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To measure cosmic ray charge and momentum 
requires a magnetic spectrometer 

in space  

Charged cosmic rays have mass. 
They are absorbed by the 

100 km of Earth’s atmosphere (10m of water).  
The properties (±Z, P) of charged cosmic rays 

cannot be studied on the ground.

AMS on the Space Station 

100km

Atmosphere

Shower

Provides precision, long-duration measurements of charged cosmic rays to study
the Origin of the Cosmos, the physics of Dark Matter and Antimatter 
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Alpha Magnetic Spectrometer experiment (AMS) on the Space Station
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Transition Radiation Detector (TRD)
identify e+, e-

Silicon Tracker
 measure Z, P

Electromagnetic Calorimeter (ECAL) 
measure E of e+, e-

Upper TOF  measure Z, E

Magnet identify ±Z, P

Ring Imaging Cerenkov (RICH)
measure Z, E

Lower TOF  measure Z, E

Anticoincidence Counters (ACC)  
reject particles from the side

AMS is a space version of a precision detector used in accelerators

10,880

 photosensors
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The AMS detectors provide independent information on cosmic rays 

With high accuracy, AMS measures
Momentum (P, GeV/c)
Charge (Z)
Rigidity (R=P/Z, GV)
Energy (E, GeV/A) 
Flux (signals/(s sr m2 GeV))

for all the charged cosmic rays, e+, e−, p, and p,
and the nuclei in the Periodic Table
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New 4+4m2 Silicon Tracker Planes

Existing Tracker L1

AMS 2011-2026 AMS 2026-2030+

Acceptance increased to 300%

Continuous data-taking

Existing Tracker L1
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Canadarm

International Space Station (ISS)

AMS

Progress on AMS Upgrade

33
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NASA Manifest:
February 2026



Cosmic Ray

e+, p
from Collisions

Dark Matter

Dark Matter
e+, p, … 

from Dark Matter

e+, e-
from Pulsars

AMS

Cosmic Ray 

Pulsars

Latest Results on cosmic elementary particles: e+, e−, p, and p
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Interstellar 
Medium p, He, …

e-
Supernovae



AMS positron flux measurement
Low-energy positrons come from cosmic ray collisions
High-energy positrons must come from a new source

?

Energy [GeV]

Cosmic Ray 
Collisions

e+
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The positron flux is the sum of low-energy part from cosmic ray collisions 
plus a high-energy part from pulsars or dark matter with a cutoff energy

Energy [GeV]

Cosmic Ray 
Collisions

e+

Dark 
Matter

Dark Matter
e+

e+

Pulsars
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Collisions Pulsars or Dark MatterSolar

Empirical model:
𝜒2/dof = 63/66

ES = 778 GeV 
at 4.8 σ 
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Positrons from 
Cosmic Ray Collisions

AMS Current Data

Dark Matter (1.5 TeV)

Positrons from
Dark Matter

Positrons from 
Cosmic Ray Collisions

Dark Matter 

AMS 2030

Positrons from
Dark Matter

200

Astrophysical Journal 729, 106 (2011) 

Astrophysical Journal 729, 106 (2011) 

J. Kopp, PRD 88, 076013 (2013) 

J. Kopp, PRD 88, 076013 (2013) 

By 2030, AMS will ensure that the high energy positron spectrum drops off quickly in the 0.2-2 TeV region and the 
highest energy positrons only come from cosmic ray collisions as predicted for dark matter collisions

Positron spectrum to 2030



AMS Result on the electron spectrum
The spectrum fits well with two power laws (a, b) and a source term like positrons
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6.2x107 e– Positrons

Power law b

New sources, like Dark Matter or Pulsars, produce equal amounts of e+ and e– 

Solar Power law a Power law b

𝜱𝒆− 𝑬 =
𝑬𝟐

𝑬𝟐
(𝑪𝒂 

𝑬𝜸𝒂 + 𝑪𝒃
𝑬𝜸𝒃 + 𝐏𝐨𝐬𝐢𝐭𝐫𝐨𝐧 𝐒𝐨𝐮𝐫𝐜𝐞 𝐓𝐞𝐫𝐦)Empirical model:

𝜒2/dof = 47/67

Current data 
98.8% CL 

by 2030 
99.99% CL 

e– from collisions negligible 



p are not produced by pulsars nor by cosmic ray collisions above 60 GV

Cosmic Antiprotons

13

തp

Cosmic Ray
  Collisions

?

G. Jóhannesson et al ApJ 824, 16 (2016)

1.2x106 

|Rigidity| [GV]

• Antiproton 1.2x106



p

e+

Energy [GeV]

e+ p

p

e+

60

Above 60 GeV, the p and e+ fluxes have identical rigidity dependence
Cosmic Antiprotons and Positrons

• 1.2M p
• 4.2M e+
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for R > 60 GV



The identical behavior of positrons and antiprotons above 60 GeV 

excludes the pulsar origin of positrons

Precision comparison of the e+ and p spectra 

p

e+

Energy [GeV]

e+ p

p

e+

60
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Antiproton to 2030



Secondary Li, Be, B, and F nuclei in cosmic rays 
are produced by the collision of 

primary cosmic rays C, O, Ne, Mg, Si, …, Fe,
with the interstellar medium.

Nuclei fusion 
in stars

Supernova
explosion

Helium

Carbon

Oxygen

Silicon

Proton

Iron Interstellar 
medium

Lithium

Beryllium 

Boron

Fluorine

Latest AMS Results on Cosmic Ray Nuclei
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Primary cosmic rays p, He, C, O, ..., Si, …, Fe 
are produced during the lifetime of stars and 

accelerated by supernovae. 
They propagate through interstellar medium 

before they reach AMS.



Light elements He-C-O and Heavier elements Ne-Mg-Si 
each have their own rigidity dependence

Rigidity [GV]

Primary cosmic rays have two classes 
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Secondary cosmic rays have two classes of rigidity dependence
Li-Be-B and F
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Light Nuclei 2 ≤ Z ≤ 8
He-C-O primaries compared 

with Li-Be-B secondaries

19

Heavier Nuclei 9 ≤ Z ≤ 14
Ne-Mg-Si primaries compared 

with F secondaries

Light and heavy nuclei each have two distinct classes



Abundance of elements in the Solar System

AMS 10 Year 1 TV

Solar System
Solar System

AMS 10 Year [2.97-3.29] GV

Elements in the Solar System measured from 
the Sun wavelength analysis and meteorites.
Normalized to Si (103)

Li

Be

B

H

He

N

O

F

Ne

Na

Mg

Al

FeSi

C

S

P
Cl

Ar

K

Ca

Sc

Ti

V

Cr
Ni

Mn Zn

Co

Cu

ASi/AS = 2.4 

AO/ANe = 4.8 

AFe/ANi = 17.3 

O, Si, and Fe are characteristic primary cosmic rays
Li, Be, B, F, and Sc are characteristic secondary cosmic rays
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Further Surprising Results:
Before AMS, taking into account the long-standing idea that C is pure primary and B is pure 

secondary, the (B/C) ratio has been used in models to describe cosmic ray propagation

= 0.83 × O

= 0.70 × B 

The spectrum of carbon        is the composition 
of a primary flux               identical to                  oxygen and 

a secondary flux              identical to                boron xB 

xO 

21But C is NOT pure primary. Question: how to use (B/C) in cosmic ray models?
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Even-Z nuclei and Odd-Z nuclei have
distinctly different primary and secondary composition
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Odd-Z nuclei have more secondaries than even-Z

Even-Z nuclei are dominated by primaries 
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Carbon
Z=6

Neon
Z=10

Magnesium
Z=12

Sulfur
Z=14

Z=7 Z=11 Z=13



All of the measured cosmic rays can be described 
by two Primary classes and two Secondary classes

23

Primary

Secondary
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H

He

Li
Be

B
C

N
O

F

Ne

Na

Mg

Al

Si

P
S

Cl
Ar

K
Ca

Sc
Ti

V

Cr
Fe

Ni
Mn

Co

Upgrade required 
for accurate data on

12 elements

By 2030 AMS will provide complete and accurate spectra for the 28 elements 
and will provide the foundation for a comprehensive theory of cosmic rays. 25

Current AMS Cosmic Ray Data



Origin of Cosmic Deuterons
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G. Johannesson et al., Astroph. J. 824, 16 (2016) 26

Nuclei fusion 
in stars

Supernova
explosion

Helium

Carbon

Oxygen

Interstellar 
medium

D and 3He are both considered to be secondary cosmic rays

(He, C, O, …) + Interstellar Medium → (D, 3He) + X

3He

D

Primaries Secondaries



AMS Helium Isotopes: consistent with secondary 3He

Secondary 3He Model
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AMS result on Deuterons

28

?



Deuterons have a significant primary component
From 5 to 20 GV, the precision deuteron flux PD is a composition of 

a primary part     , identical to the 4He flux            and 
a secondary part        , identical to the 3He flux      

29

Rigidity [GV]



Before AMS, heavy Anti-matter 
has never been found in space

AMS Results on Antimatter 

The Big Bang origin of the Universe requires 
matter and antimatter
to be equally abundant 

at the very hot beginning

30



An Anti-Deuteron Candidate from ~100 million deuterons and ~10 billion protons

X

Y

Z

Bending Plane

Anti-deuteron Candidate
Charge = −1.02 ± 0.05
Mass = 1.9±0.1 GeV/c2 

Deuteron 
Charge = +1
Mass = 1.88 GeV/c2Cherenkov cone in RICH 31



Z

X

Y

bending plane

Cherenkov cone in RICH 4He:  Mass   =    3.73 GeV/c2

        Charge  =  +2
        

Charge      = −2.05 ± 0.05
Mass      =    3.81 ± 0.29 GeV/c2

Anti-4Helium Candidate
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Matter

Antimatter

-1                         1            2           3            4           5            6           7           8 Charge

Charge+1          -1          -2          -3          -4           -5          -6           -7          -8

Electron
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1.45B

Li
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Be
4.5M

B
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43M N
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O
36M

Positron
4.2M Anti-proton

1.2M

Anti-Helium

anti-C anti-O

Ev
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By 2030, AMS will have additional measurement points in the study of antimatter: 
anti-deuterons, anti-helium, anti-carbon, and anti-oxygen.

AMS Matter and Antimatter Results
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35

Scientific American, May 2011

AMS is providing cosmic ray information with ~1% accuracy.
The improvement in accuracy and energy range is providing new insights.

AMS results contradict current cosmic ray theories and 
require the development of a new understanding of the universe.

35

In the past hundred years, measurements of charged cosmic rays by balloons and satellites
have typically had ~(30-50)% accuracy.
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Time-of-Flight  
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Ring Imaging Cerenkov (RICH)
measurement of v and Z 

Measurement of Isotopes: Cosmic rays with same Z, different m
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AMS results
(~1% accuracy
to multi-TeV) 

contradict current 
cosmic ray 
theories 

and require the 
development of a 

new 
understanding 

of the universe.
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AMS Studies of the cosmic ray propagation in solar system 

AMS continuously measures cosmic ray fluxes of different species

(matter and antimatter), with high precision and time granularity.

Eleven year
 solar cycle
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[1.00-1.16] GV

[1.92-2.15] GV

[2.97-3.29] GV

[4.02-4.43] GV

[5.90-6.47] GV

[9.26-10.10] GV

Daily Proton Fluxes

May 20, 2011 to Nov 10, 2023 40



AMS Elementary Particles (e+, e-, p, p, …)
in the Heliosphere over an 11-year Solar Cycle (2011-2022)
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Relation between charge and mass

Equal mass, Opposite charge Equal charge, different mass

Hysteresis Behavior Linear Relation
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moving average of 14 BRs 
and a step of 1 day. 

moving average of 14 BRs 
and a step of 1 day. 
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Current AMS Anti-Deuteron Results
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