Recent results on top-quark physics by CMS: top-quark properties

On behalf of the CMS Collaboration

UNIVERSITY OF NOTRE DAME 2024 LHC Days Split

30 Sep-4 Oct 2024

Introduction

- > Why study top quark properties?
 - heaviest elementary particles in the SM
 - decays before the spin decorrelates
 - Large coupling to Higgs boson, plays significant role in EWSB
- Properties measurements of top quark test SM and probe new physics
 - Production mechanism and cross section
 - ➢ Width, mass, BRs,...
 - Spin polarization, correlation, entanglement,...
 - Rare decays
- Focus on most recent results at 13 TeV

Entanglement in QM

- > Qubit = two-level quantum system $|0\rangle$, $|1\rangle \rightarrow$ most simple quantum system
- \blacktriangleright Two qubits \rightarrow most simple example of quantum correlations
- A quantum state of two subsystems A and B is separable when its density matrix:

Non-separability of a quantum state = entanglement

- entangled states cannot be described by independent superpositions
- Measuring particle spin in an entangled system immediately reveals the spin state of the second particle even when casually separated
- Spooky Action at a Distance": in 1935 Einstein, Podolsky and Rosen suggested that QM was incomplete (hidden variables)
- In 1964, John Bell introduced his famous inequality, suggesting an experimental test that could disproof EPR states cannot be described by independent superpositions
- Several experimental tests carried out since 1972
 - mostly with electrons and photons at low energy
- Interest to repeat these tests with massive systems at high energy

Entanglement at the LHC

- LHC can provide a unique environment to study spin correlations, entanglement and violation of Bell's inequalities at high energy
- ➢ Simplest process at LHC: tt pair
 - Top has extremely short lifetime allows measuring polarization and spin correlation in tt production
 - Spin information preserved in the angular distribution of its decay products
 - ~100% transmitted to charged leptons and down type quarks
- Spin correlations are probed by angular distribution of decay products in helicity basis:

 $\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}^{+} \cdot \hat{\ell}^{+} + \mathbf{B}^{-} \cdot \hat{\ell}^{-} - \hat{\ell}^{+} \cdot \mathbb{C} \cdot \hat{\ell}^{-} \right)$ polarization spin correlations $\mathbf{B}^{+/-} = \begin{pmatrix} \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \end{pmatrix}$

- In SM, top are unpolarized in tt production, but top spins strongly correlated with antitop spins
- ➢ In tt, the trace of the correlation matrix C is a good entanglement witness
 - > $D = tr[C]/3 = -3 (\cos \varphi)$ is a good variable to be measured experimentally
 - \blacktriangleright cos φ is the opening angle between leptons in parent top rest frame
 - D<-1/3 is sufficient condition for entanglement</p>
 - \succ First observation of entanglement in tt by ATLAS at the end of last year

Entanglement and phase space

- > Entanglement depends on production mode, $m_{t\bar{t}}$, and scattering angle of the top quark
- SM predicts entangled states:
 - At the production threshold region in gg fusion production
 - \succ At the boosted region for central production of the tt system

high relative

velocity

of top quarks

CMS entanglement measurements

Single lepton arXiv:2409.11067 Submitted to PRD

Dilepton arXiv:2406.03976 Submitted to ROPP

- 138 fb⁻¹ of data @13 TeV
- Higher branching ratio
- top spin info ~100 % transmitted to down-type quarks \rightarrow hard to identify
- Higher cut for single lepton (30 GeV) and for 4 jets (30 GeV) \rightarrow lower efficiency at the threshold but OK for high $m_{t\bar{t}}$
- Better $m_{t\bar{t}}$ resolution \rightarrow good for differential measurement
- Advantage for high $m_{t\bar{t}}$
 - high entanglement
 - mostly space-like separated events

- 36.3 fb⁻¹ of 2016 data @13 TeV
 - based on Phys. Rev. D 100, 072002
- Lower branching ratio
- top spin info 100 % transmitted to charged leptons \rightarrow easy to identify
- Lower cuts for leading/subleading lepton(25/20 GeV) \rightarrow higher efficiency at the threshold
- Worse $m_{t\bar{t}}$ resolution \rightarrow not ideal for differential measurement
- Best for threshold region
 - high entanglement
 - mostly time-like separated events

CMS entanglement measurements: Dilepton

- > Focus on low-mass region (345< $m_{t\bar{t}}$ <400GeV) to increase entanglement
- Cut on velocity along the beam line of the tt system to increase fraction gg/qq
- > Top quark reconstructions with m_{lb} weighting method
- Signal modelling: SM $\overline{\text{tt}}$ + toponium (η_t)
- The entanglement proxy is extracted with a template fit
- Results:
 - Good agreement with SM predictions
 - Significance: 5.1 σ obs (4.7 σ exp.)
 - > Significantly improved with η_t inclusion

Dilepton arXiv:2406.03976 Submitted to ROPP

CMS entanglement measurements: Lepton+jets

- \succ Artificial NN used to reconstruct the tt system
- > Events divided into categories based on lepton flavor, number of b-tags, and NN score
- All polarization and spin correlation coefficients extracted simultaneously by performing a binned maximum likelihood fit to the data
 - + measurement of D
- Inclusive + differential measurements in bins of m_{tt̄}, |cosθ|, p_T(t)
 Good agreement with SM prediction

Entanglement observed for first time in boosted region

Single lepton arXiv:2409.11067 Submitted to PRD

Search for CLFV

13 TeV (138/fb)

- ➤ Charged lepton flavor violation (CLFV) via neutrino oscillations is highly suppressed (BR~10⁻⁵⁵) → any experimental evidence = indication of new physics
- Model independent EFT approach, scalar, vector and tensor (Ilqq) operators
- Dilepton eτ final state
- LFV in both single top production and decay are included

- > Background mostly $t\overline{t}$
- Deep neural networks are trained to discriminate signal events from BG
- Data are found to be consistence with the SM expectation
- Limits are set on LFV couplings
 - Translated to the top LFV decay branching fractions

Improvement by factor ~2 on previous limits

Search for BNV

➢ In the SM, the baryon number violation (BNV) is forbidden at LO

13 TeV (138/fb)

- Not from a fundamental symmetry in the SM
- BSM processes can enhance BNV
- ➤ a window to search for new physics
- A model independent effective field theory approach is followed
- Dilepton final states are probed
- BNV effects in single top quark production is included for the first time
- BDT is used to discriminate between signal and background events
- No significant excess of events over the background prediction is observed
- Upper limit are set on the 24
 Wilson coefficients

Upper limits on the top quark BNV BRs are multiple orders of magnitude more stringent than the previous limits

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_x rac{C_x}{\Lambda^2} O_x + \dots$$
 ,

$$O^{(s)} \equiv \epsilon^{\alpha\beta\gamma} [\overline{t_{\alpha}^{c}}(aP_{L} + bP_{R})D_{\gamma}] [\overline{U_{\beta}^{c}}(cP_{L} + dP_{R})E],$$

$$O^{(t)} \equiv \epsilon^{\alpha\beta\gamma} [\overline{t_{\alpha}^{c}}(a'P_{L} + b'P_{R})E] [\overline{U_{\beta}^{c}}(c'P_{L} + d'P_{R})D_{\gamma}].$$

dilepton Phys. Rev. Lett. 132 (2024) 241802

Summary

- > Top properties are measured with exceptional precision
 - ➢ Mass, width, spin correlation,...
- Observation of quantum entanglement by ATLAS and CMS (new!) have brought the foundations of quantum mechanics to colliders
- ➢ Multiple searches are performed to probe rare decays of the top quarks (LFV, BNV, FCNC,)
 - No sign for deviations beyond the SM
- Only small fraction of recent results were presented today
 - Many more can be found here: Latest CMS results on top quarks
- ➢ more results with the Run 2 (+ Run 3) datasets are in the pipeline
 - Stay tuned!

Thanks for your attention