

Overview of LHCb results

Michele Veltri

on behalf of the LHCb Collaboration

INFN Sez. Firenze & Università Urbino

Overview

- LHCb is a community of 1700 members from 103 institutes from 22 countries
- Originally designed to measure CP violation in the b sector
- Evolved over time into a general purpose experiment active in many research areas
- Selection of some of the latest results:
 - V angle
 - $\circ \quad B^{*0}_{(s)} \rightarrow \mu^+ \mu^- \text{ in } B_c^+ \text{ decays}$
 - Antihelium production in $\overline{\Lambda}^0_{\ \mathbf{b}}$ decays
 - \circ Λ^0 transverse polarization
- Not covering spectroscopy (see Paras talk) and weak mixing angle (see Heather talk)

The (Old) LHCb Detector

- Run 1 (2011-2012) → 3/fb at 7-8 TeV
- Run 2 (2015-2018) → 6/fb at 13 TeV
- For the new detector (and future upgrades) see Biljana's talk
- Single arm forward spectrometer (2<η<5)
- High precision vertexing and tracking
- Excellent timing resolution
- High performance PID (Efficiency: K=95%, μ=97%)
- SMOG→ System for Measuring Overlap with Gas
- Injection of noble gases inside the LHC beam pipe around (±20 m) the LHCb IP (100x vac. press.)
- Highest energy ever fixed target experiment
- Rich IFT research program

CKM angle 8

- In the Standard Model the CKM matrix is the only source of CP violation
- This matrix describes the rotation between flavour and mass eigenstates of quarks

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

• The unitarity of V_{CKM} provides relations like (this one for b decays):

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

- These relations can be visualized as triangles in the complex plane
- Key test of the SM \rightarrow Verify the unitarity of CKM matrix
 - Overconstrain the UT with measurement of CKM parameters
 - Check for global consistency
- \forall angle from UT \rightarrow Benchmark measurement in the SM

$$\gamma \equiv \arg\left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right]$$

2024 - LHC Days in Split

CKM angle **X**

- The only angle in the UT accessible via tree level processes
- Negligible theoretical uncertainty
- Determined in the interference of transitions $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$
- The most sensitive decay channels are $B^{\pm} \rightarrow D \ K^{\pm} (D=D^0, \overline{D}^0)$ where D meson decay to the same final state
- Search for physics beyond SM → Compare direct (tree-level) vs. indirect measurements which are based on independent observables (loop-induced) and assume unitarity

 $\frac{\left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right|}{(0,0)} \xrightarrow{\alpha = \phi_{2}} \frac{\left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|}{\beta = \phi_{1}}$

CKM angle & from LHCb

- Small BR → Combination of all LHCb results on ४
- 4 new and few updated measurements
- Hadronic parameters of B and D decays
 - \rightarrow External inputs from BESIII and CLEO data
- 198 input observables to determine 53 parameters

B decay	D decay	Ref.	Dataset	Status since
				Ref. [13]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h'^-$	[32]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^+ \pi^-$	[19]	Run 1&2	New
$B^{\pm} ightarrow Dh^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[33]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow h^+ h'^- \pi^0$	[34]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[35]	Run 1&2	As before
$B^{\pm} ightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[36]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^+ h'^- (PR)$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{\rm S}^0 h^+ h^- ({\rm PR})$	[20]	Run 1&2	New
$B^{\pm} ightarrow D^* h^{\pm}$	$D \to K_{\rm S}^0 h^+ h^- ({\rm FR})$	[21]	Run 1&2	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h'^-$	[22]	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[22]	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[22]	Run 1&2	New
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D ightarrow h^+ h'^-$	[37]	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h'^-$	[23]	Run 1&2	Updated
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[23]	Run 1&2	Updated
$B^0 \to DK^{*0}$	$D \to K_{\rm S}^0 h^+ h^-$	[24]	Run 1&2	Updated
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[38]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[25, 39]	Run 1&2	Updated
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[40]	Run 1&2	As before

- Excellent agreement with the global CKM fit and compatible with previous LHCb combinations (almost 1° more precise w.r.t. 2022 result)
- The most precise direct measurement
- Uncertainties are dominated by statistics
- Improve with Run3 and aim to sub-degree precision with the future Upgrade II

$B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ in B_c^+ decays

- FCNC not allowed at tree level in the SM
- Decay can only proceed through loops
 - \rightarrow Very rare processes
- Important test of SM
 - \rightarrow Sensitive to new physics contributions
- As an example B⁰_s→µ⁺µ⁻ is a golden channel to study FCNC decays
- In this new analysis study the excited vector counterparts → B^{*0} and B^{*0}_s using the full Run1+2 data

LHCb-CONF-2024-003 LHCb-PAPER-2024-026

$B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ in B_c^+ decays

- First search of $B^{*0} \rightarrow \mu^+ \mu^-$ and $B^{*}_{s}{}^0 \rightarrow \mu^+ \mu^-$ decays
- Excited vector mesons
 - \rightarrow Not helicity suppresses as their pseudoscalar companions
- However very rare week decay → Electromagnetic mode dominates
- Sensitivity to different Wilson coefficients
- SM prediction: B~10⁻¹¹ [PRL 116 (2016) 141801]
- Search using $B_c^+ \to B_{(s)}^{* 0} \pi^+ \to \mu^+ \mu^- \pi^+$ decay chain
 - \rightarrow Exploit B_c^{+} vertex signature to suppress prompt background
- Simultaneous fit to $m(\mu^+\mu^-)$ and $m(\mu^+\mu^-\pi^+)$
- No signal observed in both decay modes
- BF relative to $B_c^+ \rightarrow J/\Psi \pi^+$ at 90% CL:

$$\mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 3.8 \times 10^{-5}$$
$$\mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0 \times 10^{-5}$$

LHCb-CONF-2024-003 LHCb-PAPER-2024-026

Antihelium production in $\bar{\Lambda}^0_{\ b}$ decays

LHCB-CONF-2024-005

- Antihelium in cosmic rays \rightarrow "Smoking gun" for new physics
- The possible detection of several antihelium nuclei by <u>AMS-02</u> has triggered a lot of interest in the astrophysical community
- Possible explanations: the existence of nearby antimatter regions in space
 [PRD103 (2021) 083016] or dark matter annihilations to bb pairs [PRL 126 (2021) 101101]
- In this scenario $\overline{\Lambda_{b}^{0}}$ produced in DM annihilation could have a significant BR to 3 He in decays to five (anti)nucleons
- The authors predict a BR of up to 3x10⁻⁶ which could produce a signal in AMS

Antihelium production in $\bar{\Lambda}^0_{\ b}$ decays

LHCB-CONF-2024-005

and can provide input complementing the cosmic rays investigations

- The ³He identification @ LHCb is achieved measuring the ionization losses in the silicon sensors
 - \rightarrow Z² dependence, helium is heavily ionizing
- Build log-likelihood estimators based on cluster size and ADC counts
- Background rejection improved using information from other subdetectors
- Excellent separation between He and Z=1 background

Antihelium production in $\overline{\Lambda}^0_{h}$ decays

- ~ $\mathcal{O}(10^{11})$ Λ_{h}^{0} produced in pp collisions at 13 TeV recorded by LHCb
- Measure the relative BF of three decay channels
- To exploit full/partial cancellation of systematic uncertainties the $\Lambda^0_{\ b} \rightarrow \Lambda^+_{\ c}$ (p K⁻ π^+) π^- channel has been used for normalization
- In absence of significant signals the first upper limits on this process are derived (X=not reconstructed particles)

Branching fraction

M.Veltri

 0^{-5}

 10^{-7}

 10^{-9}

 10^{-11}

 $\mathcal{B}(\overline{\Lambda}^0_b \to {}^3\overline{\text{He}}pp) < 1.9 \times 10^{-9} \text{ at } 90\% \text{ CL},$ $\mathcal{B}(\overline{\Lambda}_{h}^{0} \rightarrow {}^{3}\overline{\text{He}}ppX) < 1.6 \times 10^{-8} \text{ at } 90\% \text{ CL},$ $\mathcal{B}(\overline{\Lambda}^0_b \to {}^3\overline{\text{He}}pX) < 3.6 \times 10^{-8} \text{ at } 90\% \text{ CL}.$

- Large theoretical DM estimate ruled out by more than one order of magnitude
- These results significantly restrict scenarios for antihelium production through dark matter annihilation in space

$\Lambda^0/\overline{\Lambda}^0$ Transverse polarization

- First observation of Λ⁰ transverse polarization in 1976 in unpolarized pBe collisions at 300 GeV
- Completely unexpected: Collision of two unpolarized objects and high energy interactions provide a large number of final states → The polarization effects should disappear
- Cause not yet understood
 - Observed effects cannot be explained by asymmetries at the hard partonic process
 - Polarizing fragmentation function
 - \circ Soft process not calculable with QCD \rightarrow Measurement needed
- Experiments show that
 - Polarization increases with x_F and p_T (up to \approx 1 GeV) for higher p_T becomes flat
 - No dependence on the beam energy or colliding system
 - Same magnitude for other hyperons

$\Lambda^0/\bar{\Lambda}^0$ Transverse polarization @ LHCb

- LHCb measurement in fixed-target configuration, pNe data @ $\sqrt{s_{_{NN}}}$ =68.4 GeV
- Using the $\Lambda^0 \to p \pi^-$ (and CC) decays \to Strong parity violation
- Large asymmetry in the angular distribution of the p in Λ^0 rest frame
 - \circ The p is preferably emitted along the Λ^0 spin direction

$$\frac{dN}{d\cos\theta} = \frac{dN_0}{d\cos\theta} (1 + \alpha P_A \cos\theta)$$

 Integrated polarization and studied also as a function of p_T, x_F, y, and η

 $P_{A} = 0.029 \pm 0.019 \, ({\rm stat}) \pm 0.012 \, ({\rm syst})$

 $P_{\bar{A}} = 0.003 \pm 0.023 \,(\text{stat}) \pm 0.014 \,(\text{syst})$

- The polarization values are compatible with previous measurements
- Uncertainty dominated by limited statistics
- Similar x_F interval as <u>HERA-B</u> but different energy and colliding system

arXiv:2405.11324 JHEP09 (2024) 082

Summary

- Few selected LHCb highlights from Run 1 and Run 2
- LHCb is not only CP violation & flavour physics
- A rich and varied physics program in continuous evolution
- Run 3 is in progress with the detector stably operating
- The larger data sample will improve the precision of key measurements

 Upgrade II phase is in preparation and the scoping document is right now under review of the LHCC

Backup

How to measure $\forall \rightarrow \text{Direct CPV}$

- Measured from the interference between the favoured $b \rightarrow c$ and suppressed $b \rightarrow u$ transitions
- The most sensitive decay channels are $B^{\pm} \rightarrow DK^{\pm}$ with D (= D^{0}, \overline{D}^{0}) decaying to the same final state f
- The decay rates can be expressed as:

 $\Gamma_{B^-} \propto r_B^2 + r_D^2 + 2r_B r_D cos(\delta_B + \delta_D - \gamma)$ $\Gamma_{B^+} \propto r_B^2 + r_D^2 + 2r_B r_D cos(\delta_B + \delta_D + \gamma)$

- $r_{B}(r_{D})$ are the amplitude ratio of B (D) decays $r_B = rac{A(B^-
 ightarrow D^0 K^-)}{A(B^-
 ightarrow D^0 K^-)}$ Candidates
- \forall is the weak phase: **CP**(\forall) = - \forall
- $\delta_{\rm B}(\delta_{\rm D})$ is the strong phase: **CP** $(\delta_{\rm B})$ = + $\delta_{\rm B}$
- The non zero angle & introduce visible CPV in the decay rate
- Key observable: asymmetry between B^- and B^+ yields

- Need to combine many decays mode
 - Small r_B Ο
 - Small BR of decays sensitive to 8 Ο

How to measure $\mathcal{V} \to CPV$ in mixing & decay

- Golden channel: $B^0_{\ s} \rightarrow D^{+}_{\ s} K^{\pm}$
- CPV in $B_s^0 \overline{B}_s^0$ mixing and decay
- Decay time dependent analysis
- CP violating parameters are function of 8 and mixing phase β_s
 - $\rightarrow \beta_{s} \equiv arg (-V_{ts}V_{tb}^{*}/V_{cs}V_{cb}^{*})$
- Ratio of amplitudes of interfering decays larger: $r_B \approx 0.4$
- Requires flavour tagging to determine the initial B⁰_s flavour

