Recent results on top-quark physics by CMS: top-quark properties

On behalf of the CMS Collaboration

Introduction

- \triangleright Why study top quark properties?
	- \triangleright heaviest elementary particles in the SM
	- \triangleright decays before the spin decorrelates
	- \triangleright Large coupling to Higgs boson, plays significant role in EWSB
- \triangleright Properties measurements of top quark test SM and probe new physics
	- \triangleright Production mechanism and cross section
	- Ø Width, mass, BRs,…
	- \triangleright Spin polarization, correlation, entanglement,…
	- **▶ Rare decays**
- Ø …. \triangleright Focus on most recent results at 13 TeV

Entanglement in QM

- \triangleright Qubit = two-level quantum system $|0\rangle$, $|1\rangle \rightarrow$ most simple quantum system
- \triangleright Two qubits \rightarrow most simple example of quantum correlations
- \triangleright A quantum state of two subsystems A and B is separable when its density matrix:

Non-separability of a quantum state = entanglement

- \triangleright entangled states cannot be described by independent superpositions
- \triangleright Measuring particle spin in an entangled system immediately reveals the spin state of the second particle even when casually separated
- Ø "Spooky Action at a Distance": in 1935 Einstein, Podolsky and Rosen suggested that QM was incomplete (hidden variables)
- \triangleright In 1964, John Bell introduced his famous inequality, suggesting an experimental test that could disproof EPR states cannot be described by independent superpositions
- \triangleright Several experimental tests carried out since 1972
	- \triangleright mostly with electrons and photons at low energy
- \triangleright Interest to repeat these tests with massive systems at high energy

3

Entanglement at the LHC

- \triangleright LHC can provide a unique environment to study spin correlations, entanglement and violation of Bell's inequalities at high energy
- \triangleright Simplest process at LHC: the pair
	- \triangleright Top has extremely short lifetime allows measuring polarization and spin correlation in $t\bar{t}$ production
	- \triangleright Spin information preserved in the angular distribution of its decay products
		- \triangleright ~100% transmitted to charged leptons and down type quarks
- \triangleright Spin correlations are probed by angular distribution of decay products in helicity basis:

 $\frac{1}{\sigma}\frac{d\sigma}{d\Omega_+ d\Omega_-} = \frac{1}{(4\pi)^2}\left(1 + \mathbf{B}^+ \cdot \hat{\ell}^+ + \mathbf{B}^- \cdot \hat{\ell}^- - \hat{\ell}^+ \cdot \mathbb{C} \cdot \hat{\ell}^-\right)$
polarization spin correlations $B^{\frac{1}{2}} = \begin{pmatrix} x \\ x \\ x \end{pmatrix} C = \begin{pmatrix} x \times x \\ x \times x \\ x \times x \end{pmatrix}$

- \triangleright In SM, top are unpolarized in tt̄ production, but top spins strongly correlated with antitop spins
- \triangleright In tt, the trace of the correlation matrix C is a good entanglement witness
	- \triangleright *D* = tr[C]/3= −3 (cos φ) is a good variable to be measured experimentally
		- \triangleright cos φ is the opening angle between leptons in parent top rest frame
	- \triangleright D < 1/3 is sufficient condition for entanglement
	- First observation of entanglement in $t\bar{t}$ by ATLAS at the end of last year

Entanglement and phase space

- \triangleright Entanglement depends on production mode, $m_{t\bar{t}}$, and scattering angle of the top quark
- \triangleright SM predicts entangled states:

events

- \triangleright At the production threshold region in gg fusion production
- \triangleright At the boosted region for central production of the \overline{t} system

high relative

velocity

of top quarks

 \rightarrow space-like

CMS entanglement measurements

Single lepton arXiv:2409.11067 Submitted to PRD

Dilepton arXiv:2406.03976 Submitted to ROPP

- \bullet 138 fb⁻¹ of data @13 TeV
- Higher branching ratio
- top spin info ~100 % transmitted to downtype quarks \rightarrow hard to identify
- Higher cut for single lepton (30 GeV) and for 4 jets (30 GeV) \rightarrow lower efficiency at the threshold but OK for high $m_{t\bar{t}}$
- Better $m_{t\bar{t}}$ resolution \rightarrow good for differential measurement
- Advantage for high $m_{t\bar{t}}$
	- high entanglement
	- mostly space-like separated events
- \bullet 36.3 fb⁻¹ of 2016 data @13 TeV
	- based on Phys. Rev. D 100, 072002
- Lower branching ratio
- top spin info 100 % transmitted to charged leptons \rightarrow easy to identify
- Lower cuts for leading/subleading lepton(25/20 GeV) \rightarrow higher efficiency at the threshold
- Worse $m_{t\bar{t}}$ resolution \rightarrow not ideal for differential measurement
- Best for threshold region
	- high entanglement
	- mostly time-like separated events

CMS entanglement measurements: Dilepton

- \triangleright Focus on low-mass region (345< $m_{t\bar{t}}$ <400GeV) to increase entanglement
- \triangleright Cut on velocity along the beam line of the $t\bar{t}$ system to increase fraction gg/qq
- \triangleright Top quark reconstructions with m_{1b} weighting method
- \triangleright Signal modelling: SM \overline{t} + toponium (η_t)
- \triangleright The entanglement proxy is extracted with a template fit
- Ø Results:
	- \triangleright Good agreement with SM predictions
	- \triangleright Significance: 5.1 σ obs (4.7 σ exp.)
	- \triangleright Significantly improved with η_t inclusion

Dilepton arXiv:2406.03976 Submitted to ROPP

7

CMS entanglement measurements: Lepton+jets

- \triangleright Artificial NN used to reconstruct the tt system
- \triangleright Events divided into categories based on lepton flavor, number of b-tags, and NN score
- \triangleright All polarization and spin correlation coefficients extracted simultaneously by performing a binned maximum likelihood fit to the data
	- \triangleright + measurement of D
- \triangleright Inclusive + differential measurements in bins of $m_{t\bar{t}}$, $|cos\theta|$, $p_T(t)$ \triangleright Good agreement with SM prediction

Entanglement observed for first time in boosted region

Single lepton arXiv:2409.11067 Submitted to PRD

Search for CLFV

13 TeV (13

- \triangleright Charged lepton flavor violation (CLFV) via neutrino oscillations is highly s $(BR~10^{-55}) \rightarrow$ any experimental evidence = indication of new physics
- \triangleright Model independent EFT approach, scalar, vector and tensor (llqq) operators
- **► Dilepton et final state**
- LFV in both single top production and decay are included

- \triangleright Background mostly $t\bar{t}$
- \triangleright Deep neural networks are trained to discriminate signal events from BG
- \triangleright Data are found to be consistence with the SM expectation
- Limits are set on LFV couplings
	- \triangleright Translated to the top LFV decay branching fractions

Improvement by factor ~2 on previous limits

Search for BNV

 \triangleright In the SM, the baryon number violation (BNV) is forbidden at LO

13 TeV (138/fb)

- \triangleright Not from a fundamental symmetry in the SM
- Ø BSM processes can enhance BNV
- \triangleright a window to search for new physics
- \triangleright A model independent effective field theory approach is followed
- \triangleright Dilepton final states are probed
- \triangleright BNV effects in single top quark production is included for the first time
- \triangleright BDT is used to discriminate between signal and background events
- \triangleright No significant excess of events over the background prediction is observed
- \triangleright Upper limit are set on the 24 Wilson coefficients

Upper limits on the top quark BNV BRs are multiple orders of magnitude more stringent than the previous limits

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{x} \frac{C_x}{\Lambda^2} O_x + \dots,
$$

$$
O^{(s)} \equiv \epsilon^{\alpha\beta\gamma} [\overline{t_{\alpha}^{c}} (aP_{L} + bP_{R}) D_{\gamma}] [\overline{U_{\beta}^{c}} (cP_{L} + dP_{R}) E],
$$

$$
O^{(t)} \equiv \epsilon^{\alpha\beta\gamma} [\overline{t_{\alpha}^{c}} (a'P_{L} + b'P_{R}) E] [\overline{U_{\beta}^{c}} (c'P_{L} + d'P_{R}) D_{\gamma}]
$$

dilepton Phys. Rev. Lett. 132 (2024) 241802

Summary

- \triangleright Top properties are measured with exceptional precision \triangleright Mass, width, spin correlation,...
- \triangleright Observation of quantum entanglement by ATLAS and CMS (new!) have b mechanics to colliders
- \triangleright Multiple searches are performed to probe rare decays of the top quarks (I \triangleright No sign for deviations beyond the SM
- \triangleright Only small fraction of recent results were presented today

Ø Many more can be found here: Latest CMS results on top quarks

- \triangleright more results with the Run 2 (+ Run 3) datasets are in the pipeline
	- \triangleright Stay tuned!

Thomks for your or