Latest Results from Alpha Magnetic Spectrometer (AMS)

on the International Space Station (ISS)

AMS

LHC Days in Split

Oct. 4, 2024 Weiwei Xu / SDU, SDIAT

AMS on the Space Station

Provides precision, long-duration measurements of charged cosmic rays to study the Origin of the Cosmos, the physics of Dark Matter and Antimatter

Charged cosmic rays have mass. They are absorbed by the 100 km of Earth's atmosphere (10m of water). The properties (±*Z, P***) of charged cosmic rays cannot be studied on the ground.**

To measure cosmic ray charge and momentum requires a magnetic spectrometer in space

Alpha Magnetic Spectrometer experiment (AMS) on the Space Station

AMS is a space version of a precision detector used in accelerators

Transition Radiation Detector (TRD) identify e⁺, e⁻

Silicon Tracker measure Z, P

Ring Imaging Cerenkov (RICH) measure Z, E

Upper TOF measure Z, E

Magnet identify ±**Z, P**

Anticoincidence Counters (ACC) reject particles from the side

The AMS detectors provide independent information on cosmic rays

With high accuracy, AMS measures Momentum (P, GeV/c) Charge (Z) Rigidity (R=P/Z, GV) Energy (E, GeV/A) Flux (signals/(s sr m²GeV)) for all the charged cosmic rays, e+, e−, p, and p, and the nuclei in the Periodic Table

P

 e

444.

Fe

He

Τ

 $\ddot{\cdot}$

D

 e +

Continuous data-taking

AMS 2011-2026 AMS 2026-2030+

New 4+4m² Silicon Tracker Planes Acceptance increased to 300%

Latest Results on cosmic elementary particles: e+, e−, p, and p

AMS positron flux measurement Low-energy positrons come from cosmic ray collisions High-energy positrons must come from a new source

The positron flux is the sum of low-energy part from cosmic ray collisions plus a high-energy part from pulsars or dark matter with a cutoff energy

Positron spectrum to 2030

11 **By 2030, AMS will ensure that the high energy positron spectrum drops off quickly in the 0.2-2 TeV region and the highest energy positrons only come from cosmic ray collisions as predicted for dark matter collisions**

AMS Result on the electron spectrum

The spectrum fits well with two power laws (*a***,** *b***) and a source term like positrons**

Cosmic Antiprotons

Cosmic Antiprotons and Positrons

Above 60 GeV, the \overline{p} and e⁺ fluxes have identical rigidity dependence

Latest AMS Results on Cosmic Ray Nuclei

Primary cosmic rays p, He, C, O, ..., Si, …, Fe are produced during the lifetime of stars and accelerated by supernovae. They propagate through interstellar medium before they reach AMS.

Secondary Li, Be, B, and F nuclei in cosmic rays are produced by the collision of primary cosmic rays C, O, Ne, Mg, Si, …, Fe, with the interstellar medium.

Light elements He-C-O and Heavier elements Ne-Mg-Si each have their own rigidity dependence Primary cosmic rays have two classes

Secondary cosmic rays have two classes of rigidity dependence Li-Be-B and F

Light Nuclei 2 ≤ Z ≤ 8 He-C-O primaries compared with Li-Be-B secondaries

Heavier Nuclei 9 ≤ Z ≤ 14 Ne-Mg-Si primaries compared with F secondaries

Light and heavy nuclei each have two distinct classes

Abundance of elements in the Solar System

O, Si, and Fe are characteristic primary cosmic rays Li, Be, B, F, and Sc are characteristic secondary cosmic rays

Further Surprising Results:

Before AMS, taking into account the long-standing idea that C is pure primary and B is pure secondary, the (B/C) ratio has been used in models to describe cosmic ray propagation

The spectrum of carbon Φ_{c} is the composition of a primary flux $\Phi_c(P)$ identical to $0.83x\Phi_o$ oxygen and **a secondary flux** Φ_c (S) **identical to** 0.70x Φ_B **boron**

But C is NOT pure primary. Question: how to use (B/C) in cosmic ray models? ₂₁

Even-Z nuclei and Odd-Z nuclei have distinctly different primary and secondary composition

Even-Z nuclei are dominated by primaries

Odd-Z nuclei have more secondaries than even-Z

Primary and Secondary Composition of Cosmic Rays

Current AMS Cosmic Ray Data

By 2030 AMS will provide complete and accurate spectra for the 28 elements and will provide the foundation for a comprehensive theory of cosmic rays. **25** 25

Origin of Cosmic Deuterons Nuclei fusion in stars **Supernova explosion** Helium Carbor **Oxygen Interstellar medium (He, C, O, …) + Interstellar Medium** → **(D***,* **³He) +** *X* 3 He D *Primaries Secondaries*

D and ³He are both considered to be secondary cosmic rays

A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. **57**, 285 (2007) E. G. Adelberger et al., Rev. Mod. Phys. **83**, 195 (2011) N. Tomassetti, Astroph. Space Sci. **342**, 131 (2012) B. Coste, L. Derome, D. Maurin, and A. Putze, A&A **539**, A88 (2012) P. Blasi, Astron. Astrophys. Rev. **21**, 70 (2013) I. A. Grenier, J. H. Black and A. W. Strong, Annu. Rev. Astron. Astrophys. **53**, 199 (2015) G. Johannesson et al., Astroph. J. **824**, 16 (2016) 26

AMSHelium Isotopes: consistent with secondary ³He

AMS result on Deuterons

Deuterons have a significant primary component From 5 to 20 GV, the precision deuteron flux $\Phi_{\mathbf{D}}$ **is a composition of a primary part** $\Phi_{\mathbf{D}}^P$ **identical to the ⁴He flux** $\Phi_{\mathbf{4He}}$ **and** a secondary part $\Phi_{\mathsf{n}}^{\mathcal{S}}$, identical to the 3He flux $\Phi_{\mathsf{a}_{\mathsf{He}}}$

AMS Results on Antimatter

The Big Bang origin of the Universe requires matter and antimatter
to be equally abundant
at the very hot beginning *to be equally abundant at the very hot beginning*

Before AMS, heavy Anti-matter has never been found in space

An Anti-Deuteron Candidate from ~100 million deuterons and ~10 billion protons Bending Plane

Anti-⁴Helium Candidate

AMS Matter and Antimatter Results

By 2030, AMS will have additional measurement points in the study of antimatter: anti-deuterons, anti-helium, anti-carbon, and anti-oxygen.

AMS Publications in *Physical Review Letters* **7544 citations as of Oct. 3, 2024**

In the past hundred years, measurements of charged cosmic rays by balloons and satellites have typically had ~(30-50)% accuracy.

AMS is providing cosmic ray information with ~1% accuracy. The improvement in accuracy and energy range is providing new insights.

AMS results contradict current cosmic ray theories and require the development of a new understanding of the universe. ³⁵

Measurement of Isotopes: Cosmic rays with *same Z, different m*

AMS results (~1% accuracy to multi -TeV) contradict current cosmic ray theories and require the development of a new understanding of the universe.

AMS Studies of the cosmic ray propagation in solar system

AMS continuously measures cosmic ray fluxes of different species (matter and antimatter), with high precision and time granularity.

AMS Elementary Particles (e+, e-, p, p, …) in the Heliosphere over an 11-year Solar Cycle (2011-2022)

Relation between charge and mass

Current AMS Anti-Deuteron Results

