

Electroweak Physics with ATLAS, Berkeley **CMS and LHCb** Heather M. Gray on behalf of the ATLAS, CMS and LHCb Collaborations

Run: 302956 Event: 911199885 2016-06-29 07:39:45 CEST WZ candidate event

Introduction

- Electroweak (EW) interaction lies at the heart of particle physics and is derived from symmetry principles
 - $SU(2)_L \times U(1)_V$
- Four gauge bosons remain after electroweak symmetry breaking
 - W^+, W^-, Z, γ
- Mass and dynamics of EW gauge bosons are predicted precisely by EW theory

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W}$$

- At the LHC, test EW theory through
 - precision measurements of W/Z bosons
 - multiboson production at high-energy

Image Credit

Precision Tests at the LHC

High-energy tests of EW Physics

P. Sommer after Nucl. Phys. B525:27-50, 1998

Precision Measurements of W and Z Bosons

Event 251784647 Run 125013 Thu, 09 Aug 2012 05:53:58

W and Z cross sections

- Fundamental SM measurements with a precision of up to 1.9% (ratios 0.35%)
- LHC measurements for energies ranging from 2.76 - 13.6 TeV
 - Luminosity uncertainty dominates for total cross-sections
 - Lepton efficiencies for ratios
- Profit from special low- μ datasets at 5 and 13 Te
- Generally, good agreement with SM predictions

W and Z cross sections

- Special runs with lower pile up can be used to make very precise measurements
 - Typical results include cross-sections, ratios, differential distributions
 - Provide theoretical validation of p_T^W useful for m_W measurements
- Geometry of the LHCb detector enables measurements up to rapidity of 4

W Boson Width

- from ATLAS
- mass
- Most precise single measurement to date
- Within 2σ of SM prediction

Effective Weak Mixing Angle

- Weak mixing angle probes mixing of W and B fields
- Measured using $pp \rightarrow \ell^+ \ell^-$ forward backward asymmetry

p 🔊

- Determine $\sin^2 \theta_{\text{eff}}^{\ell}$
 - $\frac{d\sigma}{d\cos\theta} \sim 1 + \cos^2\theta + \frac{1}{2}A_0(1 3 + A_0) + A_0$ $(\Delta A)_{FB} = \frac{3}{8}A_4$

- Asymmetry increases with rapidity
- Also resolves ambiguity in quarkproton association
- CMS extended **electron** reconstruction to $|\eta| < 4.36$
- LHCb result for $2.0 < |\eta| < 4.5$

Effective Weak Mixing Angle Results

• Best hadron collider measurement approaching LEP and SLD

	$\sin^2 heta_{e\!f\!f}^\ell$	stat (x 10 ⁻⁵)	syst (x 10 ⁻⁵)	th (x 10 ⁻⁵)	PDF (x 10 ⁻⁵)
CMS	0.23157	10	Ι5	9	27
LHCb	0.23152	44	5	22	

 Profiling PDF uncertainties in the fit reduces uncertainties and leads to better consistency with global fits

W Boson Decay Branching Fractions

- Precise measurements of W boson decays using tit events
- Leptonic decay branching fractions probe lepton universality of the weak interaction
 - Consistent with SM; ~1% precision

W Boson Decay Branching Fractions

- Hadronic decay branching fractions ($W \rightarrow cs$) to probe the CKM matrix.
- $R_c^W = 0.489 \pm 0.005(\text{stat}) \pm 0.019(\text{syst}) \rightarrow |V_{cs}| = 0.959 \pm 0.021$

4% precision

CMS-PAS-SMP-24-009

Photon-Photon Fusion

- Photon-photon fusion provides a pure test of QED
 - Precise theoretical calculations (<1%)
- Typically measured in UPC heavy-ion collisions

First measurement $\gamma\gamma \rightarrow \tau\tau$ in pp; constraints on anomalous EM moments of τ

Observation of $\gamma\gamma \rightarrow WW$

Phys. Lett. B 816 (2021) 136190

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-16 20:57:32.758784 GMT Run / Event / LS: 276870 / 2920241170 / 1610

Diboson Production at 13.6 TeV

 $pp \rightarrow WW$

arXiv:2406.05101

PLB 855 (2024) 138764

 $pp \rightarrow ZZ$

$pp \rightarrow WZ$

CMS-PAS-SMP-24-005

Typical precision <5%

15

Quartic Electroweak Couplings

all channels

Recent Examples of Quartic Coupling

- >6 σ observation of $W\gamma jj$ using a neural network
- Consistent with Madgraph5+Pythia prediction

- **5.4** σ observation of $WZ\gamma$ using $M_{Z\gamma}$ fit
- Higher than NLO theory prediction: $\mu = 1.47^{+0.33}_{-0.29}$

 \boldsymbol{Q}

 W^{\pm}

17

Diboson Polarization

- individual polarization [PLB 843 (2023) 137895, JHEP 07 (2022) 032]
- Measure 4 components: $f_{00}, f_{TT}, f_{0T}, f_{TO}$

Diboson Polarization Results

- LHC experiments are starting to become sensitive to $V_L V_L$ production
 - Initial studies of **energy dependenc**e, e.g. with WZ
- Eagerly awaiting $V_L V_L$ scattering at the HL-LHC as critical test of EW symmetry breaking

The to $V_L V_L$ production ith WZ

Conclusion

- LHC is proving to be precision machine for electroweak physics
- Already surpassing precision of previous accelerators in many cases
- Relies on large datasets, detailed detector understanding, dedicated reconstruction techniques, advanced analysis methods (including AI/ML) and accurate theoretical predictions
- Recent highlights includes
 - W boson mass and width
 - Weak mixing angle
 - Lepton couplings
- Multiboson measurements are being used to test electroweak theory at high energies

• Looking ahead towards a full exploration of electroweak symmetry breaking at the upcoming HL-LHC

