QCD theory overview

Sanjin Benić (University of Zagreb)

LHC days in Split, Sep 8- Oct 14, 2024

Structure of the proton

. DIS – a paradigm for probing the proton

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} \sim f(x) \otimes H(x)$$

. the legacy of HERA..

Structure of the proton

. DIS – a paradigm for probing the proton

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x} \sim f(x) \otimes H(x)$

. and the future: Electron-lon Collider (EIC)

- . 10² increase in luminosity from HERA . < 140 GeV collision energy
- . polarized electrons/protons/light ions. different ion species
- . tomography, spin, gluon saturation,...

LHC vs EIC kinematics

. LHC: unmatched kinematics reach in x-Q²

. EIC: dedicated QCD studies such as spin, tomography, etc..

spin

tomography

Δ

Figs. from EIC Yellow Report

Tomography

. **expand** the scope of the QCD processes -> enter the world of **multidimensional parton structure**

TMD = transverse momentum dependent PDF

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}^{2}\boldsymbol{k}_{\perp}} \sim f(x,\boldsymbol{k}_{\perp}) \otimes H(x,\boldsymbol{k}_{\perp})$

transverse confined motion inside the proton

$$e'$$

 P
 p'
 p'
 p'
 h, γ
 p'
 p'
 h, γ
 p'
 p'
 h, γ
 $h,$

GPD = generalized parton distribution

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}^{2}\boldsymbol{\Delta}_{\perp}} \sim \left|f(x,\boldsymbol{\Delta}_{\perp})\otimes H(x,\boldsymbol{\Delta}_{\perp})\right|^{2}$$

spatial imaging (via Fourier transform)

TMDs
$$f(x, \boldsymbol{k}_{\perp}) \sim \int \frac{\mathrm{d}\xi^{-} \mathrm{d}^{2} \boldsymbol{\xi}_{\perp}}{(2\pi)^{3}} \mathrm{e}^{\mathrm{i}k \cdot \boldsymbol{\xi}} \langle P | \bar{\psi}(0) V[0, \boldsymbol{\xi}] \psi(\boldsymbol{\xi}) | P \rangle_{\boldsymbol{\xi}^{+} = 0}$$

. relies on 2 scales: Q >> k_T

assumed to work down to $k_{T}^{\sim}\Lambda_{\text{QCD}}$

. complicated QCD evolution: soft+collinear gluons (Sudakov logs: $log^{2}(k_{T}/Q)$), two scales, non-perturbative part of the evolution kernel

Collins, Soper, Sterman (1985)

. traditionally used to describe k_T-distributions in Drell-Yan (e.g. Z-boson at the LHC)

. disappears for usual collinear PDFs $f(x) \sim \int d^2 \mathbf{k}_{\perp} f(x, \mathbf{k}_{\perp}) \sim \int \frac{d\xi^-}{2\pi} e^{ik^+\xi^-} \langle P|\bar{\psi}(0)V[0, \xi^-]\psi(\xi^-)|P\rangle$

TMDs with spin: the Sivers function

$$f(x, \boldsymbol{k}_{\perp}) = f_1(x, \boldsymbol{k}_{\perp}) + (\boldsymbol{k}_{\perp} \times \boldsymbol{S}_{\perp}) f_{1T}(x, \boldsymbol{k}_{\perp})$$

. for a (transversely) spinning proton the quark TMD is distorted in the transverse plane

. rich pheno at RHIC, Jlab and COMPASS,..

. future experiments: LHCSpin, EIC,..

. physics of the gauge links: sign change of the Sivers function

$$f_{1T}^{\text{SIDIS}}(x, \boldsymbol{k}_{\perp}) = -f_{1T}^{\text{DY}}(x, \boldsymbol{k}_{\perp})$$

(from time reversal of Wilson line)

-> experimental results scarce, no decisive claim yet

Spin asymmetries

. production of hadrons in polarized pp is left-right asymmetric $A_N \sim \alpha_S \frac{1}{k}$

LEFT

 m_q

experimentally large -> origin??

Spin asymmetries

LEFT

. production of hadrons in polarized pp is left-right asymmetric

P

BRAHMS, Vs = 62.4 GeV BRAHMS, Vs = 200 GeV

0.6

0.6

00

 $\gamma_5 \pmb{\$}_\perp g_T$

SB, Hatta, Li, Yang (2019)

The LHC is a gluon factory

-> gg fusion as dominant mechanism
 for Higgs production

Gluon TMDs

 $\int \frac{\mathrm{d}\xi^{-}\mathrm{d}^{2}\boldsymbol{\xi}_{\perp}}{(2\pi)^{3}} e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{\xi}} \langle P|F^{+i}(0)F^{+j}(\boldsymbol{\xi})|P\rangle_{\boldsymbol{\xi}^{+}=0} \sim \delta^{ij}f_{1}^{g}(\boldsymbol{x},\boldsymbol{k}_{\perp}) + \left(\delta^{ij} - \frac{\boldsymbol{k}_{\perp}^{i}\boldsymbol{k}_{\perp}^{j}}{\boldsymbol{k}_{\perp}^{2}}\right) h_{1}^{\perp g}(\boldsymbol{x},\boldsymbol{k}_{\perp})$

-> with finite k_T gluons can be linearly polarized even in unpolarized proton

Mulders, Rodrigues (2001)

-> turns up in e. g. Higgs production at small k_T

interference between
+ and - helicity!

Boer, den Dunnen (2014)

. for lighter scalar particle can be substantial, while for Higgs is a few percent effect

Physics at small-x

. gluons dominate at low-x (high energy)

constructed entirely from Wilson lines: includes all-twists..

. "orthogonal" to DGLAP we find evolution in x (gluons ordered in light-cone momenta): **BFKL** (linear), **BK/JIMWLK** (non-linear)

Gluon saturation

Balitsky-Kovchegov equation

. large densities source large fields -> tree level, classical description

McLerran, Venugopalan (1994)

. signals, precision (NLO)?

Signals of gluon saturation

Stasto, Golec-Biernat, Kwiecinski (2000)

Shi, Wang, Wei, Xiao (2022) 15

Signals of gluon saturation

. decoherence of the back-to-back peak in angular correlations

- . joint Sudakov+small-x resummation
- . LHCb + forward upgrades (Focal) + EIC

STAR(2021)

STAR

Further signals: diffractive vector meson

Pomeron brother: the elusive Odderon

 (GeV^2)

. colorless propagators to control the total cross section asymptotics

Odderon in the DIS?

$$\mathcal{O}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) \sim \int \frac{d^2 \boldsymbol{\xi}_{\perp}}{(2\pi)^2} \mathrm{e}^{-\mathrm{i}\boldsymbol{k}_{\perp} \cdot \boldsymbol{\xi}_{\perp}} \mathrm{Im}\left[\langle P' | V(0) V^{\dagger}(\boldsymbol{\xi}_{\perp}) | P
angle
ight]$$

. exclusive χ_c -quarkonia production . rare events: about a dozen of χ_c 's/month@EIC

signal: almost flat t-distribution