
b and **c** spectroscopy at LHCb

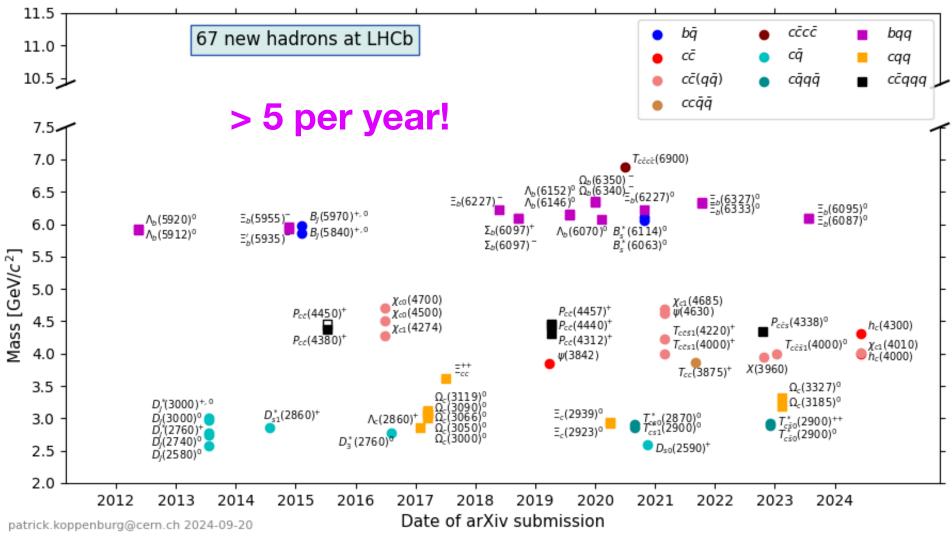
Paras Naik

IK

on behalf of the LHCb collaboration

LHC Days (Hvar), 3 October 2024

LHCb


Overview

- Spectroscopy is a highly active field at the LHC! All of the experiments are contributing!
- <u>LHCb</u> benefits from its precision and the LHC's large beauty and charm production in the forward region
- To understand composite matter we study
 - conventional and exotic particles/resonances
 - existing and new particles/resonances

- Will focus on the most recent LHCb b and c spectroscopy results
 - Spanning across various LHCb physics specialties
- Link to all recent LHCb results

New hadrons

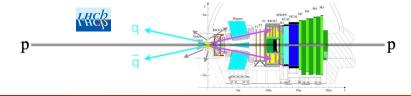
LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, LHCb-FIGURE-2021-001 (2021) and updates (2024).

Paras Naik, University of Liverpool

Today

• Spin-parities of the $\Xi_c(3055)^{+(0)}$ baryons

arXiv:2409.05440


 Muonic Dalitz decays of *x*^b mesons arXiv:2408.05134, accepted to JHEP Precise spectroscopy of hidden-beauty states NEW!

Exotic J/ψφ resonances in diffractive processes arXiv:2407.14301

Observation of new charmonium(-like) states

PRL 133 131902 (2024) PRL Editor's suggestion

Run 1 (2011-2012) \rightarrow 3/fb at 7-8 TeV **Run 2** (2015-2018) \rightarrow 6/fb at 13 TeV

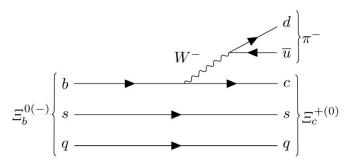
Paras Naik, University of Liverpool

First determination of the Spin-parities of the $\Xi_{c}(3055)^{+(0)}$ baryons

• $\Xi_c(3055)^{+(0)}$ observed for the first time by Babar (Belle)

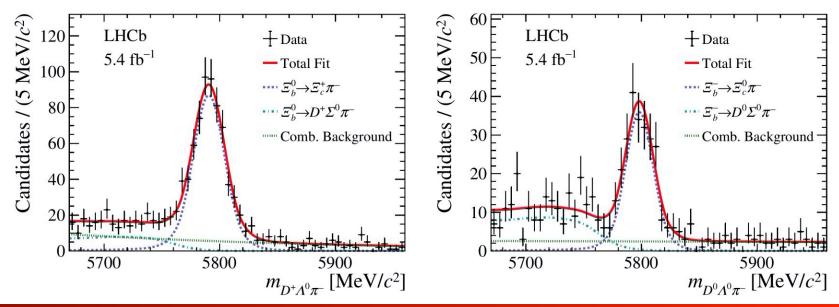
Many proposed interpretations, including:

- D-wave excitation with the spin-parity (J^P) assignments of 3/2⁺, 5/2⁺ or 7/2⁺ [PRD 78 (2008) 056005, Rept.Prog.Phys. 80 (2017), 076201]
- Possible compatibility with the 2S excitation of the ±c(3F) or ±c(6F) states, with a possible J^P assignment of 1/2+ or 3/2+
 [PRD 96 (2017) 114003]
- Hadron molecular states are also proposed, favouring a J^P assignment of 1/2⁻ or 3/2⁻ [EPJC 79 (2019) 167]
- Experimental determination of Ec(3055)⁺⁽⁰⁾ J^P is important for charm baryon spectroscopy


arXiv:2409.05440 NEW!

PhysRevD.77.012002 (2008) (PhysRevD.94.032002 (2016))

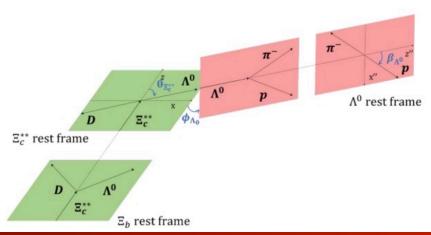
b and c spectroscopy at LHCb

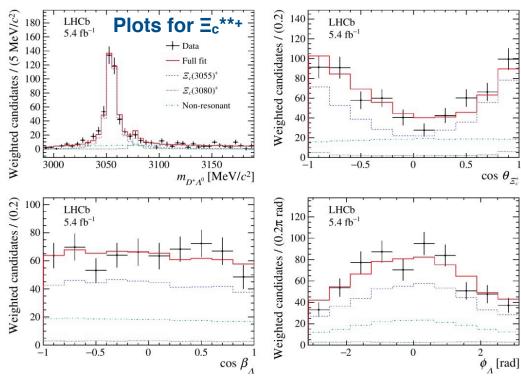

First determination of the **Spin-parities of the** E_c(3055)+⁽⁰⁾ baryons

- Study of Ξ_c(3055)⁺⁽⁰⁾ based on 2016-2018 (Run 2) data (5.4 fb⁻¹)
- $\Xi_c(3055)^{+(0)}$ studied in decay of $\Xi_b^{0(-)}$
 - $= \Xi_b^{0(-)} \rightarrow \Xi_c^{**+(0)} \pi^{-}$
 - = $\Xi_c^{**+(0)} \rightarrow D^{+(0)}\Lambda^0$, $D^{+(0)} \rightarrow K\pi\pi(K\pi)$, $\Lambda^0 \rightarrow p\pi^-$

NEW!

• The total $\Xi_{b^{0(-)}}$ yields are 637 ± 31 (232 ± 19)


Paras Naik, University of Liverpool


b and c spectroscopy at LHCb

First determination of the Spin-parities of the E_c(3055)+⁽⁰⁾ baryons

arXiv:2409.05440 NEW!

- Amplitude analyses of $\Xi_b^{0(-)} \rightarrow D^{+(0)} \Lambda^0 \pi^-$ performed using helicity formalism
- \(\frac{2}{c}(3055)^{+(0)}\) [and \(\frac{2}{c}(3080)^{+(0)}\]] resonances described by relativistic Breit-Wigner convoluted by Gaussian resolution functions
- Non-resonant component described by exponential functions
- Free parameters: $\Xi_c^{**+(0)}$ mass, $\Xi_c^{**+(0)}$ width, $\Xi_c^{**+(0)}$ helicity couplings
- Best fit for Ξ_c(3055)⁺⁽⁰⁾
 corresponds to J^P = 3/2⁺
 - Other hypotheses for J^P rejected at >= 6.5σ(3.5σ)

Paras Naik, University of Liverpool

First determination of the Spin-parities of the E_c(3055)+⁽⁰⁾ baryons

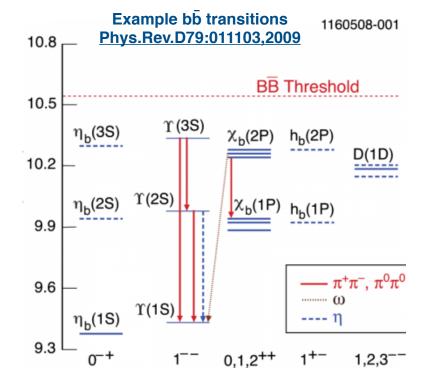
The masses and widths updated with a precision comparable to previous determinations

Quantity	$\Xi_{c}(3055)^{+}$	$\Xi_{c}(3055)^{0}$	
$m [\mathrm{MeV}\!/c^2]$	$3054.52 \pm \ 0.36 \ \pm \ 0.17$	$3061.00 \pm 0.80 \pm 0.23$	
$\Gamma [\mathrm{MeV}]$	$8.01\pm\ 0.76\ \pm\ 0.34$	$12.4 \pm 2.0 \pm 1.1$	
α	$-0.92\pm\ 0.10\ \pm 0.05$	$-0.92 \pm 0.16 \pm 0.22$	
$R_{\mathcal{B}}$	$0.045 \pm 0.023 \pm 0.006$	$0.14 \pm 0.06 \pm 0.04$	

- First measurement of up-down asymmetries [α, relative difference between helicity state decay rates] in Ξ_b⁰⁽⁻⁾ → Ξ_c(3055)⁺⁽⁰⁾π– decays
 - Consistent with complete parity violation
- The first determination of the relative branching fractions [R_B] for $\Xi_c(3080)^{+(0)}$ and $\Xi_c(3055)^{+(0)}$
- Our measurement of \(\mathcal{E}_c(3055)^{+(0)}\) J^P=3/2⁺ rules out (disfavors) the hadron molecular state hypothesis

NEW!

b and c spectroscopy at LHCb

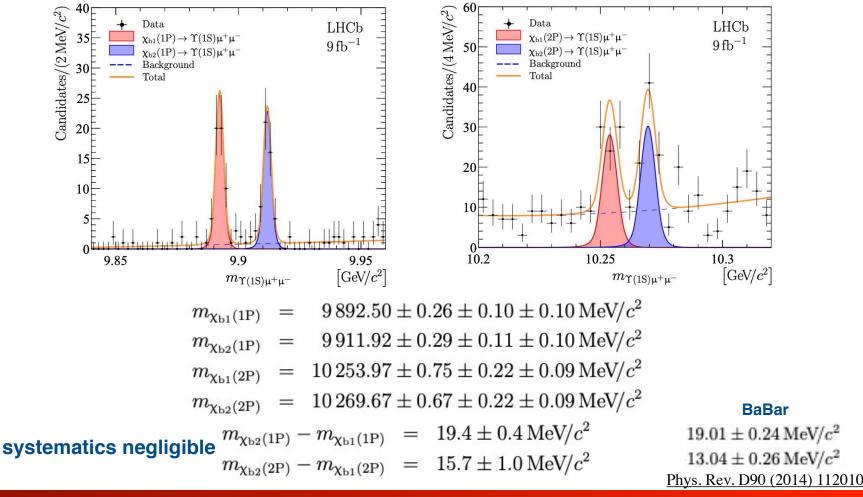

First observation of arXiv:2408.05134, accepted to JHEP Muonic Dalitz decays of $\chi_{\rm b}$ mesons

NEW!

- Radiative transitions between different J^{PC} levels have been intensively studied in the past
- Previously, e⁺e⁻ experiments relied on the photon energy of the Y(2S) and Y(3S) to $\chi_{\rm b}$ state transitions

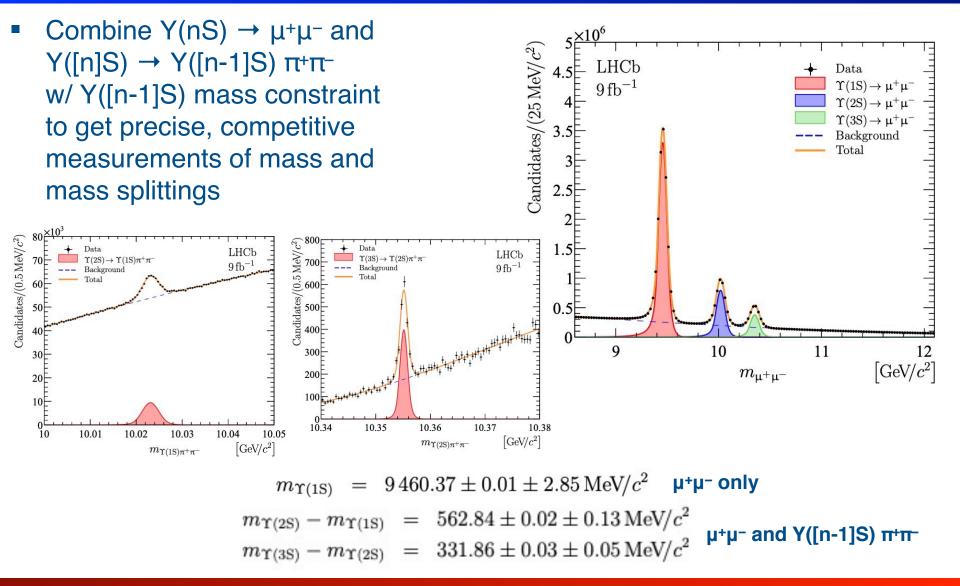
BaBar, Phys. Rev. D90 (2014) 112010. arXiv:1410.3902 CLEO, Phys. Rev. Lett. 94 (2005) 032001, arXiv:hep-ex/0411068. CUSB, Phys. Rev. D46 (1992) 1928 Crystal Ball, Phys. Rev. D34 (1986) 2611 ARGUS, Phys. Lett. B160 (1985) 331

- LHCb for the first time reports the muonic Dalitz decays from the $\chi_{\rm b}$ levels to the Y(1S)
 - These decays are used to measure the masses of these states.
 - Reduced systematics due to all-muon final state



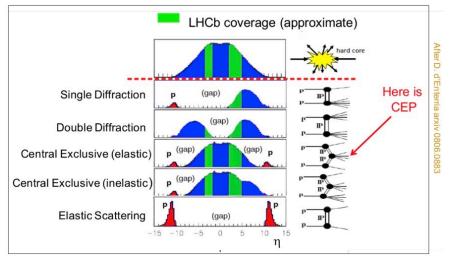
b and c spectroscopy at LHCb

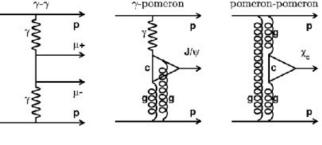
First observation of arXiv:2408.05134, accepted to JHEP Muonic Dalitz decays of $\chi_{\rm b}$ mesons


NEW!

- Full Run 1 & Run 2 datasets. The results are competitive.
 - world best for $\chi_{\rm b}(1P)$ and in agreement with the world averages.

Paras Naik, University of Liverpool

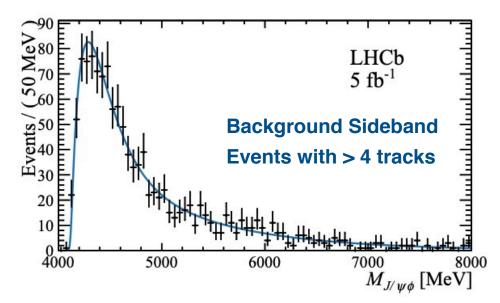

arXiv:2408.05134, accepted to JHEP
Precise spectroscopy of hidden-beauty states NEW!



Paras Naik, University of Liverpool

Exotic J/ψφ resonances in diffractive processes

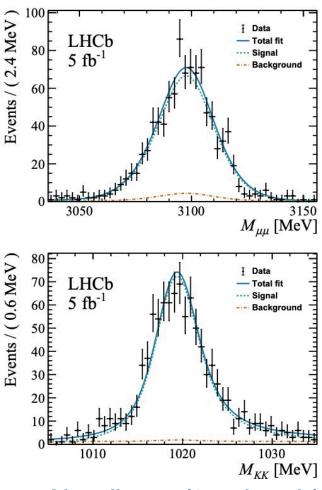
- Central (Exclusive) Diffractive Production can be studied at LHCb
- Colourless objects in QCD, Very low p_T objects, Clean expt. environment
- What do we look for?
 - $pp \rightarrow p + X + p$ (rapidity gaps and protons intact)
 - X in this case is $J/\psi \phi$, look for this and no additional detected activity
 - HeRSCheL (JINST 13 (2018) P04017) gives p dissociation information
- Rich Physics: Photon-Pomeron, Double-Pomeron, Photoproduction, Glueballs, Exotica



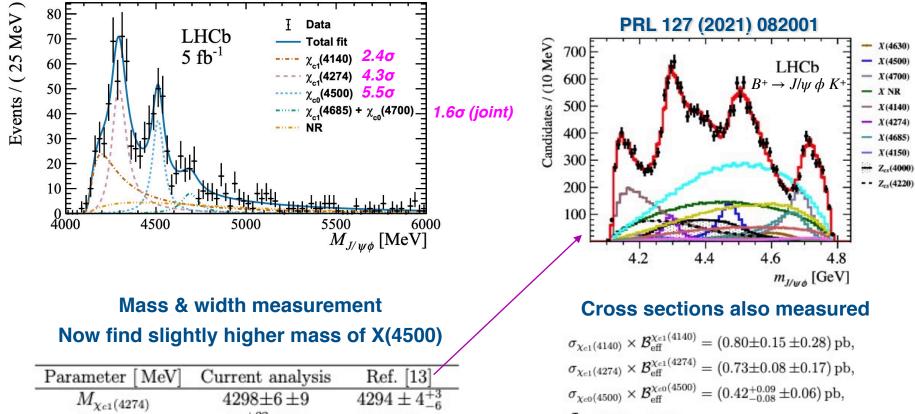
- ✓ Experimentally clean even @LHC
- ✓ Spin-parity option narrowed down
- X Much smaller rate

Paras Naik, University of Liverpool

Exotic J/up resonances in diffractive processes


Analysis performed with Run 2 data

 HeRSCheL high-rapidity shower counters help us determine if there is any proton dissociation (despite LHCb not seeing it); determines at least 69% of events have at least one proton dissociating (so at most 31% are elastic CEP)


arXiv:2407

After all vetos (4 tracks only)

Exotic J/\u00fcd resonances in diffractive processes

First exotic measurement in Central Exclusive Production

 $53\pm5\pm5$

 $4474 \pm 3 \pm 3$

 $77\pm6^{+10}_{-8}$

Aco(aco) cu	1 0100
$\sigma_{\chi_{c1}(4685)+\chi_{c0}(4700)}$	
$ imes \mathcal{B}_{ ext{eff}}^{\chi_{c1}(4685)+\chi_{c0}(4700)}$	$= (0.14^{+0.07}_{-0.06} \pm 0.06) \mathrm{pb},$
$\sigma_{ m NR} imes \mathcal{B}_{ m eff}^{ m NR}$	$= (0.43^{+0.24}_{-0.18}\pm 0.20)\mathrm{pb},$

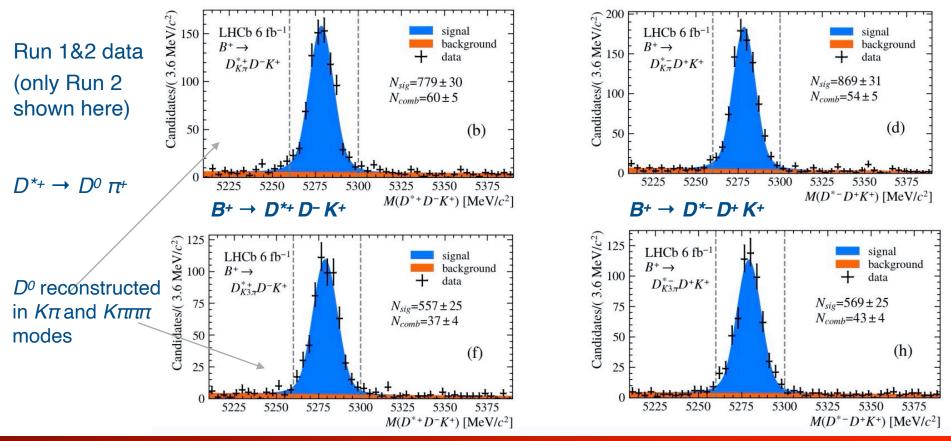
Paras Naik, University of Liverpool

 $\Gamma_{\chi_{c1}(4274)}$

 $M_{\chi_{c0}(4500)}$

 $\Gamma_{\chi_{c0}(4500)}$

 $92^{+22}_{-18}\pm 57$

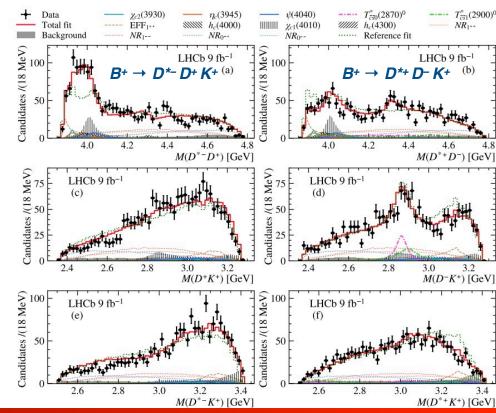

 $4512.5^{+6.0}_{-6.2} \pm 3.0$

 $65^{+20}_{-16}\pm32$

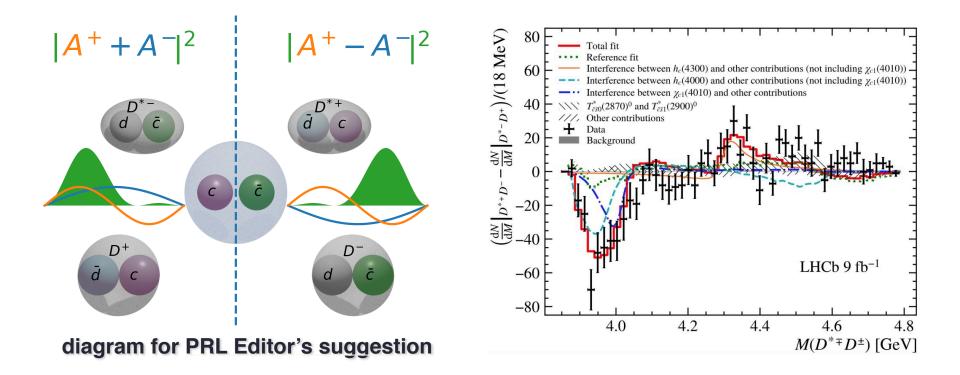
LHC Days, 3 October 2024

arXiv:2407.14301

- Simultaneous analysis of the $B^+ \rightarrow D^{*+}D^-K^+$ and $B^+ \rightarrow D^{*-}D^+K^+$ decays
- Amplitudes for $B^+ \rightarrow (D^{*+}D^-)_R K^+$ and $B^+ \rightarrow (D^{*-}D^+)_R K^+$ linked by C-parity.
 - Allows determination of the C-parities of the R resonances.


Paras Naik, University of Liverpool

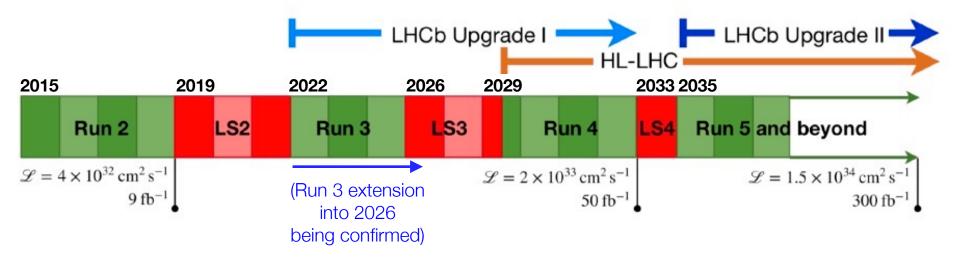
- Multiple contributions needed in the $D^{*\pm} D^{\mp}$ spectra to describe the data:
 - Four non-resonant: 1++, 0++, 1--, 0--,
 - $\chi_{c2}(3930), \psi(4040)$ with fixed parameters,
 - $\eta_{c}(3945), h_{c}(4000), \chi_{c}(4010), h_{c}(4300),$ with statistical significances of $\frac{+}{2} D_{ata}$ $10\sigma, 9.1\sigma, 16\sigma \text{ and } 6.4\sigma.$
- Fit includes the $T^*_{cs0}(2870)^0$, $T^*_{cs1}(2900)^0$ states
 - first found in
 B⁺ → D⁺ D⁻ K⁺ decays
 PhysRevLett.125.242001
 PhysRevD.102.112003
 - Resonances confirmed with statistical significances of 11σ, 9.2σ, respectively


Paras Naik, University of Liverpool

*η*_c(3945) compatible with X(3940) <u>PhysRevLett.98.082001</u> <u>PhysRevLett.100.202001</u>

16

- $J^P = 1^+$ states are the main contribution in the $D^{*_{\pm}} D^{\mp}$ mass spectra
- J^{PC} values for $\eta_c(3945)$, $h_c(4000)$, $\chi_c(4010)$, $h_c(4300)$: 0⁻⁺, 1⁺⁻, 1⁺⁺, 1⁺⁻
 - Interferences due to different C-parities among states of same J^P result in different patterns in M(D^{*+} D⁻) and M(D^{*-} D⁺).



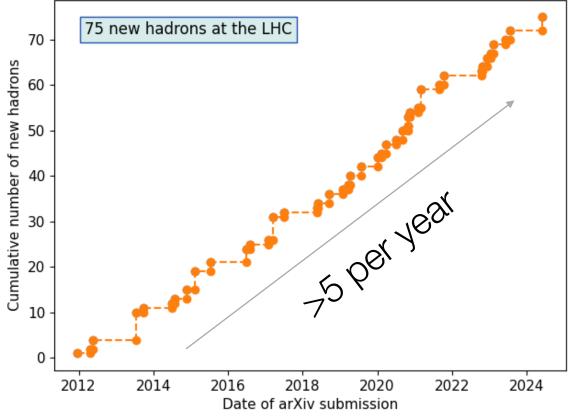
- $J^{P} = 1^{+}$ states are the main contribution in the $D^{*_{\pm}} D^{\mp}$ mass spectra
- J^{PC} values for η_c(3945), h_c(4000), χ_c(4010), h_c(4300): 0⁻⁺, 1⁺⁻, 1⁺⁺, 1⁺⁻

New creatures found for the (composite) particle zoo!

Spectroscopy Future Prospects

- All analyses shown so far use Run 1 and/or Run 2 data (9 fb⁻¹ total)
- LHCb on target for > 7 fb⁻¹ in Run 3 (expect > 23 fb⁻¹ Run 1-3)
- Expectations:
 - Upgrade I (Run 1-4, 50 fb⁻¹)
 - <u>Upgrade II</u> (Run 1-6, 300 fb⁻¹)
- Much more data coming... increased precisions
 Pace of 5 more new particles per year squarely in realm of possibility...

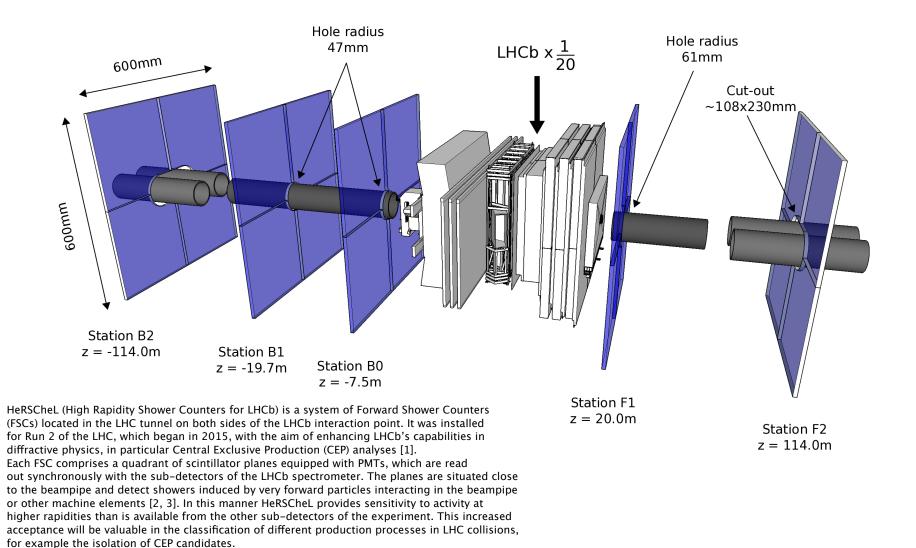
Conclusion


- Our detector has worked "like a charm" and seen many "beautiful things"
 - LHCb in its first two runs has published many beauty and charm spectroscopy results, often providing unexpected results.
 - LHCb is continuing to exploit its unique data set to investigate hadron decays. Several Run 1 & Run 2 analyses have approached final stages.
- New analyses are on the horizon; datasets at LHCb are becoming vast.
 - Expect LHCb spectroscopy results from Run 3(+) in the near(+) future!

Additional Slides

Paras Naik, University of Liverpool

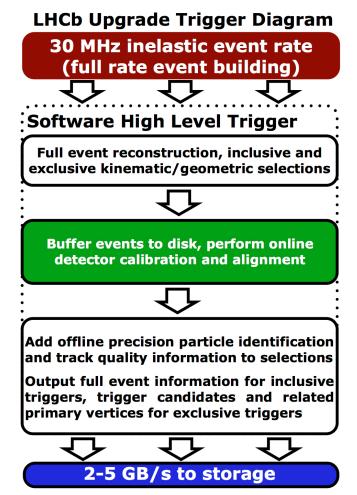
Overview



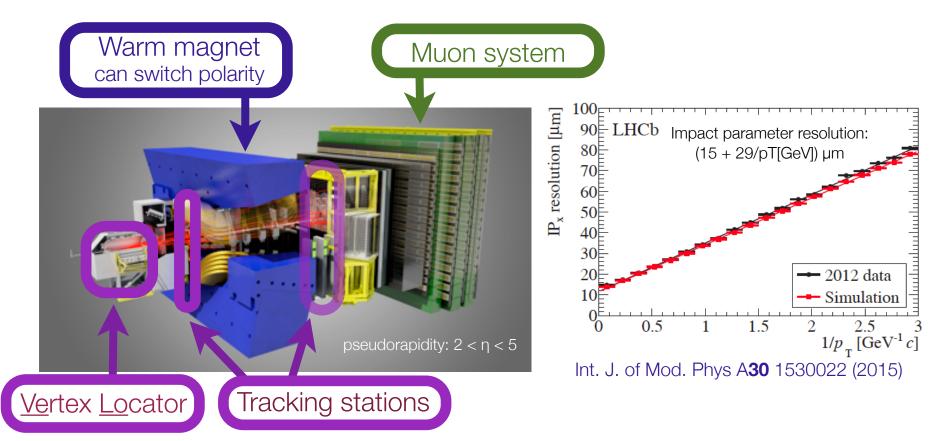
patrick.koppenburg@cern.ch 2024-09-20

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, LHCb-FIGURE-2021-001 (2021) and updates (2024).

Paras Naik, University of Liverpool


HeRScHEL

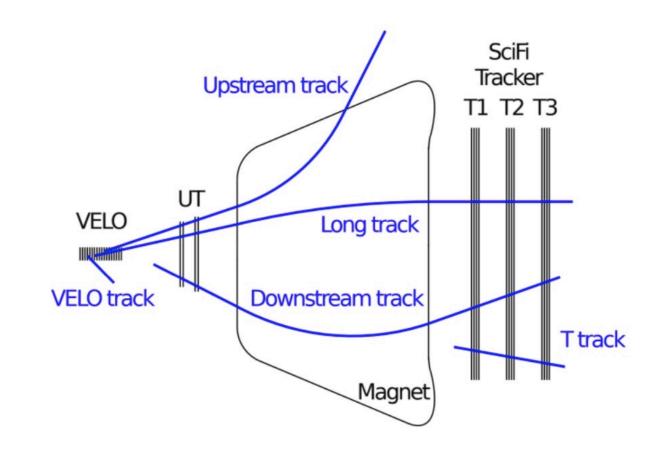
Paras Naik, University of Liverpool


Trigger evolution for Run 3

- LHCb has removed the Level-0 Hardware Trigger. In Run 3 we readout the full detector in every event (30 MHz).
- Run 1 + 2 hardware approach was based on simple detector signals to reduce rate to 1 MHz before events reach software trigger.
- Software trigger approach enables efficiency gain – typically factor between 3 and 10 for Heavy Flavour channels.
- First stage of software trigger is GPU based.
- With relatively little additional integrated luminosity, can get very large samples compared to existing datasets.

LHCb Experiment: Tracking

- Accurate decay time resolution from our vertex locator (VELO)
- High muon reconstruction efficiency from muon stations
- Good momentum resolution from tracking stations, $\Delta p/p = 0.5\% 1.0\%$


LHCb Experiment: Particle ID and Trigger

p/K/π separation provided by <u>Ring Imaging Cherenkov</u> (**RICH**) detectors

- The ability to identify particles at LHCb is crucial to many of our analyses.
- Excellent trigger allows us to trigger on tracks with lower pT

First determination of the **Spin-parities of the** $\Xi_{c}(3055)^{+(0)}$ baryons

Lambda candidates constructed from two Long tracks Or two Downstream tracks

arXiv:2409.05440

NEW!

b and c spectroscopy at LHCb

First determination of the Spin-parities of the E_c(3055)+⁽⁰⁾ baryons

- $\Xi_c(3055)^{+(0)}$ observed for the first time by Babar (Belle)
- Excitation modes of $\Xi_c(3055)^{+(0)}$ extensively studied in literature
 - Excitation can happen between heavy quark and diquark (λ-mode) or between two light quarks (ρ-mode)
- Many proposed interpretations, including:
 - D-wave excitation with the spin-parity (J^P) assignments of 3/2+, 5/2+ or 7/2+ [PRD 78 (2008) 056005]
 - Possible compatibility with the 2S excitation of the ±c(3F) or ±c(6F) states, with a possible J^P assignment of 1/2+ or 3/2+
 [PRD 96 (2017) 114003]
 - Hadron molecular states are also proposed, favouring a J^P assignment of 1/2⁻ or 3/2⁻ [EPJC 79 (2019) 167]
- Experimental determination of Ec(3055)⁺⁽⁰⁾ J^P is important for charm baryon spectroscopy

 $\vec{\rho}$

arXiv:2409.05440 NEW!

Phys.Rev.D77:012002.2008

(PhysRevD.94.032002)

 S_{q_1}

С

o noromotoro

First determination of the Spin-parities of the E_c(3055)+⁽⁰⁾ baryons

- Amplitude analysis performed using helicity formalism
- Resonances described by relativistic Breit-Wigner convoluted by Gaussian resolution functions
- Non-resonant component described by exponential functions

Free parameters:		
$\equiv \Xi_c^{**+(0)} \text{ mass}$	$J^P_{\Xi_c(3055)^{+(0)}}$	n_{σ}
$\equiv \Xi_{c}^{**+(0)} \text{ width}$	$1/2^{-}$	12.9(6.5)
\[\equiv \frac{\pi}{c}^{**+(0)} \] helicity couplings	$1/2^{+}$	11.0(5.5)
Best fit corresponds to J^P = 3/2+	$3/2^{-}$	7.3 (3.5)
 Other hypotheses rejected 	$5/2^{-}$	6.5(4.8)
at levels shown in the table.	$5/2^{+}$	9.8 (4.8)
	$7/2^{-}$	10.7 (6.2)
	$7/2^{+}$	10.9(6.0)

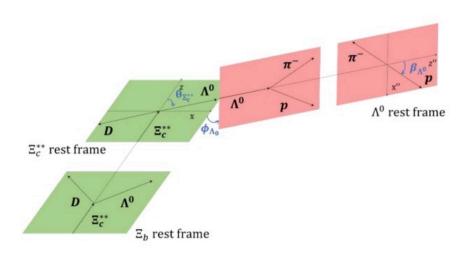
NEW!

First determination of the Spin-parities of the E_c(3055)+⁽⁰⁾ baryons

arXiv:2409.05440 NEW!

 $\Xi_{c}(3055)^{+(0)}$ measurement: helicity angles

- $\Xi_b \to \Xi_c^{**} \pi^ A_{\lambda_{\Xi_b},\lambda_{\Xi_c},\lambda_{\pi}}^{\Xi_b \to \Xi_c \pi^-} = H_{\lambda_{\Xi_c}}^{\Xi_b \to \Xi_c \pi^-} \delta_{\lambda_{\Xi_b},\lambda_{\Xi_c}}$
- $\Xi_c^{**} \to D\Lambda$


• $\Lambda \rightarrow p\pi^-$

 $A^{\Lambda \to p\pi^-}_{\lambda_{\Lambda},\lambda_{p},\lambda_{\pi}} = H^{\Lambda \to p\pi^-}_{\lambda_{p}} D^{j_{\Lambda}}_{\lambda_{\Lambda},\lambda_{p}}(\boldsymbol{\phi},\boldsymbol{\beta},0)$

 $A_{\lambda_{\Xi_c},\lambda_D,\lambda_A}^{\Xi_c \to D\Lambda} = H_{\lambda_A}^{\Xi_c \to D\Lambda} d_{\lambda_{\Xi_c},\lambda_A}^{J_{\Xi_c}}(\boldsymbol{\theta})$

Floated for each resonance Strong decay, only phase term: $\eta^{P_{\Xi_c}}(-1)^{J_{\Xi_c}+1/2}$

Fixed from input

Paras Naik, University of Liverpool

First determination of the **Spin-parities of the** $\Xi_{c}(3055)^{+(0)}$ baryons

arXiv:2409.05440 NEW!

$\Xi_{c}(3055)^{+(0)}$ measurement: systematic unc.

Source	$\sigma_m \left[\text{MeV}/c^2 \right]$	$\sigma_{\Gamma} [\mathrm{MeV}]$	σ_{lpha}	$\sigma_{R_{\mathcal{B}}}$
Mass input	± 0.05		-	-
Momentum scale	± 0.01	_	_	_
Detector resolution	± 0.00	± 0.07	± 0.00	± 0.000
MC sample size	± 0.15	± 0.30	± 0.02	± 0.002
Trigger efficiency	± 0.01	± 0.03	± 0.02	± 0.000
Λ categories	± 0.03	± 0.04	± 0.01	± 0.002
Ξ_b^0 Mass fit	± 0.03	± 0.13	± 0.01	± 0.001
Angular momentum	± 0.00	± 0.00	± 0.04	± 0.002
$\Gamma_{\Xi_c(3080)}$	± 0.01	± 0.01	± 0.00	± 0.003
$m_{\Xi_c(3080)}$	± 0.00	± 0.02	± 0.00	± 0.000
Clone tracks	± 0.02	± 0.03	± 0.01	± 0.003
Total	± 0.17	± 0.34	± 0.05	± 0.006

- Amplitudes for $B^+ \rightarrow R(D^{*+}D^-)K^+$ and $B^+ \rightarrow R(D^{*-}D^+)K^+$ linked by C-parity.
- Total amplitude: coherent sum of resonant and non-resonant components in all channels.

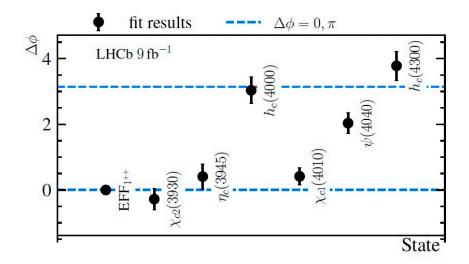
$$\begin{aligned} \mathcal{A}(x) &= \frac{1+d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} c_j A_j(x) + \sum_{k \in R(D^{*-}K^+, D^+K^+)} c_k A_k(x) \right\} \\ &+ \frac{1-d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} C_j \times c_j A_j(x) + \sum_{l \in R(D^{*+}K^+, D^-K^+)} c_l A_l(x) \right\}. \end{aligned}$$

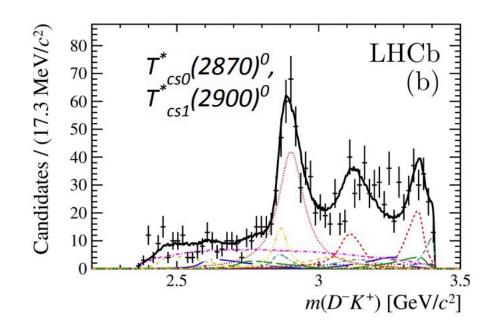
- Both S-wave and D-wave amplitudes contribute significantly to $\mathbf{R} \rightarrow \mathbf{D}^{*\pm} \mathbf{D}^{\mp}$ decays for $\mathbf{J}^{\mathsf{P}} = \mathbf{1}^+$.
- Line shapes for these partial waves:

$$f_{R,S/D}(m) = \frac{\gamma_{S/D}}{m_0^2 - m^2 - im_0[\gamma_S^2 \Gamma_S(m) + \gamma_D^2 \Gamma_D(m)]},$$

Table 1: Resonant and nonresonant components included in the baseline fit and their spin parities, fit fractions and product branching fractions $(\mathcal{B}(B^+ \to RC) \times \mathcal{B}(R \to AB))$, where A, B, C are the three final-state particles. To obtain the branching fractions including both $R \to D^{*+}D^-$ and $R \to D^{*-}D^+$, the values in the table should be multiplied by a factor of two. The first uncertainties are statistical, estimated with a bootstrap method [32], the second are systematic and and the third are from the uncertainty of the $B^+ \to D^{*+}D^-K^+$ branching fraction. The masses and widths of the resonances marked with the [†] symbol are fixed to their PDG values [6].

Component	$J^{P(C)}$	Fit fraction [%] $B^+ \to D^{*+}D^-K^+$	Fit fraction [%] $B^+ \to D^{*-}D^+K^+$	Branching fraction $[10^{-4}]$
$EFF_{1^{++}}$	1++	$10.9^{+2.3}_{-1.2}{}^{+1.6}_{-2.1}$	$9.9^{+2.1}_{-1.0}{}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14} \pm 0.07$
$\eta_{c}(3945)$	0^{-+}	$3.4_{-1.0}^{+0.5}{}_{-0.7}^{+1.9}$	$3.1^{+0.5}_{-0.9}{}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm0.02$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8^{+0.5}_{-0.4}{}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}{}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$
$h_c(4000)$	1^{+-}	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}{}^{+0.10}_{-0.05}\pm0.03$
$\chi_{c1}(4010)$	1^{++}	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}{}^{+0.09}_{-0.11}\pm 0.06$
$\psi(4040)^{\dagger}$	1	$2.8^{+0.5}_{-0.4}{}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}{}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}{}^{+0.03}_{-0.03}\pm0.02$
$h_c(4300)$	1+-	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}{}^{+0.02}_{-0.01}\pm 0.01$
$T^*_{\bar{c}\bar{s}0}(2870)^{0\dagger}$	0^{+}	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$		$0.45^{+0.06}_{-0.08}{}^{+0.09}_{-0.10}\pm0.04$
$T^*_{\bar{c}\bar{s}1}(2900)^{0\ \dagger}$	1^{-}	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	-	$0.38^{+0.07}_{-0.10}{}^{+0.16}_{-0.11}\pm0.03$
$NR_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4^{+2.3}_{-0.6}{}^{+2.1}_{-2.6}$	$18.5^{+2.1}_{-0.5}{}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm 0.12$
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2^{+0.6}_{-0.1}{}^{+0.7}_{-0.6}$	$1.1 {}^{+0.6}_{-0.1} {}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm0.01$
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1++	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm 0.09$

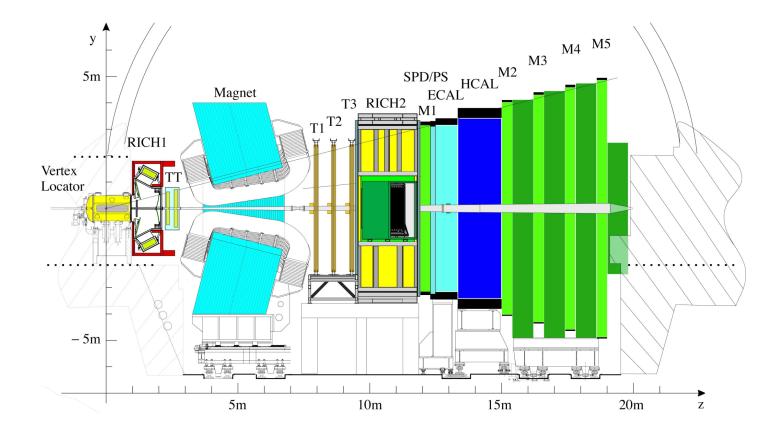



Figure 2: Results of the C-parity determination, where $C_j = \pm 1$ is replaced by $\exp(i\Delta\phi_j)$. Uncertainties are statistical only.

- $J^{P} = 1^{+}$ states are the main contribution in the $D^{*_{\pm}} D^{\mp}$ mass spectra
- Interferences due to different C-parities results in different patterns in M(D*+ D-) and M(D*- D+).
- J^{PC} values for $\eta_c(3945)$, $h_c(4000)$, $\chi_c(4010)$, $h_c(4300)$: 0⁻⁺, 1⁺⁻, 1⁺⁺, 1⁺⁻

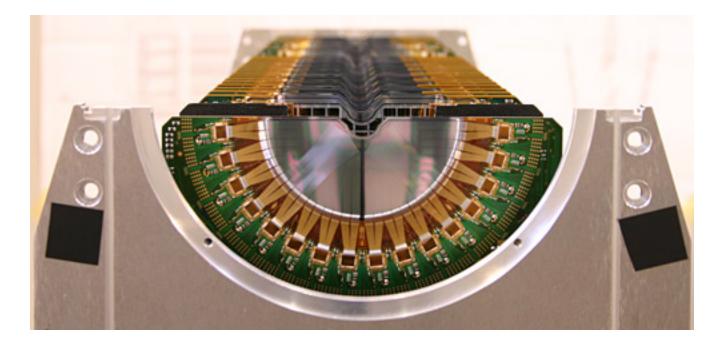
This work		Known states 6		$c\bar{c}$ prediction [34]	
$\eta_{c}(3945)$	$J^{PC} = 0^{-+}$	X(3940) [9, 10]	$\overline{J}^{PC} = ?^{??}$	$\eta_c(3S) J^{PC} = 0^{-+}$	
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130 {}^{+92}_{-49} {}^{+101}_{-70}$	$m_0 = 3942 \pm 9$	$\Gamma_0 = 37 {}^{+27}_{-17}$	$m_0 = 4064$ $\Gamma_0 = 80$	
$h_c(4000)$	$J^{PC} = 1^{+-}$	$T_{c\bar{c}}(4020)^0$ [35]	$J^{PC} = ??^{-}$	$h_c(2P) J^{PC} = 1^{+-}$	
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$m_0 = 4025.5 \substack{+2.0 \\ -4.7 \pm} 3.1$	$\Gamma_0 = 23.0 \pm 6.0 \pm 1.0$	$m_0 = 3956$ $\Gamma_0 = 87$	
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$			$\chi_{c1}(2P) J^{PC} = 1^{++}$	
$m_0 = 4012.5 +3.6 \\ -3.9 \\ -3.7 \\$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$			$m_0 = 3953$ $\Gamma_0 = 165$	
$h_c(4300)$	$J^{PC} = 1^{+-}$			$h_c(3P) J^{PC} = 1^{+-}$	
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58 {}^{+28}_{-16} {}^{+28}_{-25}$			$m_0 = 4318$ $\Gamma_0 = 75$	
[9] <u>PRL 98, 082001</u> [35] P	RL 115, 182002	$\chi_c(4274)$ [36]	$J^{PC} = 1^{++}$	$\chi_{c1}(3P) J^{PC} = 1^{++}$	
10 FRL 100, 202001	RL 127, 082001	$m_0 = 4294 \pm 4^{+6}_{-3}$	$\Gamma_0 = 53 \pm 5 \pm 5$	$m_0 = 4317$ $\Gamma_0 = 39$	

Table 2: Comparison of the $T^{*0}_{\bar{c}\bar{s}0,1}$ properties obtained in this work to those found previously in $B^+ \to D^+ D^- K^+$ decays 2. In the branching fractions determined in this work, the $T^{*0}_{\bar{c}\bar{s}0,1}$ masses and widths are fixed to the previously measured values 2.

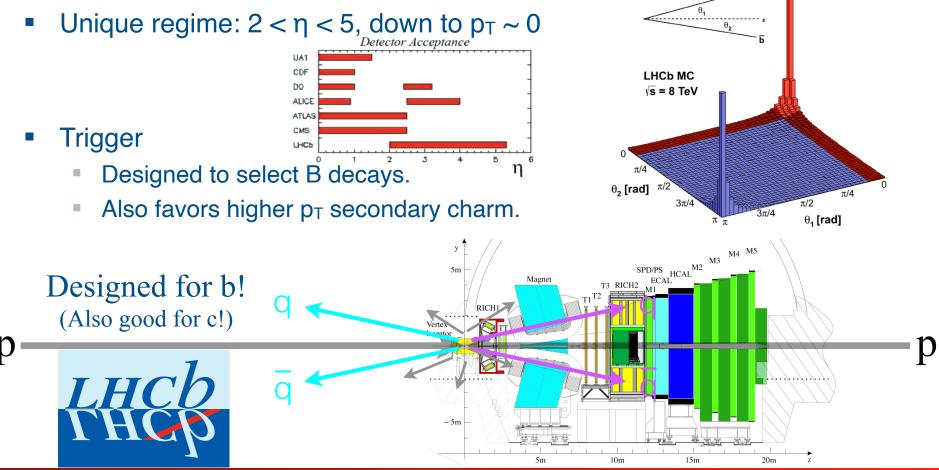

Property	This work	Previous work
$T^*_{\bar{c}\bar{s}0}(2870)^0$ mass [MeV]	$2914 \pm 11 \pm 15$	2866 ± 7
$T^*_{\bar{c}\bar{s}0}(2870)^0$ width [MeV]	$128\pm22\pm23$	57 ± 13
$T^*_{\bar{c}\bar{s}1}(2900)^0$ mass [MeV]	$2887\pm8\pm6$	2904 ± 5
$T^*_{\bar{c}\bar{s}1}(2900)^0$ width [MeV]	$92\pm16\pm16$	110 ± 12
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm 0.4) \times 10^{-5}$	$(1.2 \pm 0.5) \times 10^{-5}$
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7}_{-1.0}{}^{+1.6}_{-1.1}\pm 0.3) \times 10^{-5}$	$(6.7 \pm 2.3) \times 10^{-5}$
$\frac{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05

PhysRevLett.125.242001 PhysRevD.102.112003

More Additional Slides

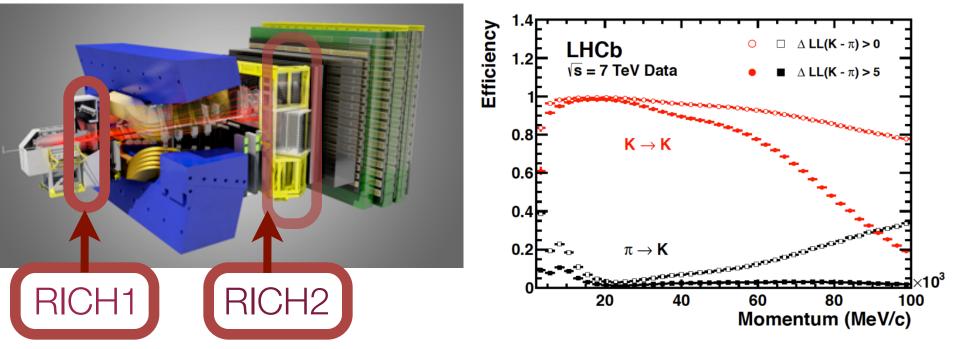

Experiment Overview

Paras Naik, University of Liverpool


Vertex Locator (VELO)

- Reconstruction of primary and (displaced) secondary vertices
- Excellent Impact Parameter resolution of ~ 20 μ m
- Proper time resolution 30 to 50 fs

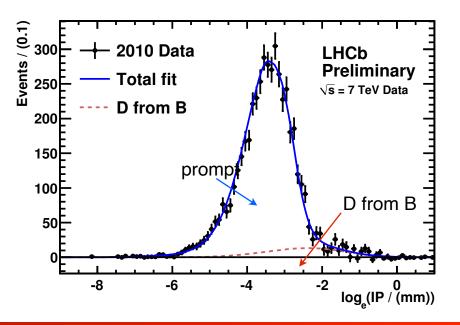
Experiment Overview


 The LHCb detector is a single arm forward spectrometer with a polar angular coverage from 10 to 300 mrad in the horizontal plane and 250 mrad in the vertical plane.

Paras Naik, University of Liverpool

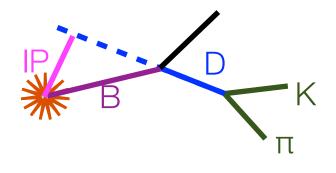
LHCb Experiment: Particle ID

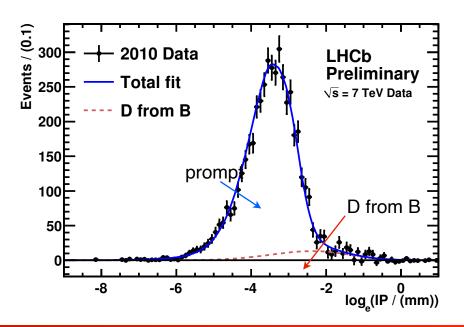
- Particle ID provided by <u>Ring Imaging Cherenkov</u> (RICH) detectors
 - Particles traveling faster than the speed of light through a medium of refractive index n will emit photons through Cherenkov radiation:
 - $\cos(\theta) = 1/n\beta$
- The Cherenkov angle and the momentum of the particle allows PID.


The ability to identify particles at LHCb is critical to many of our analyses.

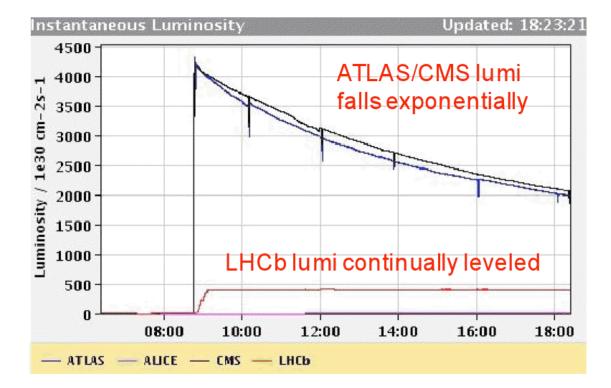
Prompt-Secondary Separation

- Separate prompt and secondary charm
 - Prompt charm
 - Defined as charm mesons produced at the primary interaction point.
 - This includes if they are from quickly decaying resonances
 - Examples: via D* decays, ψ(3770)
 - Secondary charm
 - Residual background from charm mesons decaying from long-lived particles.


We can measure the prompt fraction


 Look at impact parameter distribution of the charm meson

Prompt-Secondary Separation


- Separate prompt and secondary charm
 - Prompt charm
 - Defined as charm mesons produced at the primary interaction point.
 - This includes if they are from quickly decaying resonances
 - Examples: via D* decays, ψ(3770)
 - Secondary charm
 - Residual background from charm mesons decaying from long-lived particles.
- We can measure the prompt fraction
 - Look at impact parameter distribution of the charm meson

Luminosity

- Nominal instantaneous luminosity: $\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- LHCb instantaneous luminosity kept constant (luminosity leveling).

Charm at LHCb?

- We are most certainly a B physics experiment. However...
- The same properties that optimize LHCb for B physics also make LHCb an excellent charm physics experiment.
- The charm cross section is ~20 times larger than the b cross section.
 - $\sigma(c\bar{c})_{LHCb} = 1419 \pm 133 \,\mu b$ (Nucl. Phys. B 871 (2013), 1) @ $\sqrt{s} = 7 \,\text{TeV}$
 - $\sigma(b\bar{b})_{LHCb} = 75.3 \pm 14.1 \,\mu b$ (Phys. Lett. B 694 (2010), 209)
- ~5 trillion cc̄ were produced during LHC Run 1, in our acceptance!
- LHCb can make precision measurements in charm with high sensitivity to New Physics hiding in quantum loops...
 - We have the world's best sensitivity to **CP violation** in charm.
- Boosted quarks, high rapidities: ideal for studying time-dependent effects