Top physics in ATLAS and CMS

Hugo Alberto Becerril Gonzalez on behalf of the ATLAS and CMS collaborations

hugo.alberto.becerril.gonzalez@cern.ch

LHC Days 30 September - 4 October Hvar, Croatia

The top quark, a very unique particle

The heaviest elementary particle

 $y_t \sim 1, m_{Top} = 172.52 \pm 0.33 \text{ GeV}$

- Quantum loop effects
- Influence on electroweak vacuum stability
- Top decays before hadronization
 - Lifetime of ~5 * 10-25 seconds. This allows the study of bare quark properties

Potential portal to New Physics

Production and decay are influenced by

anomalous couplings, charged lepton flavor violation (cLFV), baryon number violation (BNV), lepton flavor universality (LFU), CP violation, flavor-changing neutral currents (FCNC), charge asymmetry, spin correlations, and more.

LHC has provided ~200 M top quarks pairs to ATLAS and CMS

=> 300 papers

Top quark pair production at the LHC p+Pb

- In *p*+Pb collisions *t* quarks provide novel probes of nPDF
- Provide precise information on the nuclear gluon distribution function at high Bjorken-x region
- Measurement performed using 165 nb^{-1} combining the l + jets and dileptonic channel

Top quark pair production at the LHC (13.6TeV)

First measurement with 13.6 TeV data at the LHC

Dilepton and I+jets:

Fit to Njet and Nbjet bins

Leading syst. Uncertainties:

- Lepton efficiency: 1.6%
- b-tagging efficiency: 1.1%
- tW background: 0.7%

GROSSE HERAUSFORDERUNGEN

JHEP 08 (2023) 204

Top quark pair production at the LHC (13.6TeV)

Combined measurement of tt ($e\mu$) and Z ($ee+\mu\mu$)

Fit to b jet multiplicity bins

Leading syst. Uncertainties:

- Luminosity 2.3% (externalized)
- Muon reco. 1.5%
- tt PS 1.1%
- PU 1.1%

CMS

GROSSE HERAUSFORDERUNGEN

Phys. Let. B 848 (2024) 138376

σ_{theory} = 924 +32 (scale+PDF) pb (NNLO+NNLL)

Single top production at the LHC

First measurement of the tW process at 13. 6 TeV

Full 2022 dataset with 34.7 fb-1

ML learning technics used to discriminate between tW and tt events

The leading uncertainties are:

jets energy corrections

2409.06444 2407.15594

Final states with two oppositely charged leptons ($e \pm \mu \mp$ events)

BDTs are used to separate the signal from the dominant tt background.

$$\sigma_{tW} = 75^{+15}_{-14} \text{ pb} = 75 \pm 1 \text{ (stat.)}^{+15}_{-14} \text{ (syst.)} \pm 1 \text{ (lumi.)} \text{ pb},$$

In good agreement with the SM prediction: $\sigma_{tW}^{\text{theory}} = 79.3_{-1.8}^{+1.9} \text{ (scale)} \pm 2.2 \text{ (PDF) pb.}$ 40% more precise than previous measurement from ATLAS

Top quark pair + V production at the LHC

CM

tWZ at the LHC

- Extremely rare process: ~ 136 fb only (expected)
- Depending on the decay of the W boson from the top quark, the final state consists of three or four leptons
- Use of binary and multiclass NNs for background/signal discrimination.
- First evidence for the standard model production of a top quark in association with a W and a Z boson in multilepton final states:

obs (exp) significance : 3.5 (1.4) s.d.

10

 $\sigma_{tWZ} = 0.37 \pm 0.05 \text{ (stat)} \pm 0.10 \text{ (syst) pb}$

Phys. Lett. B 855 (2024) 138815

Top quark pair + Z production at the LHC

CMS-TOP-23-004

Top quark pair + γ production at the LHC

 $tt\gamma$ inclusive and differential cross sections with single lepton and dilepton final states : $\sigma_{t\bar{t}\gamma} = 322 \pm 5 \text{ (stat)} \pm 15 \text{ (syst) fb } (\gamma \text{ from incoming quark or top) [First time]}$ $\sigma_{t\bar{t}\gamma} = 793 \pm 38 \text{ fb} = 793 \pm 5 (\text{stat})^{+38}_{-37} (\text{syst}) \text{ fb}$ (combination)

- Unfolded differential cross sections in many variables
- Use unfolded pT (γ) to constrain C_{tB} and C_{tW}, or C_{tZ} and C_{ty}

Top quark pair + c production at the LHC

2409.11305

Top quark pair + *bb* **production at the LHC**

- Crucial to improve the modelling for measurements such as ttH(bb)

No good description of the data by any of the theoretical predictions

Top quark pair + *bb* **production at the LHC**

- Crucial to improve the modelling for measurements such as ttH(bb)
- Difficult to simulate
- Additional b-quarks via ME(4FS) or via PS(5FS)

JHEP 05 (2024) 042 2407.13473

No good description of the data by any of the theoretical predictions

MC/Data

MC/Data

MC/Data

Top quark pair + $H \rightarrow bb$ production at the LHC

 $\mu = 0.35^{0.36}_{0.34}$ Previous result: (JHEP06(2022)097) observed (expected) significance = 1.0 (2.7) σ

Compared with the previous analysis using the same dataset:

- Looser selection and improved *b*-jet ID \rightarrow 64% (29%) more events in single-lepton (dilepton) SR
- CR defined using a stronger multiclass NN
- Data-driven corrections for $t\bar{t} \ge 1c$ and $t\bar{t} \ge 1c$ components
- Dedicated MC simulation for $t\bar{t} + \ge 1b$, no longer dominant

observed (expected) significance = 4.6 (5.4) σ

arXiv:2407.10904

CMS + ATLAS top quark mass: Run I combination

√s = 7,8 TeV

 $m_t \pm total (\pm stat \pm syst) [GeV]$

total

stat

ATLAS+CMS

ATLAS

dilepton 7 TeV 173.79 ± 1.42 (± 0.54 ± 1.31) lepton+jets 7 TeV $172.33 \pm 1.28 (\pm 0.75 \pm 1.04)$ all-jets 7 TeV $175.06 \pm 1.82 (\pm 1.35 \pm 1.21)$ dilepton 8 TeV $172.99 \pm 0.84 (\pm 0.41 \pm 0.74)$ lepton+jets 8 TeV $172.08 \pm 0.91 (\pm 0.39 \pm 0.82)$ all-jets 8 TeV $173.72 \pm 1.15 (\pm 0.55 \pm 1.02)$ combined 172.71 ± 0.48 (± 0.25 ± 0.41) CMS dilepton 7 TeV 172.50 ± 1.58 (± 0.43 ± 1.52) lepton+jets 7 TeV $173.49 \pm 1.06 (\pm 0.43 \pm 0.97)$ all-jets 7 TeV $173.49 \pm 1.41 (\pm 0.69 \pm 1.23)$ dilepton 8 TeV $172.22 \pm 0.95 (\pm 0.18 \pm 0.94)$ lepton+jets 8 TeV $172.35 \pm 0.48 (\pm 0.16 \pm 0.45)$ all-jets 8 TeV $172.32 \pm 0.62 (\pm 0.25 \pm 0.57)$ single top 8 TeV $172.95 \pm 1.20 (\pm 0.77 \pm 0.93)$ J/ψ 8 TeV $173.50 \pm 3.14 (\pm 3.00 \pm 0.94)$ secondary vertex 8 TeV $173.68 \pm 1.12 (\pm 0.20 \pm 1.11)$ combined $172.52 \pm 0.42 (\pm 0.14 \pm 0.39)$ ATLAS+CMS LHCtopWG dilepton $172.30 \pm 0.59 (\pm 0.29 \pm 0.51)$ lepton+jets $172.45 \pm 0.36 (\pm 0.17 \pm 0.32)$ all-jets $172.60 \pm 0.45 (\pm 0.26 \pm 0.36)$ other $173.53 \pm 0.77 (\pm 0.43 \pm 0.64)$ combined $172.52 \pm 0.33 (\pm 0.14 \pm 0.30)$ 170 165 175 180 185

m_t [GeV]

HELMHOLTZ

GROSSE HERAUSFORDERUNGEN

SPITZENFORSCHUNG FÜR

- 6 ATLAS inputs
- Dilepton: Eur. Phys. J. C 72 (2012) 2202, Phys. Rev. D 96 (2017) 032002
- Lepton+jets: JHEP 12 (2012) 105, Phys. Rev. D 93 (2016) 092006
- All-hadronic: Eur. Phys. J. C 74 (2014) 2758, Phys. Rev. D 93 (2016) 092006

CMS + ATLAS top quark mass: Run I combination

ATLAS+CMS

ATLAS

dilepton 7 TeV lepton+jets 7 TeV all-jets 7 TeV dilepton 8 TeV lepton+jets 8 TeV all-jets 8 TeV combined CMS dilepton 7 TeV lepton+jets 7 TeV all-jets 7 TeV dilepton 8 TeV lepton+jets 8 TeV all-jets 8 TeV single top 8 TeV J/ψ 8 TeV secondary vertex 8 TeV combined ATLAS+CMS LHCtopWG dilepton lepton+jets all-jets other combined

m_t [GeV]

HELMHOLTZ

GROSSE HERAUSFORDERUNGEN

SPITZENFORSCHUNG FÜR

165

170

- 6 ATLAS inputs
- Dilepton: Eur. Phys. J. C 72 (2012) 2202, Phys. Rev. D 96 (2017) 032002
- Lepton+jets: JHEP 12 (2012) 105, Phys. Rev. D 93 (2016) 092006
- All-hadronic: Eur. Phys. J. C 74 (2014) 2758, Phys. Rev. D 93 (2016) 092006
- 9 CMS inputs
- Dilepton: Eur. Phys. J. C 75 (2015) 330, Phys. Lett. B 761 (2016) 350
- Lepton+jets: Eur. Phys. J. C 75 (2015) 330, Eur. Phys. J. C 79 (2019) 290
- All-hadronic:Eur. Phys. J. C 75 (2015) 158, JHEP 09 (2017)118 +
- **Single top:** *Eur. Phys. J.* C **77** (2017) 354
- J/psi: JHEP 12 (2016) 123
- Secondary vertex: Phys. Rev. D 93 (2016) 092006

CMS + ATLAS top quark mass: Run I combination

ATLAS+CMS

ATLAS+CMS combined stat uncertainty total uncertainty

ATLAS

dilepton 7 TeV lepton+jets 7 TeV all-jets 7 TeV dilepton 8 TeV lepton+jets 8 TeV all-jets 8 TeV combined CMS dilepton 7 TeV lepton+jets 7 TeV all-jets 7 TeV dilepton 8 TeV lepton+jets 8 TeV all-jets 8 TeV single top 8 TeV J/ψ 8 TeV secondary vertex 8 TeV combined ATLAS+CMS LHCtopWG dilepton lepton+jets all-jets

other combined 165

DESY.

CMS

HELMHOLTZ

GROSSE HERAUSFORDERUNGEN

√s = 7,8 TeV

m_t^{CMS} [GeV]

Phys. Rev. Lett. 132 (2024) 261902

Comprehensive analysis of correlations: BLUE = Best Linear Unbiased Estimator

 $m_t = 172.52 \pm 0.14$ (stat) ± 0.30 (syst.) GeV

Entanglement in *tt*

Particle-level invariant mass range (GeV)

Nature 633 (2024) 542 arXiv:2406.03976

Major precision improvements are thanks to:

- Enhanced analysis techniques and calibrations
- Larger LHC data sets
- Joint ATLAS and CMS efforts

The first 13.6 TeV results have been released, with many more expected in the coming years. Stay tuned for further updates.

Many excellent analysis in the top quark sector, here were mentioned just a few

Backup

Entanglement in $t\bar{t}$

- Lifetime notably shorter than the timescale needed for hadronization => spin information is transferred to its decay products
- Recently, the top quark was proposed as a new laborato quantum entanglement EPJP 136.907

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega_+\mathrm{d}\Omega_-} = rac{1+\mathbf{B}^+\cdot\hat{\mathbf{q}}_+ - \mathbf{B}^-\cdot\hat{\mathbf{q}}_- - \hat{\mathbf{q}}_+\cdot\mathbf{C}\cdot\hat{\mathbf{q}}_-}{(4\pi)^2}$$

Normalized differential cross-section can be written as:

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1+D\cos\varphi)$

where
$$D = -3 < cos(\phi) >$$

0000 $\tilde{\overline{\nu}}$ b $\cos \varphi = \hat{\ell}^+ \cdot \hat{\ell}^-$

To claim the existence of entanglement::

$$D < -\frac{1}{3}$$

Polarization and Spin correlation in $t\bar{t}$ (I+jets)

arXiv:2409.11067

• Not observed yet (but there are hints: differential tt, entanglement...)

CMS-PAS-HIG-22-013

A/H -> $t\bar{t}$

CMS-PAS-HIG-22-013

 $A/H \rightarrow t\bar{t}$

CMS-PAS-HIG-22-013

CMS *Preliminary* Other tΧ $-1 < c_{\text{hel}} < -\frac{1}{3}$ $-\frac{1}{3} < c_{\text{hel}} < \frac{1}{3}$ $\frac{1}{3} < c_{\text{hel}} < 1$

Measured η_t cross section, 7.1 pb +/- 11% using tt + tW MC at NLO (NLO QCD+NLO QED corrections)

Excess >5 SD, consistent with pseudosclar A or η_t

A complete non-relativistic QCD calculation of tt bound state effects is crucial! Input from theory needed

CMS-PAS-HIG-22-013

NRQCD prediction for singlet toponium: 6.4 pb PRD 104 (2021) 034023

Top quark pair production at the LHC

σ_summ	arv. √s = 5.02 TeV March 2024	
252004 118±0.001	total stat $\sigma_{-} \pm (\text{stat}) \pm (\text{syst}) \pm (\text{lumi})$	
<mark>⊦∔.●.∔.1</mark>	$61.7 \pm 2.7 \pm 3.2 \pm 1.2 \text{ pb}$	
⊦+● +•	62.3 ± 2.1 ± 2.8 ± 1.2 pb	
HeH	61.8 ± 1.7 ± 2.5 ± 1.2 pb	
⊬- •	60.7 ± 5.0 ± 2.8 ± 1.1 pb	
HeH	61.6 ± 1.6 ± 2.4 ± 1.2 pb	→ 5.2%
┠─╺╸┨	65.7 ± 4.5 ± 1.6 ± 1.2 pb	
	68.2 ± 0.9 ± 2.9 ± 1.1 pb	
H	$67.5 \pm 0.9 \pm 2.3 \pm 1.1 \text{ pb}$	
	PDF4LHC21 J.Phys.G 49 (2022) 080501 NNPDF4.0 EPJC 82 (2022) 428	
	MSHT20 EPJC 81 (2021) 341	
60	C 18 PRD 103 (2021) 014013	
σ _{tī} [pb]	60 IU0 I20	
мноі т	'7	
	$\sigma_{t\bar{t}}$ summ 252004 118±0.001 $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	σ_{tt} summary, $\{s = 5.02 \text{ leV}$ March 2024 252004 118±0.001 total stat $\sigma_{tt} \pm (\text{stat}) \pm (\text{syst}) \pm (\text{lumi})$ $H \bullet H$ $61.7 \pm 2.7 \pm 3.2 \pm 1.2 \text{ pb}$ $H \bullet H$ $62.3 \pm 2.1 \pm 2.8 \pm 1.2 \text{ pb}$ $H \bullet H$ $61.8 \pm 1.7 \pm 2.5 \pm 1.2 \text{ pb}$ $H \bullet H$ $61.6 \pm 1.6 \pm 2.4 \pm 1.2 \text{ pb}$ $H \bullet H$ $61.6 \pm 1.6 \pm 2.4 \pm 1.2 \text{ pb}$ $H \bullet H$ $61.6 \pm 1.6 \pm 2.4 \pm 1.2 \text{ pb}$ $H \bullet H$ $61.6 \pm 1.6 \pm 2.4 \pm 1.2 \text{ pb}$ $65.7 \pm 4.5 \pm 1.6 \pm 1.2 \text{ pb}$ $68.2 \pm 0.9 \pm 2.9 \pm 1.1 \text{ pb}$ $PDF4LHC21 \text{ J.Phys.G 49 (2022) 080501}$ $NNPDF4.0 \text{ EPJC 82 (2022) 428}$ MSHT20 EPJC 81 (2021) 341 $CT18 \text{ PRD 103 (2021) 014013}$ $H \bullet H$ 60 80 0 tot 0 tot 0 tot 0 tot 100 120 $\sigma_{t\bar{t}}$ 0 tot

CM

Top quark pair + H production at the LHC

SPITZENFORSCHUNG FÜR

GROSSE HERAUSFORDERUNGEN

tt H production rate (relative to SM expectation):

 μ_{ttH} = 0.33 ± 0.17 (stat) ± 0.21 (syst)

In agreement with previous ATLAS result

An observed (expected) upper limit on the tH production rate relative to the SM expectation of 14.6 (19.3) at 95% is derived

Top quark pair production at the LHC (5TeV)

- Low-intensity/low pileup run in 2017
- Top quark pair (tt) in single lepton channel, and datadriven QCD
- Events are classified based on the number of all reconstructed jets and of the b-tagged jets; the signal selection includes the usage of multivariate analysis techniques

CMS-PAS-TOP-23-005

5 TeV pp

