LHAASO highlight results

Shoushan Zhang on behalf of the LHAASO collaboration

Institute of High Energy Physics, CAS, China

LHC Days in Split 30 Sep. - 4 Oct., 2024 Hvar, Croatia

Outline

Introduction

- **Gamma Ray Astronomy**
- **CR** Spectra around the Knees
- **D** New Physics Searches
- □ Summary & Outlook

LHAASO: Multi-Messenger Collaboration Network

The LHAASO collaboration has signed MOUs with 8 international detector collaboration.

Yi Zhang^{*}, ^{1,13} Yong Zhang, ^{1,3} B. Zhao, ⁸ J. Zhao, ^{1,3} L. Zhao, ^{6,7} L.Z. Zhao, ¹⁴ S.P. Zhao^{*}, ^{13,22} F. Zheng, ³² Y. Zheng, ⁸ B. Zhou, ^{1,3} H. Zhou, ²⁹ J.N. Zhou, ¹⁵ P. Zhou, ¹⁰ R. Zhou, ⁹ X.X. Zhou, ⁸ C.G. Zhu, ²² F.R. Zhu, ⁸ H. Zhu, ¹⁷ K.J. Zhu, ^{1,2,3,6} and X. Zuo^{1,3}

The Site

Bird's eye view of LHAASO, 2021-08 • Location: 29021'27.6" N, 100008'19.6" E

- Altitude: 4410 m
- 2021-07 completed built and in operation

LHAASO, Nature Astronomy 5:849 (2021)

(Aug. 2018, at 4410 m a.s.l.)

Large High Altitude Air Shower Observatory (LHAASO)

~25,000 m

CATCHING RAYS

China's new observatory will intercept ultra-high-energy γ-ray particles and cosmic rays.

0 00

4,410 m

LHAASO Physics Topics

Gamma Ray Astronomy
 Charged CRs measurement
 New Physics Frontier

18 wide-field-of-view air Cherenkov telescopes

5,195 scintillator detectors

Hybrid Detection of EAS

78,000-m² surfacewater Cherenkov detector

1188 underground water Cherenkov tanks

KM2A: 1.36 (km)²

- ➢ 5195 EDs
 - 1 m² each
 - 15 m spacing
- ➤ 1188 MDs
 - 36 m² each
 - 30 m spacing

Inner View of one ED

LHAASO-KM2A Selection of γ–rays out of CR background

Muon information from LHAASO

Inside of WCDA-3 ε _ 300 m ۲

 WCDA-1 started operating in April 2019

[PE

σ

- WCDA-2 started operating in January 2020
- WCDA-3 started operating in March 2021

Wide Field of View Cherenkov Telescope (WFCTA)

Telescope parameters:

- ~5 m² spherical mirror
- Camera: 32×32 SiPMs array
- FOV: $16^{\circ} \times 16^{\circ}$
- Pixel size: 0.5°

Mirror

SiPM camera

SiPM and Winstone cone

Outline

D Introduction

- **LHAASO results in Gamma Ray Astronomy**
- **CR** Spectra around the Knees
- **D** New Physics Searches
- □ Summary & Outlook

LHAASO started a new era of UHE γ-ray astronomy

2019/12-2020/12, 308 days, 1/2 array

Journey of Ultra High Energy Gamma Ray Detection The First Catalogue of Very/Ultra High Energy Gamma Sources Released

- In 2024: release the first catalog of very-high-energy and ultra-high-energy gamma-ray sources detected by LHAASO
 - 90 VHE/UHE gamma-ray sources
 - The number of UHE gamma-ray sources increased to 43
 - Associate with supernova remnants, pulsar wind nebulae, pulsar clouds, and massive star clusters and so on
 - This provide a crucial set of best candidate celestial bodies for uncovering the origin of high-energy cosmic rays
 - 65 sources were found to be associated with PWN, indicating that PWN is the most efficient ultrahigh energy radiator

LHAASO Col., ApJS, 271:25 (2024)

• KM2A: 2019-12 to 2022-09

Massive Cluster, 1

Binnary, 2

LHAASO discovers extension of the Crab spectrum to 1.1 PeV

EdN/d*E* (cm⁻² s⁻¹)

Index

- **Covering 3.5 decades of energy**
- □ The highest photon energy: 1.1 PeV → 1.4 PeV
- Clear origin: a well-known Pulsar Wind Nebula (PWN)
- □ An extreme electron accelerator:
 - 2.3 PeV \rightarrow 2.8 PeV electron in 100 μ G fields
 - Require 16%→26% acceleration rate
 (10³× higher than SNR shock waves)
- This either challenges fundamental laws of
 electron acceleration in high energy
 astrophysics
- **or indicates origin of CRs above the knee**

The 1st CR-Source Candidate

A Bubble of UHE γ's centered at a complex core

8 γ's above 1 PeV!

Energy (TeV)	Ne	Nu	Theta (deg)	Dr (m)
1087	5904	13	19.4	143
1188	5480	14	34.4	73
1208	6939	13	14.2	131
1350	6938	8	27.1	43
1379	6469	9	17.4	52
1421	6258	7	12.7	57
1784	6665	13	18.0	41
2481	13815	29	33.0	99

PeV Photons are scattered in the Bubble, and seem not to associate with any small scale sources

Association with HI gas distribution over ~200 pc

- The significance map is smoothed with a Gaussian kernel=1.0°
- The contour is from HI4PI 21-cm

Clear correlation with gas distribution indicating a hadronic origin of photons in the Bubble
 The signal is elongated along the disk and extends up to 10°

GRB 221009A: The brightest of all time was detected by LHAASO

- Highest fluence / peak flux (An et al. 2023)
- Nearby
- Highest energy / peak luminosity (An et al. 2023)
- Once a 1,000/10,000 yr event (Burns et al. 2023)

By Bing Zhang

Even much less chance for it in the middle of FoV of LHAASO

• The burst of 64k photons in **270 seconds** versus the exposure of the Crab for 508 days

SED in two phases: bright and fading

- The "best fit" among $E^{-\gamma}$, $E^{-\Gamma}$ ($\Gamma = \Gamma_0 + k/og(E/E_0)$) and $E^{-\gamma} \exp\{-E/E_c\}$ power-law, log-parabola and power law + cut-off
- The power law + cut-off is favored

UHE diffuse γ emission of the Galactic plane from 10 TeV to 1 PeV

- Measured fluxes are higher by a factor of 2~3 than predictions (the local CR interaction with l.o.s. gas): unresolved sources or propagation effect?
- The diffuse emission from two regions of the Galactic plane was observed with high significance;
- Firstly detected in the outer Galaxy region! Spectral indices of both inner and outer regions are about -3; deviation from single power-law is not evident by the current data.

PRL 131:151001 (2023)

Outline

D Introduction

- **Gamma Ray Astronomy**
- **LHAASO results in CR Spectra around the Knees**
- **D** New Physics Searches
- □ Summary & Outlook

All-particle energy spectrum & composition by LHAASO

- Systematic uncertainties are sufficiently small
- This unveils a clear correlation between the flux and the composition at the knee

Energy reconstruction

Energy reconstruction independent of the primary CR component > Scintillator detector array (ED) : Electromagnetic component (N_{ρ}) > Muon detector array (MD) : hadron component $\pi^{\pm} \rightarrow \mu$ (N_{μ})

 $E_0 = E_e + E_h \approx N_e^{max} \times E_c^e + a N_{\mu} \times E_c^{\pi}$

J. Matthews, Astropart. Phys.

$$E_{c}^{e} + aN_{\mu} \times E_{c}^{\pi}$$
 $N_{e\mu} = N_{e} + aN_{\mu}$ $E_{rec} = \mathbf{b} \times N_{e\mu}$
. 22, 387 (2005)

PHYSICAL REVIEW D 106, 123028 (2022)

 $F - \mathbf{h} \vee N$

Proton Energy Reconstruction

Energy Bias (%)

- Energy Resolution: <15%
- Systematic Bias: <2% (independent of shower energy)
- Uncertainty mainly due to hadronic interaction models: ~1.4%

 $N_{c\mu} = N_{ph} + CN_u$ $E_{rec} = kN_{c\mu}$

Outline

D Introduction

- **Gamma Ray Astronomy**
- **CR** Spectra around the Knees
- **D** New Physics Searches
- □ Summary & Outlook

LHAASO constraints on dark matter

LHAASO Constraints on Lorentz Invariance Violation (LIV)

Summary & Outlook

- □ LHAASO full array has been stably operating since 2021
- **D** LHAASO open-up a new UHE γ -astronomy era with many new discoveries
 - 43 UHE γ-sources are detected and published in catalogs w/~40% of them unidentified
 - The first CR source as a super-PeVatron is found
 - The BOAT GRB brings us many new views of GRB afterglow, the highest energy photon from the GRB opens opportunities exploring for new physics
 - Diffuse photon flux is found a factor 2 or 3 higher than expectation, a big issue!
- Measuring CR Spectra of Individual Species (Proton, Helium, Iron...) around knees is a big step towards understanding the knee feature
- **D** Progresses in New Physics Search: massive DM, axion DM and LIV
- □ There are more interesting new phenomena waiting to be further revealed!

Future Missions: UHE IACT array with LHAASO

- Large Array of Cherenkov Telescopes (LACT)
 - Next generation of Image Atmosphere Cherenkov
 Telescope experiment
 - **32** telescopes built on LHAASO site
 - Angular resolution
 - LACT: < 0.05° @ > 10 TeV
 - LHAASO: ~0.2° @ > 100 TeV
 - LHAASO MD array provides excellent γ/p discrimination
 - Matching the LHAASO sensitivity with 500 hr/yr
 - To identify the gamma ray sources in PeVatrons and measure their morphology in details.
- LACT project started construction this year and the full array will be completed by 2028

34

A prototype in Chengdu

0-

LACT Construction Plan

		2024	202	25	2026	2027	2028
	Construction plan	1-12	1-7	8-12	1-12	1-12	1-12
1	First telescope optimization and commissioning						
2	Second telescope construction and commissioning						
3	The next six telescopes construction and commissioning (total 8 tels)						
4	The full array complete the construction and commissioning (total 32 tels)						

LHAASO diffuse results

First detection of VHE diffuse emission from outer Galactic plane

Spectra follow power-law forms with an index of ~3