2019) P04013

Performance in Run 2: alignment & calibration

Samples selected by HLT1 are used to align and calibrate the detector

- Alignment procedure with a method based on the Kalman filter
- . Run automatically at the beginning of each fill (e.g. VELO and tracker alignment take a few min)
- ٠ Automatic update if the variations are significant

LHCb experiment in Run 3

Brand new detector: Maintain the physics performance at harsher environment (5x higher luminosity)

▶ LHCb Upgrade TDR → JINST 19 (2024) P05065

The LHCb trigger in Run 3

▶ LHCb-FIGURE-2020-016

- 1. Collision events selected with partial reconstruction (HLT1)
- 2. Selected events stored in a buffer
- 3. Alignment and calibration are executed
- 4. Alignment constants are updated if above threshold
- 5. Second software stage (HLT2) applies the full reconstruction

Performance in Run 3: VELO + SciFi

- Tracker after the magnet completely replaced using Scintillating Fibre (SciFi)
- > 97 % efficiency in each layer of the SciFi Tracker

- Better PV resolution for 2024 data compared to 2018 (Run 2)
- New VELO pixel detector ightarrow 55 imes 55 μ m^2 pixels

Performance in Run 3: Trigger + PID

Trigger efficiency • LHCb-FIGURE-2024-014

Biljana Mitreska

- Trigger efficiency vs $B^0 p_T$
- Tight *p*_T and *E*_T cuts saturate hadronic channels in Run 2
- Removing of hardware trigger gives large efficiency improvements

Alignment and calibration in Run 3

- Completely new detector elements and DOFs for alignment in Run 3
- Aligment reevaluated for all subdetectors keeping track of reinstallation of detectors
- The real-time strategy kept throughout Run 3
- Full tracker alignment performed for the first time in 2024 aligning VELO + UT + SciFi
- Calorimeter calibration in all ECAL cells
- Good quality A & C crucial for best quality data

Alignment and calibration in Run 3: performance

Reaching Run 2 performance in mass resolution

The LHCb Upgrade II

- Use the high luminosity phase of the LHC to collect large statistics to excel precision in flavour measurements
- Aim to keep the same performance as Run 3 at high pile-up environment Run 3 pile-up 5

- Improve the detector for Run 5 and 6
- Increase granularity and add timing information
- Innovative data processing to cope with 200 Tb/s

4D tracking

• Vertex reconstruction and association to the correct primary vertex are crucial for the LHCb physics program

- Exploit the spread in time of primary vertices
- Reduced subset of vertices can be selected by applying track timestamps
- Achieved by adding precise timing for every hit \rightarrow 4D tracking
- Mandatory for the VELO but used in other Upgrade II detectors

LHCb Upgrade II detector

▶ LHCb Upgrade II TDR

- VELO: hit time resolution 50 ps
- UP: pixel sensors
- Mighty Tracker: pixel inner region, scintillating fibres outer
- RICH 1/2: better optics with reduced pixel size + timing information
- TORCH: Time-of-flight quartz tiles SiPM
- PicoCAL: Timing and segmentation: inner SpaCal, outer Shashlik
- MUON: inner µRWELL, outer MWPC

LHCb Upgrade II: expected performance

- Same or better performance than Run 3 in all detectors
- Tracking efficiency similar to Run 3
- Improved time and Cherenkov angle resolution

 $n_{
m tracks}$

	Technology	Cher. angle res. [mrad]	Entries	500	Upgrade II $E_{\rm T} > 2.5 \text{GeV}$ — w/o time cut
RICH1	MaPMT (Run 3)	0.82	ц	400	$\frac{-\Delta t/\sigma t(\text{comb}) < 3}{1}$
	SiPM	0.51		300	
	SiPM & geometry	0.38		200	
RICH2	MaPMT (Run 3)	0.50		200	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	SiPM	0.42		100	
	SiPM & geometry	0.22		40 40	00 5000 6000 700
					$M(K^+\pi^-\gamma)$ [MeV/c ²]

Summary

- The Run 2 LHCb data has paved the path towards precision in flavour physics
- LHCb taking data during the Upgrade I phase (Run 3)
 - $\bullet~\mbox{Recorded}$ luminosity in 2024 > whole Run 2
 - $\bullet\,$ Good data taking efficiency > 95 $\%\,$
 - Good data quality for physics
- Upgrade II LHCb presents high technical challenge to maintain the same performance as Run 3
- Upgrade II will will provide excellent prospects for physics and ultimate precision
- We are looking forward to more collisions!

Thank you!

BACKUP

Data taking in Run 3

2022

- Commissioning of all subdetectors (but UT)
- The trigger system, alignment and calibration commissioned and tested

2023

- LHC vaccum incident damaged the VELO RF foil \rightarrow operating with open VELO all year
- UT fully installed

2024

- Replaced VELO RF-foil and re-installed the VELO
- All detectors fully operating and commissioned
- Collecting pp data at the moment

The SciFi detector

Run 3 performance: Trigger efficiency

Run 3 performance: VELO alignment

Run 3 performance: ECAL calibration

Run 3 performance: SciFi mat-contraction calibration

- Each mat contains four SiPMs
- Placed in cold box cooled to -40° C
- Cooling bends the fibre mats
 → modified x mapping of hits
- Overall deformation of 0.2 mm expected

 Calibration conditions to SiPM channels in SciFi to correct for deformations caused by temperature differences

Run 3 performance: SciFi alignment

▶ LHCb-FIGURE-2024-009

Physics prospects

Observable	Curren	t LHCb	Upgrade I		Upgrade II
	(up to	$9{ m fb}^{-1})$	$(23\mathrm{fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests					
$\gamma \ (B \rightarrow DK, \ etc.)$	2.8°	[18, 19]	1.3°	0.8°	0.3°
$\phi_s \ (B^0_s \to J/\psi \phi)$	20 mrad [22]		$12\mathrm{mrad}$	$8\mathrm{mrad}$	$3\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6%	[55, 56]	3%	2%	1%
<u>Charm</u>					
$\Delta A_{CP} \ (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	29×10	$^{-5}$ [25]	$13 imes 10^{-5}$	$8 imes 10^{-5}$	$3.3 imes10^{-5}$
$A_{\Gamma} \left(D^0 \rightarrow K^+ K^-, \pi^+ \pi^- \right)$	11×10	$^{-5}$ [29]	$5 imes 10^{-5}$	$3.2 imes 10^{-5}$	$1.2 imes 10^{-5}$
$\Delta x \ (D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-)$	18×10	$^{-5}$ [57]	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$
Rare decays					
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 69%	[30, 31]	41%	27%	11%
$S_{\mu\mu} \ (B^0_s \to \mu^+ \mu^-)$	_				0.2
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	[58]	0.060	0.043	0.016
$S_{\phi\gamma}(B^0_s \to \phi\gamma)$	0.32	[59]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	[60]	0.148	0.097	0.038

→ LHCb Upgrade II TDR