Vector Boson Scattering in ATLAS and CMS

Giacomo Boldrini 1,2

¹ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique ² On the behalf of the ATLAS and CMS collaborations

Vector Boson Scattering

Vector boson scattering (VBS) happens at the LHC when the two incoming partons radiate electroweak vector bosons that interact with each other

- Without photons, VBS presents a 6-fermions final state: 2 jets coming from the initial state partons, 4 coming from the scattered bosons
- Peculiar kinematical properties: 2 jets in the forward region with high $\Delta \eta_{ii}$ and m_{ii} , no additional hadronic activity in the rapidity gap

 $\alpha_c^2 \alpha^4$

At LO VBS contributions come from purely-EW processes α^{6} , QCD-induced $\alpha_{s}^{2}\alpha^{4}$ and the interference $\alpha_{s}\alpha^{5}$

 α^6

VBS is a fundamental probe to understand the electroweak symmetry breaking mechanism

The presence of the Higgs field regularizes the VBS cross-section by canceling exactly the E^2 behaviour of bosonic-only processes.

A delicate equilibrium: if Higgs boson not SM one (δ), energy-growth of $V_L V_L \rightarrow V_L V_L$ cross section \rightarrow New physics

VBS Landscape at ATLAS and CMS

Thanks to the integrated Run II Luminosity, VBS measurements are quickly populating the

experimental landscape of Standard Model (SM) measurements.

This talk

\sqrt{s}	L	Process	Article	Comments
	137 fb ⁻¹	EW W $^{\pm}$ W $^{\pm}$ jj(2l2 ν jj)	PhysLettB809(2020)	Run II: » 5 σ
	137 fb ⁻¹	EW W [±] Zjj(3l <i>v</i> jj)	PhysLettB809(2020)135710	Run II: 6.8 σ
	137 fb ⁻¹	EW ZZjj(4ljj)	PhysLettB812(2021)135992	Run II: 4σ
12 ToV	137 fb ⁻¹	EW $Z\gamma jj(ll\gamma jj)$	PhysRevD.104.072001	Run II: »5 σ
13 Iev	138 fb ⁻¹	EW W $^{\pm}\gamma jj(l\nu\gamma jj)$	PhysRevD108(2023)032017	Run II: 6.0 σ
	138 fb ⁻¹	EW W [±] Vjj(l <i>v</i> jjjj)	PhysLettB834(2022)137438	Run II: 4.4 σ
	138 fb ⁻¹	EW W $^{\pm}$ W $^{\mp}$ jj(2l2 ν jj)	PhysLettB841(2023)137495	Run II: 5.6 σ
	138 fb ⁻¹	EW W $^{\pm}$ W $^{\pm}$ jj($ au$ l2 $ u$ jj)	CMS-PAS-SMP-22-008	Run II: 2.7 σ

\sqrt{s}	L	Process	Article	Comments
	140 fb ⁻¹	EW $Z(\nu\nu\gamma jj)$	JHEP06(2023)082	Run II: 3.2 σ
	140 fb ⁻¹	EW $Z(ll\gamma jj)$	PhysLettB846(2023)138222	Run II: »5 σ
	139 fb ⁻¹	EW ZZjj(4 $l + 2l2\nu jj$)	NaturePhysics19(2023)237	Run II: 5.7 0
12 ToV	139 fb ⁻¹	EW ZZjj(4ljj)	JHEP01(2024)004	-
13 164	139 fb ⁻¹	EW W $^{\pm}$ W $^{\pm}$ jj(2l2 ν jj)	JHEP04(2024)026	Run II: »5 σ
	140 fb ⁻¹	EW W ⁺ W ⁻ jj(eµvvjj)	JHEP07(2024)254	Run II: 7.1 σ
	140 fb ⁻¹	EW W $^{\pm}\gamma$ jj(l $ u\gamma$ jj)	CERN-EP-2024-048	Run II: »5 σ
	140 fb ⁻¹	EW W [±] Zjj(3l <i>v</i> jj)	JHEP06(2024)192	Run II: »5 σ

Semi-leptonic VBS $W^{\pm}V \rightarrow l\nu jj$

- First LHC evidence of a semileptonic VBS process. Final state with 4 jets, one charged lepton + MET. Search for WV VBS where the $W^{\pm} \rightarrow l^{\pm} \nu_l$ and $V(W^{\pm}/Z) \rightarrow q\bar{q}$
 - **Resolved regime**: Four R = 0.4 jets resolved in ΔR
 - **Boosted regime**: Two *R* = 0.4 and one R = 0.8 jets for boosted decays of the V-boson

Harsh multijet background

- **Dominant W+jets** production \rightarrow data driven based corrections in $p_{\tau}^{W,\ell}$ and $p_{T i2}^{VBS}$ in CR.
- **•** semileptonic $t\bar{t}$ and single top: constrained from data in *b*-enriched CR.
- Non-prompt mainly from QCD-multijet, data driven estimate

Semi-leptonic VBS $W^{\pm}V ightarrow l u jj$

DNN is used for signal extraction (boost/res) which improves the significance of a factor 3 with respect to m_{jj} Results reported for **pure EW VBS** production, for the joint fit with the **QCD-induced background** and in 2 dimensions for μ_{EW} , μ_{QCD} . Measurement agrees with SM expectations

Leptonic $W^+W^- ightarrow e\mu 2 u$ ATLAS

Laboratore Experiment

Final state with 2/3 jets, two isolated leptons with opposite charge, different flavour and MET.

- $e\mu$ Drell-Yan reduced (low contamination from $au au o e\mu$)
- *m_{eµ}* < 80 GeV suppresses VBF-*h*
- *E*^{miss}₇ > 15 GeV further suppresses Drell-Yan
- ▶ No m_{jj} cut but SR split by jet multiplicity (2/3) \rightarrow 1 σ increase

Backgrounds

- Dominant leptonic tt and single-t.
 Dedicated CR for normalization
- QCD-induced VBS. No CR but normalization freely floating

Region	EW-VBS	QCD-VBS	Тор
SR2j	3.4%	26.3%	62.6%
SR3j	2.1%	20.2%	72.7%

Leptonic $W^+W^- ightarrow e\mu 2 u$ ATLAS

- Two DNNs trained in 2j and 3j SR to distinguish EW VBS WW from tt + single-t + QCD-induced VBS.
- Profiled likelihood fit on DNN spectra in SR(2j,3j) and Top CR
- Floating signal strength, top and QCD-induced VBS normalization

Source	Impact %
Total	18.5
Data stat.	12.3
Tot. syst.	13.8
MC stat.	7.7
Top theory	6.3
Sig. theory	5.8
JES	4.9
Top norm.	4.9

 σ_{EW}^{VBS} measured in a fiducial region close to the SR with **additional** $m_{jj} > 500 \text{ GeV} (\sim \text{DNN} > 0.6)$: suppress triboson

$$\sigma_{\rm obs}^{\rm fid} = {\rm 2.65}^{+\rm 0.49}_{-\rm 0.46} {\rm fb}; \quad \sigma_{\rm exp}^{\rm fid} = {\rm 2.20}^{+\rm 0.14}_{-\rm 0.13} {\rm fb};$$

Leptonic $W^+W^- \rightarrow 2l_2\nu$ CMS

ATLAS: $e_{\mu 2\nu}$, **CMS**: $2l_{2\nu} \rightarrow different$ background composition with flavour

- \blacktriangleright ee, $\mu\mu$ additional DY contribution
- eµ DY reduced (low contamination from $\tau \tau \rightarrow e \mu$) \rightarrow Driving the sensitivity

Fine regions definition based on Z₁₁ and $\Delta \eta_{ii}$.

Backgrounds

- Dominant leptonic tt and tW
- **DY** only in SF categories \rightarrow divided into PU and no-PU
- QCD-induced VBS. No CR for this background but normalization freely floating
- Nonprompt mainly from W+jets, data driven estimate

CR post-fit yeld. Right: $e\mu$, Left $ee + \mu\mu$

Leptonic $W^+W^- ightarrow 2l_2 \nu$ CMS

G. Boldrini, 03/10/2024, LHCDays2024 - Split

Lepton-flavour dependent signal extraction Different flavour $e\mu$

- DNN trained against tt, tW and QCD-VBS
- Different models for $Z_{ll} < 1$ and $Z_{ll} > 1$

Same flavour ee/ $\mu\mu$

- ▶ 5 m_{jj} bins for $m_{jj} \ge$ 500 GeV and $\Delta \eta \ge$ 3.5
 - 3 bins in $\Delta\eta$ and m_{jj} with lower sensitivity

The VBS EW production of $W^{\pm}W^{\mp}$ is observed with a significance 5.6 σ (5.2 expected)

Two fiducial volumes (inclusive and exclusive) used to measure the process cross-section. **Good agreement** with SM predictions at LO

Fiducial region	σ measured	σ SM@LO
Inclusive	99 \pm 20 fb	89 \pm 5 fb
Exclusive	10.2 \pm 2.0 fb	9.1 \pm 0.6

Leptonic $W^{\pm}\gamma \rightarrow l \nu \gamma$ ATLAS

Final state with **2 VBS-jets, high-** $p_T e/\mu$ and γ and MET. High cross-section (α_{EW}^5) but difficult nonprompt ℓ, γ estimation Backgrounds

Leptonic $W^{\pm}\gamma ightarrow l u \gamma$ ATLAS

Profile likelihood fit of **DNN spectra** (EW-VBS vs QCD-VBS + $Z\gamma jj$ + top) in SR_{fid}, CR_{fid} **to measure** μ_{EW} and σ_{EW} in fiducial phase space \rightarrow large uncertainty in generator choice (Sherpa, MG5)

Observation of EW W γ jj with a significance > 6.0 σ

CM

 $\sigma_{EW}^{fid} =$ 12.3 \pm 2.5 fb; $\mu_{EW} =$ 1.5 \pm 0.5

Differential cross section in m_{jj} , p_T^{jj} , $\Delta \phi_{jj}$, $m_{\ell\gamma}$, p_T^{ℓ} , $\Delta \phi_{\ell\gamma}$ (iterative n = 2 Bayesian unfolding). **EFT dimension-8 interpretation** from p_T^{jj} (f_T , i), p_T^{ℓ} (f_M , i): **in agreement with SM** within unitary bounds on $m_{W\gamma}$

Leptonic $W^{\pm}Z \rightarrow 3l\nu$ ATLAS

m, [GeV]

Final state with **2 VBS-jets**, **3 leptons** (e, μ) compatible with WZ and MET

- Good S/B, dominant background strong-WZjj production $(\alpha_{FW}^4 \alpha_s^2) \rightarrow BDT$ to separate from EW signal
- **Nonprompt** (Z + j, $Z\gamma$, $t\bar{t}$, tW, WW) data-driven matrix method
- BDT to separate $t\bar{t} + V$ and tZj in *b*-CR, constrain normalization in data
- ZZjj CR to constrain normalization in data
- **Signal BDT validated** in low m_{ii}^{VBS} region and with an Adversarial-NN unbiased in m^{VBS}_{ii}

Leptonic $W^{\pm}Z \rightarrow 3l\nu$ ATLAS

G. Boldrini, 03/10/2024, LHCDays2024 - Split

WZjj-EW and QCD **inclusive and differential measurements.** EW prediction in agreement, QCD shows tension in $N_j = 2$ SR and for $0.5 < m_{ii}^{VES} < 1.3$ TeV

 $\sigma^{EW}_{WZjj} = 0.37 \pm 0.07 \, \text{fb}; \quad \sigma^{QCD}_{WZjj} = 1.09 \pm 0.14 \, \text{fb}$

Differential cross section for the **WZjj(EW+QCD)** production in $\sum p_{T}^{\ell}$, $\Delta \phi_{WZ}$, m_{T}^{WZ} , N_{j} , δy_{jj} , m_{jj} , N_{j}^{gap} , $\Delta \phi_{jj}$, z_{j3} and BDT (iterative n = 3Bayesian unfolding). **Direct EFT interpretation at dimension-8** from m_{T}^{WZ} preserving unitarity. **No deviation from SM observed**, agreement with CMS.

m^{WZ} [GeV] per BDT bin

	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
$f_{\rm T0}/\Lambda^4$	[-0.80, 0.80]	[-0.57, 0.56]
$f_{\rm T1}/\Lambda^4$	[-0.52, 0.49]	[-0.39, 0.35]
$f_{\rm T2}/\Lambda^4$	[-1.6, 1.4]	[-1.2, 1.0]
$f_{ m M0}/\Lambda^4$	[-8.3, 8.3]	[-5.8, 5.6]
$f_{ m M1}/\Lambda^4$	[-12.3, 12.2]	[-8.6, 8.5]
$f_{ m M7}/\Lambda^4$	[-16.2, 16.2]	[-11.3, 11.3]
$f_{ m S02}/\Lambda^4$	[-14.2, 14.2]	[-10.4, 10.4]
$f_{\mathrm{S1}}/\Lambda^4$	[-42, 41]	[-30, 30]

Leptonic $W^{\pm}W^{\pm} \rightarrow \tau_h \ell 2 \nu$ CMS

 $W^{\pm}W^{\pm}$ VBS: minimum QCD-induced background. Exploit τ_h channel for the first time in VBS. Final state with 2 VBS-jets, high-pT $e/\mu \tau_h$ and MET.

au Decay	е	μ	π^{-}	π ⁻ π ⁰	3π	Other
BR (%)	18	18	11	25	18	10

Backgrounds

- Dominant Nonprompt (W + jets, QCD) jets misidentified as leptons or τ_h, dedicated CR
- Leptonic tt, normalization constrained in CR
- ► **Opposite sign** (VBS, Z/γ+jets), normalization constrained in CR

Region	EW-VBS	Fake	tī	0S+Z $/\gamma$	QCD-VBS
SR $e au_h$	3.0%	92.2%	0.9%	2.0%	0.3%
SR μau_{h}	3.1%	93.3%	0.5%	1.7%	0.3%
tŦ CR	-	37.1%	61.6%	8.2%	-
OS CR	-	56.4%	7.9%	35.1%	-

G. Boldrini, 03/10/2024, LHCDays2024 - Split

CMS

Profiled likelihood fit to DNN spectra in SR and OS, Top $CR \rightarrow$ enhance discrimination of EW VBS from backgrounds:

- **SR + loose** ℓ (nonprompt proxy): W+jets, had/semilep $t\bar{t}$, Z/γ + jets
- SR + tight *l*: ZZ, OS, leptonic tt

BSM search in the context of SMEFT up to dimension-8: no deviations from SM

Wilson coefficient		95% CL interval		
		Observed	Expected	
dim-6	c _W	[-0.842, 0.818] [-8.68, 7.60]	[-0.987, 0.974]	
	f _{T0}	[-1.32, 1.38]	[-1.52, 1.58]	
dim-8	f_{M0} f_{S0}	[-13.1, 12.8] [-15.9, 16.1]	[-14.6, 14.5] [-17.4, 17.9]	

Conclusions

- VBS among the rarest processes to be measured at ATLAS and CMS
- Significant advancements from both collaborations: evidences and observations in various final states. Good agreement with SM so far
- Systematic indirect searches for new physics call for a coordinated and collective effort.
- Run-3 data under analysis: statistically limited channels will largely benefit from additional data

BACKUP

Final state with **2 VBS-jets and two pairs of oppositely charged isolated leptons** with same flavour compatible with decay products of a *Z* boson.

Regions

- EW significance, total fiducial cross sections and search for aQGCs in ZZ-inclusive region m_{ii} > 100 GeV
- fiducial cross section measurements done in two VBS-enriched regions with Δη > 2.4 and m_{ij} > 400 GeV or m_{jj} > 1 TeV
- One background control region with events from inclusive region not entering the loose VBS-enriched region

Backgrounds

- ▶ Dominant QCD-induced ZZ production $(q\bar{q} \rightarrow ZZ, gg \rightarrow ZZ)$
- ► *ttZ*+jets, *VVZ*+jets irreducible
- Fake and non-prompt leptons mainly from Z+jets but also tt+jets, WZ+jets

PhysLettB812(2021)135992

Region	EW-VBS	QCD-ZZ	Irr.	Z+jets
Inclusive	6.5%	82.3%	8.7%	2.5%
Loose	21.0%	71.7%	5.3%	2.1%
Tight	48.4%	46.2%	3.7%	1.7%

Signal extracted with Matrix Element Discriminant (K_D). Check that

MVAs bring no significant gain

- Evidence for EW VBS production 4.0 σ (3.5 expected)
- Cross section (EW and EW+QCD) measured in three fiducial volumes with VBS-EW simulation at LO and NLO Good agreement with SM

Region	σ (EW) fb
Inclusive	$0.33^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst)
Loose	$0.180^{+0.070}_{-0.060}$ (stat) $^{+0.021}_{-0.012}$ (syst)
Tight	$0.09^{+0.04}_{-0.03}(\text{stat}) \pm 0.02(\text{syst})$

Limits on Wilson coefficients (W.c.) of transverse (T) dimension-8 operators extracted from m_{4l} distribution. The VBS-ZZ is extremely sensitive to charged (T_0 , T_1 , T_2) and neutral operators (T_8 , T_9)

• **Unitarization** of the scattering amplitude $|A_{SM} + \frac{f_i}{\Lambda^4} A_{\mathcal{O}_8}|$ taken into account

No significant deviations from SM observed

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24 (-0.26)	0.22 (0.24)	2.4
$f_{\rm T1}/\Lambda^4$	-0.49	0.49	-0.31(-0.34)	0.31 (0.34)	2.6
$f_{\rm T2}/\Lambda^4$	-0.98	0.95	-0.63(-0.69)	0.59 (0.65)	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43(-0.47)	0.43 (0.48)	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92 (-1.02)	0.92 (1.02)	1.8

Leptonic VBS $W^{\pm}W^{\pm} ightarrow 2l^{\pm}2 u$

Final state with 2 VBS-jets, two isolated leptons with same charge and MET. A Significant background comes from VBS-WZ \rightarrow measure $W^{\pm}W^{\pm}$ and WZ together

Golden channel: the presence of two same-signed leptons reduces drastically the QCD-induced background

G. Boldrini, 03/10/2024, LHCDays2024 - Split

Backgrounds

- Dominant non-prompt, estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- **EW VBS** *W*[±]*Z* where one Z-lepton is lost
- QCD-induced W[±]W[±] + 2jets and W[±]Z + 2jets
- QCD and EW induced ZZ + 2jets

The Zeppenfeld variable Z_l used to reduce QCD-induced background $Z_X = |\eta_X - \bar{\eta_j}|/|\Delta \eta_{jj}|$. Plot from P. Govoni, C. Mariotti

Maximum Likelihood (ML) fit to 5 regions simultaneously. Including NLO EW+QCD corrections ($\mathcal{O}(10\%)$) at order α^7 , $\alpha_5 \alpha^6$ to VBS $W^{\pm}W^{\pm}$ and WZ

Observables

- \blacktriangleright $W^{\pm}W^{\pm}$ signal extracted with **2D variable**: m_{il} and m_{ii}
- Boosted Decision Tree trained for EW VBS W7
- m_{ii} to measure WZ-QCD and ZZ normalization from data

The VBS EW production of $W^{\pm}W^{\pm}$ is observed with a significance » 5σ

Leptonic VBS $W^{\pm}Z
ightarrow 3l
u$

Laboratore Leptine-Ringuet

The VBS production of WZ is treated as a background to the $W^{\pm}W^{\pm}$ analysis but is an interesting process by itself. Measured together with $W^{\pm}W^{\pm}$.

Backgrounds

- Dominant QCD induced
- Non-prompt estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- QCD and EW induced ZZ + 2jets

In order to reduce the overwhelming QCD background **a BDT is employed to extract the signal** trained with reported variables

Variable	Definition
m_{ii}	Mass of the leading and trailing jets system
$\Delta \tilde{\eta}_{ii}$	Absolute difference in rapidity of the leading and trailing jets
$\Delta \phi_{ii}$	Difference in azimuth angles of the leading and trailing jets
p_{T}^{j1}	p_T of the leading jet
$p_{T}^{/2}$	p_T of the trailing jet
η^{j1}	Pseudorapidity of the leading jet
$ \eta^W - \eta^Z $	Absolute difference between the rapidities of the Z boson
	and the lepton from the decay of the W boson
$\mathbf{z}^*_{\ell_i}(i=1,2,3)$	Zeppenfeld variable of the three selected leptons:
	$z_{\ell}^* = \eta_{\ell_i} - (\eta_{i1} + \eta_{i2})/2. /\Delta \eta_{ii}$
Z*2/	Zeppenfeld variable of the triple-lepton system
$\Delta R_{i1,Z}$	The ΔR between the leading jet and the Z boson
i Tali cra i	Transverse component of the vector sum of the bosons
$ p_{\mathrm{T}}^{in} /\sum_{i} p_{\mathrm{T}}^{i}$	and tagging jets momenta, normalised to their scalar p_T sum

The VBS EW production of $W^{\pm}Z$ is observed with a significance of 6.8 σ (5.3 expected)

Inclusive and differential cross-sections measurements are reported in fiducial phase spaces for $W^{\pm}W^{\pm}$ and $W^{\pm}Z$ with selections targeting VBS-signature. Good agreement with SM

Process	$\sigma \mathcal{B}$ (fb)	Theory prediction (fb)	Theory prediction with NLO corrections (fb)
$EWW^\pm W^\pm$	3.98 ± 0.45 (0.37 ((stat)) ± 0.25 ((syst)))	3.93 ± 0.57	3.31 ± 0.47
EW+QCD W^\pm W^\pm	4.42 ± 0.47 (0.39 ((stat)) ± 0.25 ((syst)))	4.34 ± 0.69	3.72 ± 0.59
EW WZ	1.81 ± 0.41 (0.39 ((stat)) ± 0.14 ((syst)))	1.41 ± 0.21	1.24 ± 0.18
EW+QCD WZ	4.97 ± 0.46 (0.40 ((stat)) ± 0.23 ((syst)))	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	3.15 ± 0.4 (0.45 ((stat)) ± 0.18 ((syst)))	3.12 ± 0.70	3.12 ± 0.70

$W^{\pm}W^{\pm}$ and $W^{\pm}Z$ Effective Field Theory

Anomalous quartic gauge coupling search carried under EFT framework constraining dimension-8 operators.

Cannot define $m_{\rm VV}$, 2D variable with transverse mass $m_{\rm T}$ and m_{jj}

- > 9 operators investigated
- ► No unitarization procedure is applied → Clipping EFT predictions at limit
- No excess of events with respect to the SM is observed

JHEP04(2024)026

Doubly-charged Higgs boson interpretation (GM model <u>doi.10.1016</u>). $H_5^{\pm\pm}$ BR to SSWW pairs in VBF topology is 100%. VBF $H_5^{\pm\pm}$ production depends on two parameters $m_{H^{\pm\pm}}$ and $sin\theta_H$. $m_{T,WW}$ used to extract limits.

Local excess of 3.2 σ 450 GeV, 2.5 ma global.

Leptonic $W^{\pm}\gamma \rightarrow l \nu \gamma$ CMS

Final state with 2 VBS-jets, high- $p_{\rm T}~e/\mu$ and γ and MET. Purely EW at $\alpha^{\rm 5}$ order

- **SR**: m_{jj} (> 500 GeV), extract signal with $m_{jj} m_{l\gamma}$
- ► CR: 200 < m_{jj} < 500 GeV, constrain QCD-induced Wγjj

Backgrounds

- Dominant QCD-induced VBS. constrained from data
- One misID lepton: from W + jets. data-driven $\sigma_{\eta\eta}$ template fit \rightarrow loose-to-tight factors ($p_{T,\gamma} \eta_{\gamma}$)
- One misID photon: from W + jets. data-driven loose-to-tight factor $f_l/(1 f_l)$, f_l being lepton misID rate.
- One misID photon and lepton: loose-to-tight factor product *l*, γ. Weight subtraction to avoid double counting in single misID data-driven estimates.

Region	EW-VBS	QCD-VBS	misID γ	misID (misID l, γ
Barrel	12.9%	44.0%	14.7%	10.9%	4.0%
Endcap	12.9%	42.3%	14.0%	15.2%	4.6%

Leptonic $W^{\pm}\gamma \rightarrow l \nu \gamma$ CMS

Observation of EW W⁺ γ jj \rightarrow L $\gamma\gamma$ jj with a significance of 6.0 σ (6.8 expected). Fiducial cross-section measurement in agreement with SM (MG@LO) for EW and EW+QCD

 $\sigma_{fid}^{EW} = 23.5^{+4.9}_{-4.7}$ fb; $\sigma_{fid}^{EW+QCD} = 113.0^{+13.0}_{-13.0}$ fb

BSM search with aQGC (EFT dimension-8) using reconstructed $m_{W\gamma}$. VBS enhanced phase space $m_{jj} > 800$ GeV, $|\Delta \eta_{jj}| > 2.5$, $m_{W\gamma} > 150$ GeV, $p_{\gamma}^{\tau} > 100$ GeV

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + c_i^{(8)} / \Lambda^4 \mathcal{O}_i^{(8)}$$

Expected limit	Observed limit	Ubound	
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0} / \Lambda^4 < 5.5$	1.7	<u>ଁ</u> ଅ
$-7.1 < f_{M,1}/\Lambda^4 < 7.4$	$-7.8 < f_{M,1}/\Lambda^4 < 8.1$	2.1	Ξ.
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0	2
$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M3}/\Lambda^4 < 2.7$	2.7	1 to
$-3.3 < f_{MA}/\Lambda^4 < 3.3$	$-3.7 < f_{M,4}/\Lambda^4 < 3.6$	2.3	5
$-3.4 < f_{M,5}/\Lambda^4 < 3.6$	$-3.9 < f_{M,5}/\Lambda^4 < 3.9$	2.7	12
$-13 < f_{M7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2	- Le
$-0.43 < f_{T,0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9	ğ
$-0.27 < f_{T1}/\Lambda^4 < 0.31$	$-0.31 < f_{T1}/\Lambda^4 < 0.34$	2.5	÷₹
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3	ಚ
$-0.29 < f_{T.5}/\Lambda^4 < 0.31$	$-0.31 < f_{T.5}/\Lambda^4 < 0.33$	2.6	ಕ
$-0.23 < f_{T,6}/\Lambda^4 < 0.25$	$-0.25 < f_{T.6}/\Lambda^4 < 0.27$	2.9	2
$-0.60 < f_{T,7} / \Lambda^4 < 0.68$	$-0.67 < f_{T,7} / \Lambda^4 < 0.73$	3.1	

Semi-leptonic VBS $W^{\pm}V \rightarrow l \nu j j$

Table 2

Breakdown of the uncertainties in the EW WV VBS signal strength measurement.

Uncertainty source	$\Delta \mu_{\rm EW}$
Statistical	0.12
Limited sample size	0.10
Normalization of backgrounds	0.08
Experimental	
b-tagging	0.05
Jet energy scale and resolution	0.04
Integrated luminosity	0.01
Lepton identification	0.01
Boosted V boson identification	0.01
Total	0.06
Theory	
Signal modeling	0.09
Background modeling	0.08
Total	0.12
Total	0.22

Leptonic $W^+W^- \rightarrow 2l_2\nu$ CMS

CMS

Figure: Slide from Mattia Lizzo

The most striking feature by ATLAS analysis is the s/\sqrt{b} of the very last DNN bin, which ultimately is the key ingredient to reach the best possible sensitivity

• CMS last bin: s
$$\sim$$
 14, b \sim 10 $ightarrow$ s/ \sqrt{b} \sim 4.4

ATLAS last bin: s \sim 60, b \sim 35 ightarrow s/ \sqrt{b} \sim 10.1

Leptonic $W^+W^- \rightarrow 2l_2\nu$ CMS

Very different phase space definition from ATLAS and CMS in the $e\mu$ final state

- Same amount of signal between ATLAS and CMS driving region but less background in CMS
- > ATLAS larger significance driven by discrimination power if the NN model (last bin)
- Signal (background) fraction in last bin: CMS \sim 9%(0.4%), ATLAS \sim 38%(0.6%)

	CMS signal region $(e\mu)$		ATLAS signal region	
	$Z_{\ell\ell} < 1$	$Z_{\ell\ell} > 1$	$n_{jet} = 2$	$n_{jet} = 3$
EWK W^+W^-jj	169 ± 20	70 ± 8	158 ± 27	54 ± 13
$t\bar{t} + tW$	1629 ± 71	1453 ± 70	2885 ± 214	1851 ± 131
QCD W^+W^-	327 <u>±</u> 62	409 ± 77	1214 ± 256	514 ± 121
W + jets (fake)	107 ± 18	110 ± 16	37 ± 97	19 ± 48
Z + jets	69 ± 5	102 ± 6	216 ± 62	65 ± 25
Multiboson	68 ± 7	76 ± 7	101 ± 5	42 ± 3
Higgs	27 ± 2	20 ± 1	-	—
MC prediction	2397 ± 99	2240 ± 106	4610 ± 77	2546 ± 48
DATA	2441	2192	4610	2533

Figure: Slide from Mattia Lizzo

CMS

eprince-Binquet

Leptonic $W^{\pm}Z \rightarrow 3l\nu$ ATLAS

Source	$rac{\Delta \sigma_{WZjj-EW}}{\sigma_{WZjj-EW}}$ [%]	$rac{\Delta \sigma_{WZjj-\mathrm{strong}}}{\sigma_{WZjj-\mathrm{strong}}}$ [%]
WZjj – EW theory modelling	7	1.8
WZjj-QCD theory modelling	2.8	8
WZjj-EW and WZjj-QCD interference	0.35	0.6
PDFs	1.0	0.06
Jets	2.3	5
Pile-up	1.1	0.6
Electrons	0.8	0.8
Muons	0.9	0.9
<i>b</i> -tagging	0.10	0.11
MC statistics	1.9	1.2
Misid. lepton background	2.3	2.3
Other backgrounds	0.9	0.23
Luminosity	0.7	0.9
All systematics	16	12
Statistics	10	6
Total	19	13