Measurement of m_W and Γ_W with the ATLAS detector using proton-proton collisions at $\sqrt{s} = 7$ TeV

$\label{eq:chen Wang^1} \\ \text{On behalf of the ATLAS Collaboration} \\$

¹Johannes Gutenberg-Universität Mainz

LHC Days 2024

October 3rd 2024

JGU

Motivation

Precision test of the Standard Model

▶ Reanalyse 7 TeV dataset with the profile likelihood (PLH) approach

▶ Reductions of several systematic uncertainties of m_W , especially PDF uncertainty

- First Γ_W measurement at the LHC
- Previous measurement: Eur. Phys. J. C 78, 110 (2018)
- Reanalysis Paper accepted by EPJC: arxiv:2403.15085

Fitting Setup

• Two separate fits with two observables: p_T^{ℓ} and m_T

- Two joint fits in 14 event categories:
 - Electron: 2 charges \times 3 η regions + Muon: 2 charges \times 4 η regions
 - > 10 bins for each category: p_T^{ℓ} from 30 to 50 GeV, m_T from 60 to 100 GeV

Decay channel	W ightarrow e u	$W ightarrow \mu u$
Kinematic distributions	p_T^ℓ, m_T	p_T^ℓ, m_T
Charge categories	W^+ , W^-	W^+ , W^-
$ \eta_\ell $ categories	[0,0.6], [0.6,1.2], [1.8,2.4]	[0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]

- MJ background
 - Re-evaluated with the final luminosity calibration (within the previous uncertainty) \rightarrow a 20% increase of the MJ background in the electron channel
 - Update the shape extrapolation, Uncertainty reduced
- Electroweak modeling
 - Systematic estimated on reco-level instead of particle-level
 - ▶ Uncertainty higher than the previous result, the impact on m_W increased by 20%
- Impact due to these changes (Same procedure as the previous measurement)
 - Central value: shifted by 2.4 MeV (0.12σ of the published result)

Validation Step	m_W [MeV]
Previously published	80369.5 ± 18.5
After all these updates	80371.9 ± 18.8

- Impact of parameters introduced by variations and templates
- **•** Normalization parameter: Φ , for signal sample only

$$\mathcal{L}(\vec{\mu}, \vec{\theta}) = \prod_{i=1}^{N} Poisson\left(n_{i}, \nu_{i}(\vec{\mu}, \vec{\theta})\right) \times \prod_{i=1}^{M} Gaus(\theta_{i})$$

$$\nu_{i} = \Phi \times \left(S_{i}^{\text{norm}} + \sum_{j=1}^{K} (S_{i}(\mu_{j}) - S_{i}^{\text{norm}})\right) + \sum_{j=1}^{M} \left(\theta_{j} \times (S_{i}^{\theta_{j} \text{ var}} - S_{i}^{\text{norm}})\right) + B_{i}^{\text{norm}} + \sum_{j=1}^{M} \left(\theta_{j} \times (B_{i}^{\theta_{j} \text{ var}} - B_{i}^{\text{norm}})\right)$$
(3)

Impact due to the change in the fitting method

m_{W} [MeV]

 m_W PLH fitting result: 80357 \pm 16 MeV and 80388 \pm 24 MeV

- m_W shifted by -16 MeV and +3 MeV respectively
- Total uncertainty reduced by about 3 MeV as expected

Impact due to the update of PDF

Previous measurement: CT10nnlo

▶ PDF updated with p_T^Z constraint applied

		p	ℓ fit		$m_{\rm T}$ fit					
PDF set	m_W	$\sigma_{ m tot}$	$\sigma_{\rm PDF}$	χ^2 /n.d.f.	m_W	$\sigma_{ m tot}$	$\sigma_{\rm PDF}$	χ^2 /n.d.f.		
CT14	80358.3	+16.1 -16.2	4.6	543.3/558	80401.3	+24.3 -24.5	11.6	557.4/558		
CT18	80362.0	+16.2 -16.2	4.9	529.7/558	80394.9	+24.3 -24.5	11.7	549.2/558		
CT18A	80353.2	+15.9 -15.8	4.8	525.3/558	80384.8	+23.5 -23.8	10.9	548.4/558		
MMHT2014	80361.6	+16.0 -16.0	4.5	539.8/558	80399.1	+23.2 -23.5	10.0	561.5/558		
MSHT20	80359.0	+13.8 -15.4	4.3	550.2/558	80391.4	+23.6 -24.1	10.0	557.3/558		
ATLASpdf21	80362.1	+16.9 -16.9	4.2	526.9/558	80405.5	+28.2 -27.7	13.2	544.9/558		
NNPDF3.1	80347.5	+15.2 -15.7	4.8	523.1/558	80368.9	+22.7 -22.9	9.7	556.6/558		
NNPDF4.0	80343.7	+15.0 -15.0	4.2	539.2/558	80363.1	+21.4 -22.1	7.7	558.8/558		

▶ Span a range of about 18 MeV for the p_T^{ℓ} fits and about 42 MeV for the m_T fits

- Dominated by the NNPDF3.1 and NNPDF4.0 fits
- ▶ The range spanned by the other sets: 9 MeV for p_T^{ℓ} and 21 MeV for m_T
- The new baseline result: CT18
 - the most conservative uncertainty
 - ▶ the ATLAS 7 TeV precision W/Z data not included

Full Fit Results with the New Baseline PDF set (CT18)

Postfit p_T^{ℓ} Distributions

Consistent with the data within uncertainties

Final Result and Uncertainty Decomposition

PDF set	Correlation	weight $(p_{\rm T}^{\ell})$	weight $(m_{\rm T})$	Combined m_W [MeV]
CT14	52.2%	88%	12%	80363.6 ± 15.9
CT18	50.4%	86%	14%	80366.5 ± 15.9
CT18A	53.4%	88%	12%	80357.2 ± 15.6
MMHT2014	56.0%	88%	12%	80366.2 ± 15.8
MSHT20	57.6%	97%	3%	80359.3 ± 14.6
ATLASpdf21	42.8%	87%	13%	80367.6 ± 16.6
NNPDF3.1	56.8%	89%	11%	80349.6 ± 15.3
NNPDF4.0	59.5%	90%	10%	80345.6 ± 14.9

• The weight of the p_T^{ℓ} fit ranges from 86% to 97%, dominates the final result

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

 $m_W = 80366.5 \pm 9.8(\text{stat.}) \pm 12.5(\text{syst.}) \text{ MeV}$

= 80366.5 \pm 15.9 MeV

(5)

▶ Total uncertainty improved by 20% comparing to the previous measurement

Γ_W measurement (Baseline CT18 Fit)

- Similar strategy as m_W measurement
 - Background estimation, recoil and lepton calibration and physics modeling
 - PDF extrapolation, Fitting strategy, Combination strategy

		p_{T}^{ℓ} fit			$m_{\rm T}$ fit				
PDF set	Γ_W	$\sigma_{\rm tot}$	$\sigma_{\rm PDF}$	χ^2 /n.d.f.	Γ_W	$\sigma_{ m tot}$	$\sigma_{\rm PDF}$	χ^2 /n.d.f.	
CT14	2228	+67 -83	24	550.0/558	2202	+48 -48	5	556.8/558	
CT18	2221	+68 -76	21	534.5/558	2200	+47 -48	5	548.8/558	
CT18A	2207	+68 -75	18	533.0/558	2181	+47 -48	5	550.6/558	
MMHT2014	2155	+71 -78	19	546.0/558	2186	+48 -48	5	562.2/558	
MSHT20	2206	+66 -79	15	556.5/558	2179	+47 -48	4	559.4/558	
ATLASpdf21	2213	+67 -73	18	531.3/558	2190	+47 -48	6	545.6/558	
NNPDF31	2203	+65 -78	20	531.7/558	2180	+47 -47	6	560.4/558	
NNPDF40	2182	+69 -68	12	550.5/558	2184	+47 -47	4	564.0/558	

▶ All central values are well within the uncertainties of the baseline fit from CT18

PDF set	Correlation	weight $(m_{\rm T})$	weight $(p_{\rm T}^{\ell})$	Combined Γ_W [MeV]
CT14	50.3%	88%	12%	2204 ± 47
CT18	51.5%	87%	13%	2202 ± 47
CT18A	50.0%	86%	14%	2184 ± 47
MMHT2014	50.8%	88%	13%	2182 ± 47
MSHT20	53.6%	89%	11%	2181 ± 47
ATLASpdf21	49.5%	84%	16%	2193 ± 46
NNPDF31	49.9%	86%	14%	2182 ± 46
NNPDF40	51.4%	85%	15%	2184 ± 46

• The same sgtrategy as the m_W measurement

The weight of the $m_T I$ fit ranges from 85% to 89%, dominates the final result

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	m_W	PS
p_{T}^{ℓ}	72	27	66	21	14	10	5	13	12	12	10	6	55
m _T	48	36	32	5	7	10	3	13	9	18	9	6	12
Combined	47	32	34	7	8	9	3	13	9	17	9	6	18

 $\Gamma_W = 2202 \pm 32 (\text{stat.}) \pm 34 (\text{syst.}) \text{ MeV}$

$$= 2202 \pm 47 \text{ MeV}$$

Postfit m_T Distributions

Consistent with the data within uncertainties

Compare to other measurements and the Standard Model predictions

- Compare to the SM predictions
 - *m_W*: Consistent
 - \triangleright Γ_W : Within two standard deviations
- Compare to GFitter results
 - ▶ Together with LHC *m*^t measurement

Additional Simutainous Determination

 $m_W = 80354.8 \pm 16.1 \text{ MeV}$ $\Gamma_W = 2198 \pm 49 \text{ MeV}$

- Compare to the SM prediction: within 2σ
- Compare to the separate determinations: the uncertainties are a little larger (Since the relation between m_W and Γ_W is removed)

- ▶ The first m_W measurement with PLH method, which reduced the systematic uncertainties by data constrains, comparing to the previous measurement, the total uncertainty reduced by 20%
- ▶ The most precise measurement of Γ_W to date
- ▶ The result is based on CT18 PDF set

$$m_W = 80366.5 \pm 9.8(\text{stat.}) \pm 12.5(\text{syst.}) \text{ MeV}$$

= 80366.5 ± 15.9 MeV

$$\Gamma_W = 2202 \pm 32(\text{stat.}) \pm 34(\text{syst.}) \text{ MeV}$$

= 2202 ± 47 MeV

- ► Comparing to the SM predictions, our measured value of m_W is consistent, and that of Γ_W is within 2σ
- ► Future ATLAS *m*_W measurement
 - ▶ Improved p_T^W modeling with the latest ATLAS measurement
 - Joint fitting with the low- μ 5 and 13 TeV dataset

Impact of updated Parton Density Functions

▶ PDF set in the previous measurment: CT10nnlo

Chen Wang (JGU)

Measurement of m_W and Γ_W

PDF Uncertainty Scaling

- NNPDF sets stand out in terms of central value
 - Constrained by too aggressively defined PDF uncertainties
- Check if scaling up PDF uncertainty brings them closer to the others

▶ The fitting results become closer to the baseline

 \blacktriangleright Underestimated PDF uncertainty \rightarrow Lack of flexibility \rightarrow Significant PDF dependence

PDF dependence	p_T^ℓ fit	m_T fit
$\sigma_{PDF} imes 1$	18 MeV	42 MeV
$\sigma_{PDF} imes 2$	5 MeV	25 MeV

- Support the choice of the baseline PDF CT18
- ▶ No need to introduce an additional uncertainty due to the PDF choice

- Partical Fit Check: All consistent within 1σ
 - Separate the electron and muon channels
 - ▶ Separate W⁺ and W⁻
- Fitting Range Test:

Show good stability of the PLH fit

The 10 Most Significant Pulls

All observed pulls are within the expectations

$p_T^\ell - m_T$ Combination

- Correlation needed for the final combination with the BLUE method
 - Generate pseudo-data toys which include the impact from all uncertainty sources
 - Fit all these toys and calculate the correlation
- ▶ Statistical correlation between p_T^ℓ and $m_T o D$ ata 2D distribution
- ▶ Separate PCA procedures for p_T^ℓ and $m_T \rightarrow$ The original toys
- Analytical χ^2 method

$$\chi^{2} = \Sigma_{ij}(y_{i} - \Sigma_{k} t_{ik} \theta_{k} - \Sigma_{k} \Gamma_{ik} a_{k}) V_{ij}^{-1}(y_{j} - \Sigma_{k} t_{jk} \theta_{k} - \Sigma_{k} \Gamma_{jk} a_{k}) + \Sigma_{n}(a_{n} - G_{n})^{2}$$
(7)

Impact of each parameter is assumed to be linear and symmetrical

• Directly solve the equations
$$\frac{\partial \chi^2}{\partial \theta_i} = 0$$
, $\frac{\partial \chi^2}{\partial a_i} = 0$

PDF set	Correlation	weight $(p_{\rm T}^{\ell})$	weight $(m_{\rm T})$	Combined m_W [MeV]
CT14	52.2%	88%	12%	80363.6 ± 15.9
CT18	50.4%	86%	14%	80366.5 ± 15.9
CT18A	53.4%	88%	12%	80357.2 ± 15.6
MMHT2014	56.0%	88%	12%	80366.2 ± 15.8
MSHT20	57.6%	97%	3%	80359.3 ± 14.6
ATLASpdf21	42.8%	87%	13%	80367.6 ± 16.6
NNPDF3.1	56.8%	89%	11%	80349.6 ± 15.3
NNPDF4.0	59.5%	90%	10%	80345.6 ± 14.9

• The weight of the p_T^ℓ fit ranges from 86% to 97%, dominates the final result

Chen Wang (JGU)	Measurement of m_{M} and Γ_{M}	03.10.2024	22 / 26

- Uncertainty Decomposition performed by ACS method¹
 - **>** Estimate the covariance between the nuisance parameters and m_W

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

$$m_W = 80366.5 \pm 9.8(\text{stat.}) \pm 12.5(\text{syst.}) \text{ MeV}$$

= 80366.5 ± 15.9 MeV (8)

• The dependence of the Γ_W input value:

- ▶ Baseline: A nuisance parameter constrained by the world average $\Gamma_W = 2088 \pm 1$ MeV
- ▶ Also tested with $\Gamma_W = 2091 \pm 1$ MeV: No significant impact

$$\delta m_W = -0.06 \times \delta \Gamma_W \tag{9}$$

¹arXiv:2307.04007

Γ_W measurements with other PDF sets

	$p_{\rm T}^{\ell}$ fit				m _T fit				
PDF set	Γ_W	$\sigma_{\rm tot}$	$\sigma_{\rm PDF}$	$\chi^2/n.d.f.$	Γ_W	$\sigma_{\rm tot}$	$\sigma_{\rm PDF}$	$\chi^2/n.d.f.$	
CT14	2228	+67 -83	24	550.0/558	2202	+48 -48	5	556.8/558	
CT18	2221	+68 -76	21	534.5/558	2200	+47 -48	5	548.8/558	
CT18A	2207	+68 -75	18	533.0/558	2181	+47 -48	5	550.6/558	
MMHT2014	2155	+71 -78	19	546.0/558	2186	+48 -48	5	562.2/558	
MSHT20	2206	+66 -79	15	556.5/558	2179	+47 -48	4	559.4/558	
ATLASpdf21	2213	+67	18	531.3/558	2190	+47 -48	6	545.6/558	
NNPDF31	2203	+65	20	531.7/558	2180	+47 -47	6	560.4/558	
NNPDF40	2182	+69 -68	12	550.5/558	2184	+47 -47	4	564.0/558	

- All central values are well within the uncertainties of the baseline fit
- Partical Fit Check: All Consistent within 1σ , Except:
 - ▶ W^+ and W^- consistency in the p_T^ℓ fit: within 2σ
- Fitting Range Test:

Combination and Uncertainty Decomposition

	PDF set	t	Correlation		eight (m	T) weigh	weight $(p_{\rm T}^{\ell})$		bined	[eV]			
	CT14		50.3%)	88%	12	2%		2204	± 47			
	CT18 CT18A MMHT2014 MSHT20 ATLASpdf21 NNPDF31 NNPDF40		51.5% 50.0% 50.8% 53.6% 49.5% 49.9% 51.4%		87%	13	13% 14% 13% 11% 16%		2202				
					86%	14			2184 ± 47				
					88%	13			2182 ± 47 2181 ± 47 2193 ± 46				
					89%	11							
					84%	16							
					86%	5% 14% 5% 15%		2182 ± 46 2184 ± 46					
					85%								
Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	m_W	PS
p_{T}^{ℓ}	72	27	66	21	14	10	5	13	12	12	10	6	55
m _T	48	36	32	5	7	10	3	13	9	18	9	6	12
Combined	47	32	34	7	8	9	3	13	9	17	9	6	18

• The same sgtrategy as the m_W measurement

$$\Gamma_W = 2202 \pm 32(\text{stat.}) \pm 34(\text{syst.}) \text{ MeV}$$

$$= 2202 \pm 47 \text{ MeV}$$
 (10)

▶ The dependence of the m_W input value:

- ▶ Baseline: A nuisance parameter constrained by this analysis, $m_W = 80355 \pm 6$ MeV
- ▶ Depends more strongly on the assumed value of m_W

$$\delta \Gamma_W = -1.25 \times \delta m_W \tag{11}$$

Chen Wang (JGU)	Measurement of m_W and Γ_W	03.10.2024	25 / 26

The 10 Most Significant Pulls

All observed pulls are within the expectations