Observation of quantum entanglement in top-quark pair production at ATLAS

LHC days in Split

3rd October 2024

Javier Jiménez Peña,

Institut de Física d'Altes Energíes (IFAE)

for the ATLAS collaboration

Top-quark spin measurements

- Within the Standard Model the top quark decays through the electroweak interaction into an on-shell W boson and a b-quark (almost exclusively).
- Due to the large mass of the top quark, the decay happens very quickly (~5*10⁻²⁵ s) before hadronization can occur (~10⁻²³ s).
- The information on the top-quark spin can be obtained from its decay products.
- In the top-quark rest frame, the angular distribution of any decay product follows:

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}(\cos\theta_X)} = \frac{1}{2}\left(1 + \alpha_X P\cos\theta_X\right)$$

• Charged leptons and down-type quarks are ideal probes of the top-quark spin.

Top-quark polarization with single top-quarks

- Top-quarks produced singly via the t-channel at the LHC are highly polarized along the direction of the spectator quark:
- Single top-quark polarization has been extensively studied as it is relatively clean.
- The top rest frame can be reconstructed easily: **Only one neutrino**.
- The spectator-quark is used to determine top-quark spin in production, while the lepton determines the spin at decay: **polarization measurement**.
- Initial light quark follows LHC's beam direction: allows a 3D spin determination.

JHEP 11 (2022) 040

Top-quark polarization with single top-quarks

- Top-quarks produced singly via the t-channel at the LHC are highly polarized along the direction of the spectator quark:
- Single top-quark polarization has been extensively studied as it is relatively clean.
- The top rest frame can be reconstructed easily: **Only one neutrino**.
- The spectator-quark is used to determine top-quark spin in production, while the lepton determines the spin at decay: **polarization measurement**.
- Initial light quark follows LHC's beam direction: allows a 3D spin determination.

JHEP 11 (2022) 040

Further details in backup :)

Top-quark spin correlation in top-quark pair production

- At the LHC, top-quarks are mainly produced in pairs via the strong interaction.
- Top-quarks produced in this way aren't polarized in any particular direction.
- However, the spins of top- and antitop-quarks are predicted to be correlated.
- ΔΦ(I+, I-), the absolute azimuthal opening angle between the two charged leptons, measured in the laboratory frame in the plane transverse to the beam line.
- Simplest observable to test spin-correlation: No ttbar-system reconstruction.

Eur. Phys. J. C 80 (2020) 754

Top-quark spin correlation in top-quark pair production

- At the LHC, top-quarks are mainly produced in pairs via the strong interaction.
- Top-quarks produced in this way aren't polarized in any particular direction.
- However, the spins of top- and antitop-quarks are predicted to be correlated.
- ΔΦ(I+, I-), the absolute azimuthal opening angle between the two charged leptons, measured in the laboratory frame in the plane transverse to the beam line.
- Simplest observable to test spin-correlation: No ttbar-system reconstruction.

2.2 σ deviation

Eur. Phys. J. C 80 (2020) 754

Further details in backup :)

6

Quantum entanglement in top-quark pair production

Quantum entanglement

- The SM is a quantum field theory: special relativity + quantum mechanics.
- Entanglement is one of the most striking features of quantum mechanics:
 - Two entangled particles can't be described by individual quantum states, but only by a single state considering the system as a whole
 - **Correlated properties:** The measurement of one of the particle "affects" the other.
- Quantum entanglement have been observed in photons, atoms, superconductors, mesons and even macroscopic diamonds.

Entangled top-quark pairs at the LHC

- Recent publications proposed using the LHC as a laboratory to test quantum mechanics at the highest energies ever.
- Close to production threshold (m_{ttbar} ~ 2·m_{top}) top-quarks are predicted to be produced in an entangled state:

Correlation of top and antitop-quark spins is larger than classical limit.

- The top quark spin can be analyzed through the lepton direction in top rest frame.
- A top-quark pair forms a two-qubit system, with a spin density matrix given by:

$$\rho = \frac{1}{4} \left[I_4 + \sum_i (B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

- The trace of the correlation matrix C is a good entanglement witness:
 Sufficient condition for entanglement: tr[C] + 1 < 0 (or D = tr[C]/3 < -1/3)
- Experimentally, it can be measured as: $D = -3 \langle \cos \varphi \rangle$

being ϕ the angle between the two leptons, each at its parent top-quark rest frame.

Theory refs: Eur. Phys. J. Plus 136, 907 (2021), Quantum 6, 820 (2022), Eur. Phys. J. C 82, 285 (2022)

9

Analysis strategy 1

Selection: 1 electron and 1 muon of OS. Single lepton trigger. At least 1 b-jet (85%).

Backgrounds: tW, tt+X, fakes, VV and $Z \rightarrow \tau \tau$

Events categorized by m_{ttbar}:

- One signal region with expected entanglement
- Two validation regions without entanglement.

Eur. Phys. J. C 60, 375-386 (2009)

Javier Jiménez Peña - LHC Days 24

Analysis strategy 2

Events passing selection split into three analysis regions, based on the detector-level, particle-level or parton-level m_{ttbar}

- A calibration curve is used to correct the reconstructed value of D to particle level.
- It corrects both for detector effects and for migration of events due to m_{ttbar} resolution
- A second calibration curve is constructed to relate the value of D_{parton} to the corresponding $D_{particle}$ before testing the entaglement limit.

Javier Jiménez Peña - LHC Days 24

Top reconstuction method

A precise reconstruction of the top-antitop-quark system is needed:

- Very narrow phase space in m_{ttbar} for the SR.
- Boosts to each lepton's parent top/antitop quark rest frame for cos φ calculation.

Several methods for **reconstructing the two neutrinos** momenta from the **MET**.

The main method used is the **Ellipse method**, which is a geometric approach to analytically calculate the **neutrino momenta**. The method gives at least one real solution for **85% of the events**.

If EM fails, use the **neutrino weighting** method: scan possible values of the neutrinos η and asses compatibility of the neutrino momenta and the MET in the event. **5% of the events**.

Remaining 10% only use the lepton and jets.

Javier Jiménez Peña - LHC Days 24

Nucl. Instrum. Meth. A 736, 169–178 (2014)

Reweighting method and calibration curve

- $D_{\Omega}(m_{ttbar})$ is calculated for every modelling uncertainty (different at parton level).
- The reweighting is done for every systematic uncertainty, obtaining a dedicated calibration curve for each uncertainty.

Observation of entangled top-quark pairs

- Entanglement marker D measured from $\langle \cos \varphi \rangle$ at detector level: $D = -3 \langle \cos \varphi \rangle$
- Corrected to particle level using the calibration curve.
- Systematic uncertainties evaluated from alternative calibration curves.

Measured value: $D = -0.537 \pm 0.002$ (stat.) ± 0.019 (syst.)

Expected value (Pow+Py): $D = -0.470 \pm 0.002$ (stat.) ± 0.017 (syst.)

Javier Jiménez Peña - LHC Days 24

Observation of entangled top-quark pairs

- Entanglement in top-quark pairs **observed for the first time** with more than 5 sigmas.
- Main uncertainties arise from the modeling of the signal.
- Large difference in predicted value of D in SR between Powheg+Pythia8 and Powheg+Herwig7. Main origin: ordering of the parton shower (details in backup)
- Not a large uncertainty at particle level: Entanglement observed with both models.
- Measurement in data shows a larger degree of entanglement than MC predictions.

Particle-level Invariant Mass Range [GeV]

Nature 633 (2024) 542

Comparison with CMS measurement

- Posterior measurement by CMS confirmed the observation of entangled top-quarks.
- Similar measurement with some differences: unfolded to parton level.
- Also considers the impact of possible presence of toponium (top-antitop bound state)
- Inclusion of toponium brings Data/MC closer. Larger Data/MC difference in ATLAS.

Javier Jiménez Peña - LHC Days 24

Summary and conclusions

Summary and conclusions

- The top-quark spin is accessible through the decay products. Charged leptons are an ideal tool to measure it.
- This property has been largely exploited in ATLAS and other top-factories:
 - Powerful test of the SM and possible SM extensions.
- Single top-quark t-channel allows for a full 3D determination of the top-quark polarization.
- In top-quark pair production, top-quarks and antitop-quarks aren't produced with any particular polarization, but their spins are correlated.
- Entanglement of two quarks have been observed for the first time at the LHC.
- The analysis exploits the close-to-production-threshold phase space.
- Future measurements will require better understanding of parton shower.
- Also other effects as toponium or boundstates of top-quarks may have a role.
- Further experiments exploiting the LHC as a quantum information laboratory are been proposed.

Thanks for your attention

Parton shower and top quark spin correlation

- Choice of parton shower ordering has a large effect close to threshold.
- Pythia8 uses a dipole shower mode: additional emissions ordered by $\ensuremath{p_{\tau}}\xspace$.
- Herwig7 uses an angular ordering for additional emissions by default.
- Alternative Herwig7 with dipole shower shows same distribution than Pythia8.
- Future measurements would benefit from improved understanding of parton shower mechanisms.

Nature 633 (2024) 542

*missing cut in β

Javier Jiménez Peña - LHC Days 24

Systematic uncertainties entanglement measurement

Source of uncertainty	$\Delta D_{\text{observed}}(D = -0.537)$	$\Delta D \ [\%]$	$\Delta D_{\text{expected}}(D = -0.470)$	$\Delta D \ [\%]$
Signal modeling	0.017	3.2	0.015	3.2
Electrons	0.002	0.4	0.002	0.4
Muons	0.001	0.2	0.001	0.1
Jets	0.004	0.7	0.004	0.8
<i>b</i> -tagging	0.002	0.4	0.002	0.4
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.4	0.002	0.4
Backgrounds	0.005	0.9	0.005	1.1
Total statistical uncertainty	0.002	0.3	0.002	0.4
Total systematic uncertainty	0.019	3.5	0.017	3.6
Total uncertainty	0.019	3.5	0.017	3.6

Systematic uncertainty source	Relative size (for SM <i>D</i> value)		
Top-quark decay	1.6%		
Parton distribution function	1.2%		
Recoil scheme	1.1%		
Final-state radiation	1.1%		
Scale uncertainties	1.1%		
NNLO QCD + NLO EW reweighting	1.1%		
pThard setting	0.8%		
Top-quark mass	0.7%		
Initial-state radiation	0.2%		
Parton shower and hadronization	0.2%		
h_{damp} setting	0.1%		

Analysis strategy 2

Selection: 1 electron and 1 muon of OS.

Single lepton trigger. At least 1 b-jet (85%).

Backgrounds: tW, tt+X, fakes, VV and $Z \rightarrow \tau \tau$

Events categorized by m_{ttbar}:

- One signal region with expected entanglement
- Two validation regions without entanglement.

Events passing selection split into three analysis regions, based on the detector-level, particle-level or parton-level m_{ttbar}

- A calibration curve is used to correct the reconstructed value of D to particle level.
- It corrects both for detector effects and for migration of events due to m_{ttbar} resolution
- A second calibration curve is constructed to relate the value of D_{parton} to the corresponding D_{particle} before testing the entaglement limit.

Extra details on introduction analyses

Top-quark polarization with single top-quarks

- The full Run-2 dataset of proton-proton collisions at 13 TeV has been used to a measure the **3D polarization** of single topquarks produced via the t-channel.
- The 3D polarization is also used to set limits to the dimension-six operator CtW, both to its real and imaginary parts.
- The measurements are performed at **particle level** after removing contributions from background processes.

P, 1.5

0.5

-0.5

• No deviations from the SM are found.

JHEP 11 (2022) 040

Top-quark spin correlation in top-quark pair production

- The Run-2 dataset from 2015-2016 at 13 TeV was used to measure the spin correlation in top-quark pair events.
- The selection consists of an electron, a muon and two jets (at least one b-tagged).
- The measured ΔΦ(I+, I-) differential cross-section is compared to several NLO Monte Carlo generators and fixed-order calculations at parton level.
- The level of correlation is assessed by quantifying it in relation to the amount of correlation expected in the SM, f_{SM}. No Spin hypothesis: Decay with MadSpin.

Further details in backup :)

Eur. Phys. J. C 80 (2020) 754

Top-quark spin correlation in top-quark pair production

- The observed degree of spin correlation is significantly higher than predicted by the generators used (2.2σ) . Compatible results are observed by CMS analysis.
- Fixed-order NNLO predictions are closer to data but still do not agree fully. •
- Data agrees well with the an alternative differential prediction at NLO in EWK/QCD.

Eur. Phys. J. C 80 (2020) 754