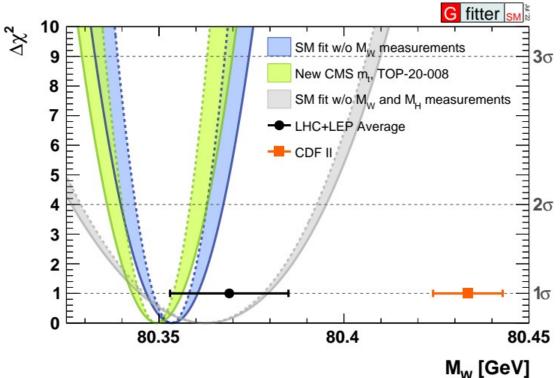
High-precision measurement of the W boson mass at CMS [CMS-PAS-SMP-23-002]

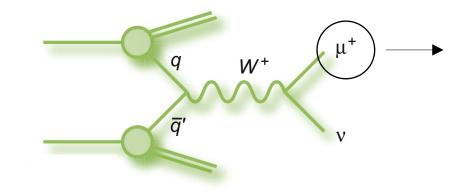
> LHC Days Hvar, Croatia 30 Sep – 4 Oct 2024

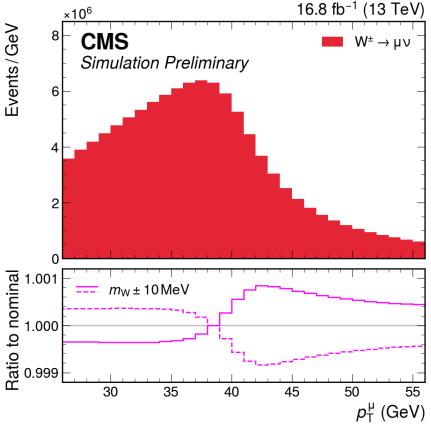
David Walter (CERN) on behalf of the CMS Collaboration



Why measure the W boson mass?

SM does not predict m_W but relationship to other parameters

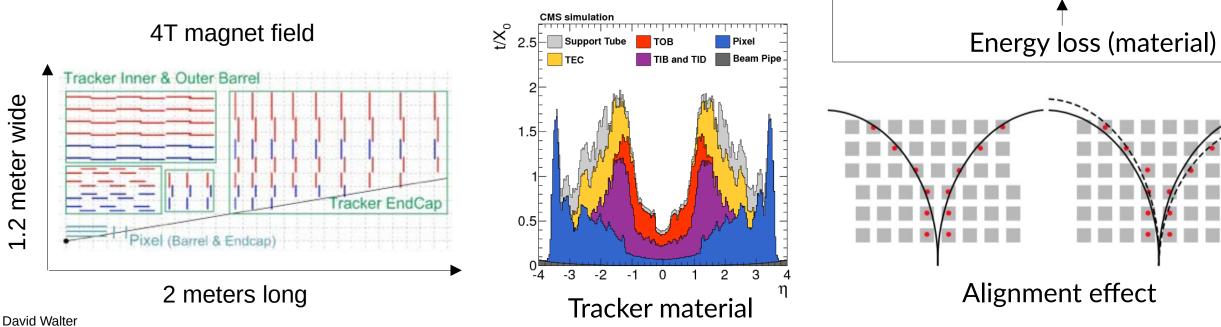

- Possible BSM particles can modify relation m_W can be determined indirectly in EW global fit
- Prediction: $\Delta m_W^{SM} = 6 MeV$ more precise than direct measurements
- Call for direct measurements to over constrain SM and find cracks



Measurements at hadron colliders

At pp colliders m_W is one of the most challenging measurements

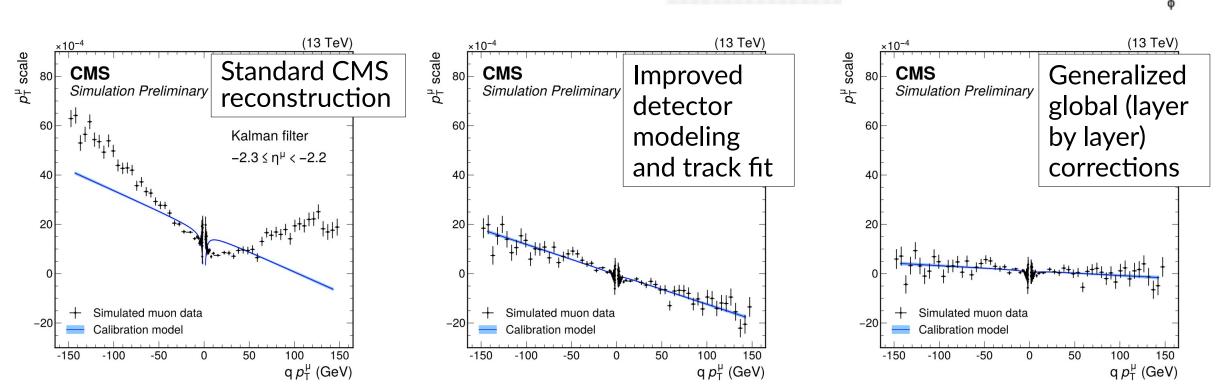
- Measurement possible from partial information: m_T or p_T^e
- LHC collected large amount of data
 - Use 16.8fb⁻¹ pp collision data set at 13TeV from 2016
- But higher pileup deteriorates p_T^{miss} resolution
 - m_T based measurement more challenging \rightarrow deferred for future
 - Muons can be measured best, using muon kinematics only
 - Per mille precision required


Fundamental to measurement as muon momentum uncertainty directly translates to m_w uncertainty

Magnetic field

 $\delta k/k = A_{i\eta} - \epsilon_{i\eta}k + qM_{i\eta}/k$

alignment


- $\delta p_T < \approx 0.01\%$ required for $\Delta m_W < \approx 8$ MeV calibration uncertainty
- Momentum from curvature of muon track in magnetic field using silicon tracker only
- Designed for $J/\psi \rightarrow$ leaving Y(1S) and Z for validation
- Extrapolation via $k \equiv 1/p_T$ parametrization model

Standard CMS reconstruction breaks parametrization Restore parameterization

1) Improved detector modeling and track fit

2) Generalized global (layer by layer) corrections

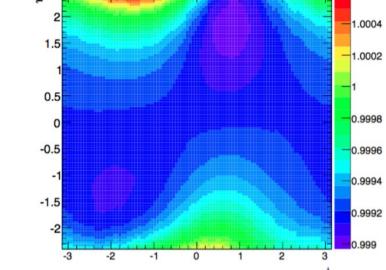
real

delta

Chord

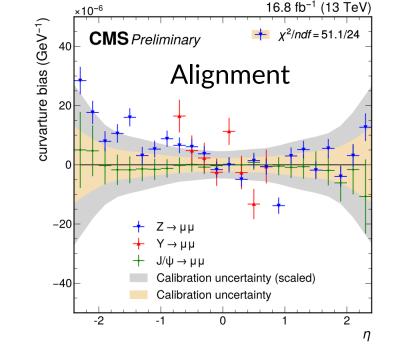
boundary

estimated


intersection

trajectory

intersection


correct

intersection

Once parameterization restored

- Performed calibration on J/ ψ binned in muon (η^+ , p_T^+ , η^- , p_T^-)
- Assess closure on Y(1S) and Z data
 - Inflate uncertainties to cover possible systematic effects

Once parameterization restored

- Performed calibration on J/ ψ binned in muon (η^+ , p_T^+ , η^- , p_T^-)
- Assess closure on Y(1S) and Z data
 - Inflate uncertainties to cover possible systematic effects

 1.2×10^{6}

0.8

0.6

0.4

0.2

0.0

Data / Pred. 00.1

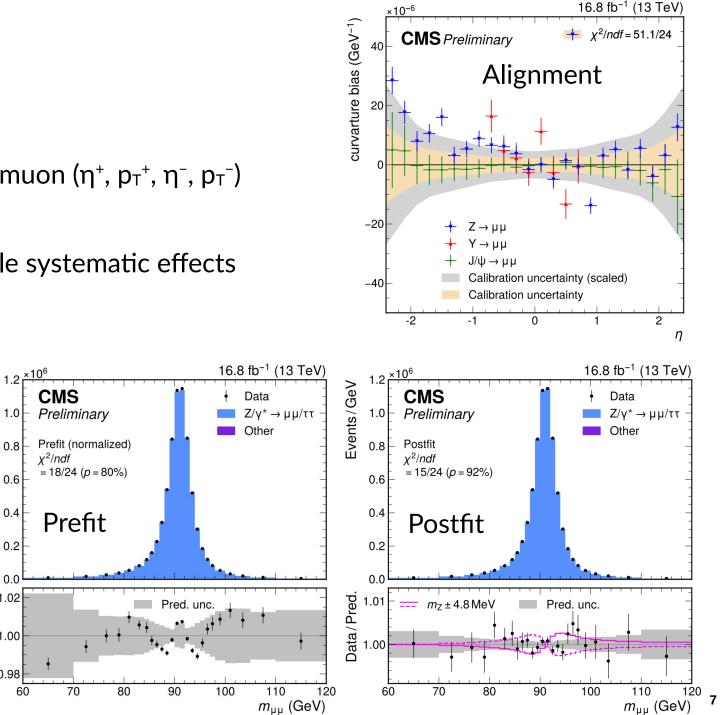
0.98

60

CMS

 χ^2/ndf

70


Events/GeV

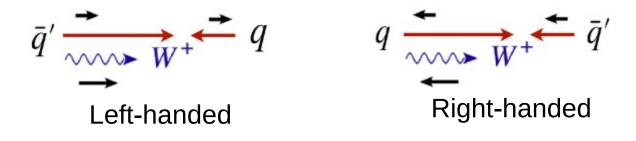
Final validation by extracting Z mass

$$m_{\rm Z} - m_{\rm Z}^{\rm PDG} = -2.2 \pm 4.8 \,{\rm MeV}$$

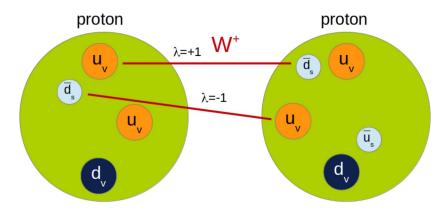
Not an independent m_z measurement (yet)

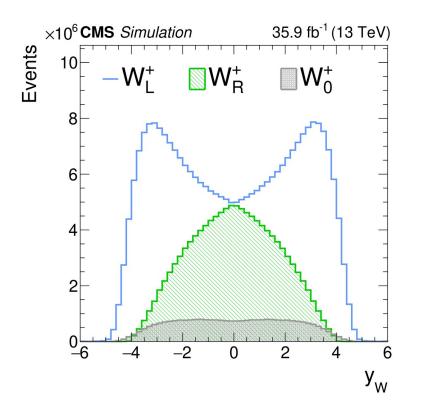
Competitive m_z measurement feasible in the near future

David Walter


Theory uncertainties

Measurement in p_T^{μ} strongly relies on understanding of underlying boson kinematic


• Need to distinguish a variation of m_W from uncertainty in W p_T


Use information from data – example: PDFs

- Due to pure left handed coupling, W helicity determined by its direction relative to incoming quark
- W helicity contains information about PDFs

• Studied in W helicity analysis: <u>arXiv:2008.04174</u>

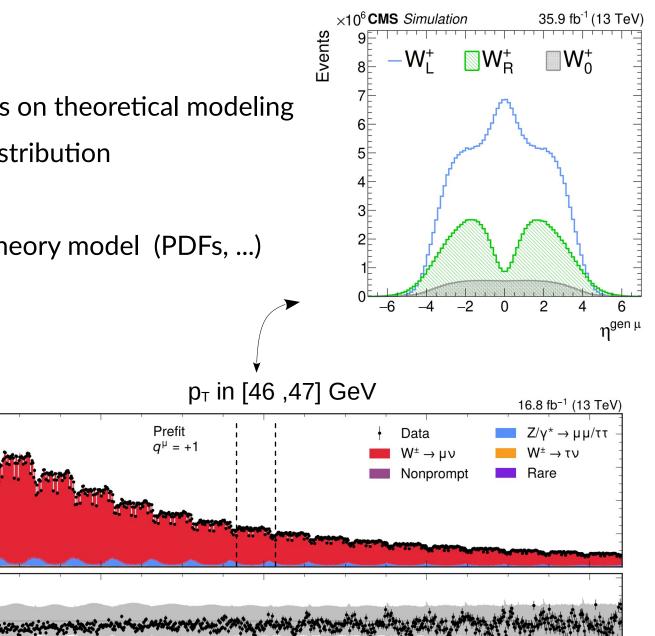
Measurement strategy

CMS Preliminary

200

Pred. unc.

Exploit large dataset for maximal in-situ constraints on theoretical modeling Profile likelihood fit of single muon p_T , η , charge distribution


- Sensitivity to m_W from p_T distribution
- Use η distribution to enhance constraints on theory model (PDFs, ...)

Adda the store with the work does

600

800

400

1000

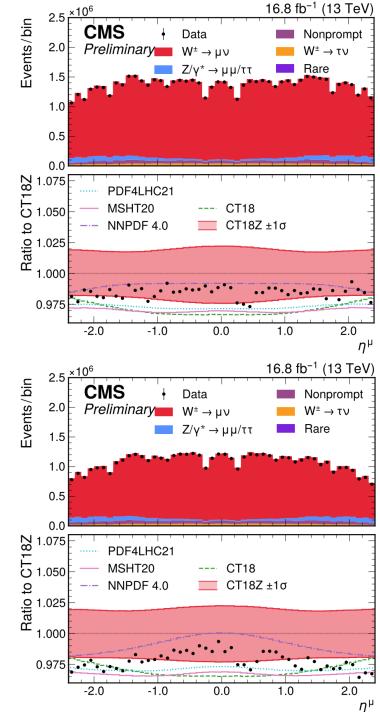
1200

Data/Pred.

 $\times 10^{5}$

8

Events/GeV

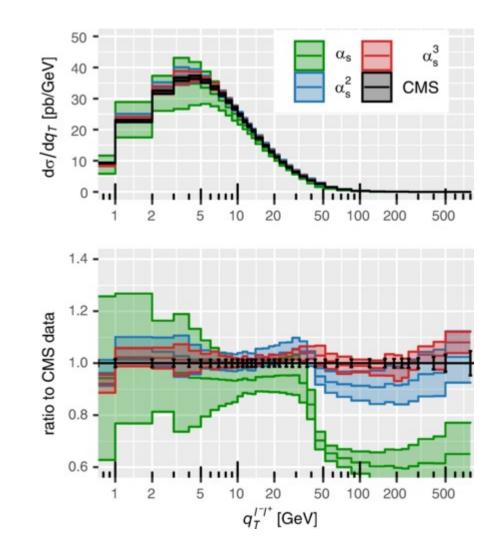

1400

Parton distribution functions

Performed bias studies on 7 modern PDF sets

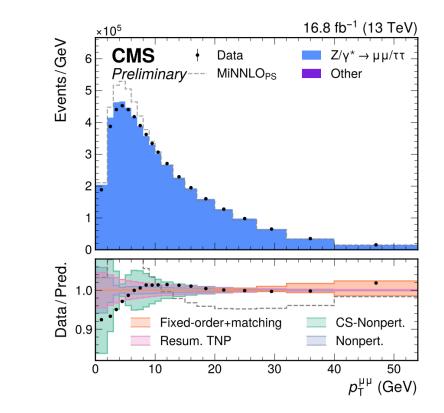
- Use one PDF set to fit the central value of the others
- Observed shift in m_w larger than PDF uncertainty
- Determine inflation factor on PDF uncertainties to cover other PDFs
- CT18Z overs all other sets without inflation \rightarrow our nominal

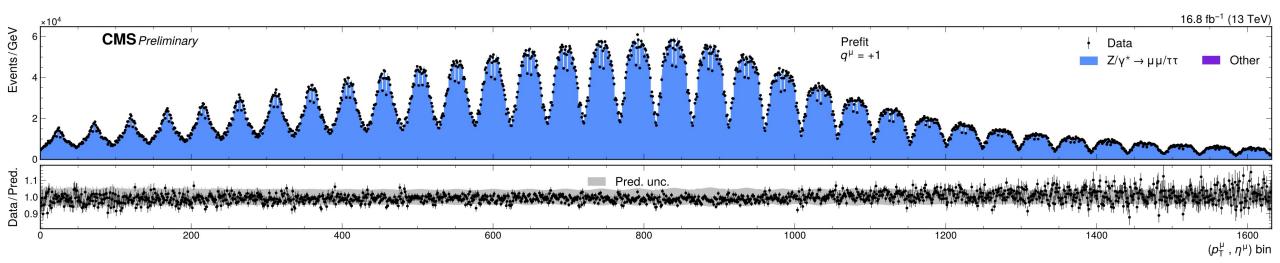
PDF set	Scale factor	Impact in m_W (MeV)			
I DI Set	Scale factor	Original $\sigma_{\rm PDF}$	Scaled $\sigma_{\rm PDF}$		
CT18Z	-	4.4			
CT18	-	4.6			
PDF4LHC21	-	4.1			
MSHT20	1.5	4.3	5.1		
MSHT20aN3LO	1.5	4.2	4.9		
NNPDF3.1	3.0	3.2	5.3		
NNPDF4.0	5.0	2.4 6.0			


QCD uncertainties

Uncertainties in theory typically larger than measurement

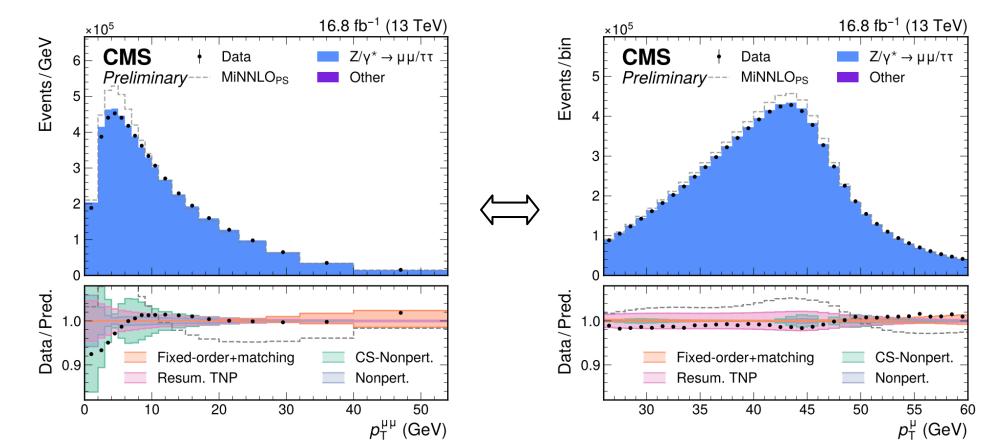
- In particular at low boson p_T
- Common strategy is to correct (tune) model to Z data
- W and Z behave qualitatively the same
- But differences between W and Z may be relevant
- Once the model is corrected to Z data, no easy validation possible


An alternative approach is followed


- m_w extracted w/o use of Z in theory model
- Theory uncertainties in-situ constrained by W data
- Theory model validated using Z

Measurement strategy validation

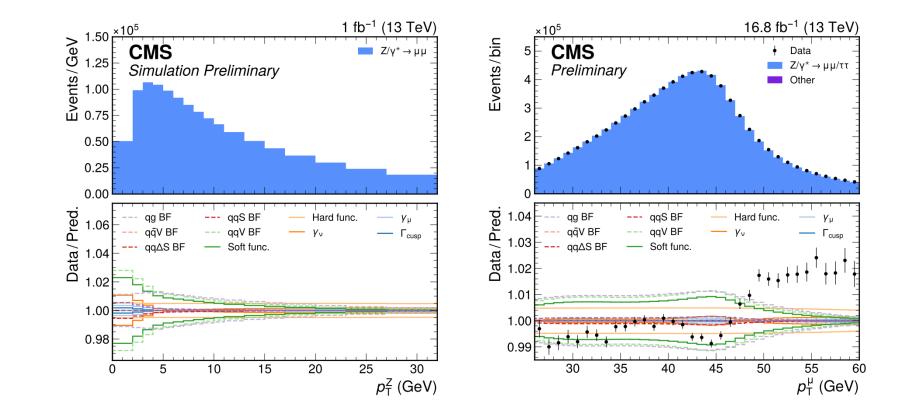
- Z dilepton p_T^z , $|y^z|$ analysis
- Reconstruct Z kinematics with high precision
- W-like Z analysis
- Fitting single muon p_T^e, η^e, charge
- Remove second muon and treat as missing energy


Modeling of Z transverse momentum

Different QCD effects relevant at different p_T^{V} regions and translate to p_T^{μ} spectrum

1) Perturbative a_s expansion \rightarrow MiNNLO_{Ps} event generator with NNLO in a_s

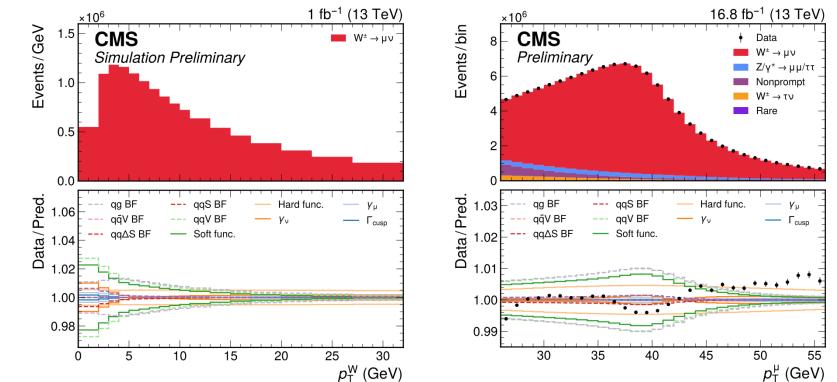
2) Perturbative resummation \rightarrow corrected to N³LL from SCETlib


3) Non perturbative \rightarrow TMD inspired phenomenological model, in situ constrained by data

Modeling of Z transverse momentum – resummation

2) Resummation expansion in log(p_T^V/m_V), relevant at medium and low p_T^V

- Uncertainties from missing higher orders estimated using "theory nuisance parameters" (TNPs)
 - Exploit known structure of resummed calculation
 - Obtain basis of nuisance parameters with known functional shape \rightarrow well suited for profiling

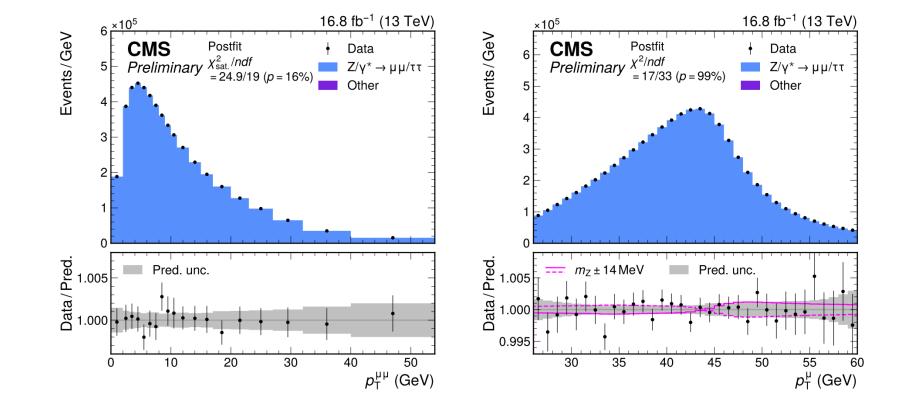

Modeling of W transverse momentum – resummation

2) Resummation expansion in log(p_T^V/m_V), relevant at medium and low p_T^V

- Uncertainties from missing higher orders estimated using "theory nuisance parameters" (TNPs)
 - Exploit known structure of resummed calculation

David Walter

- Obtain basis of nuisance parameters with known functional shape \rightarrow well suited for profiling
- Same structure for W and Z (although exact values may be different)

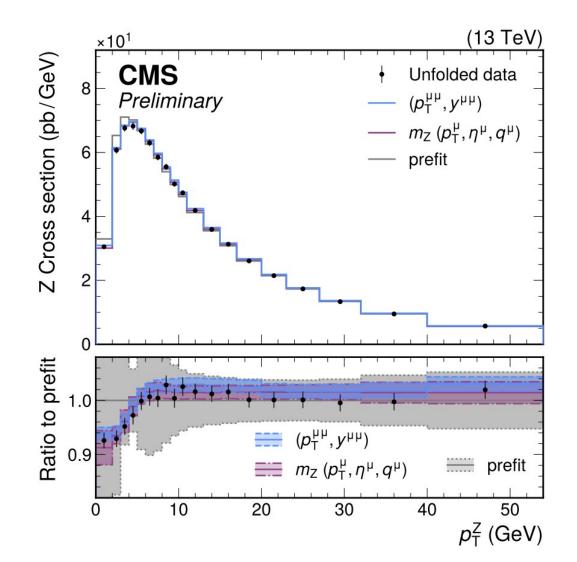

Modeling of W, Z boson transverse momentum – validation

Theory model validated by fitting dilepton $p_T^{\mu\mu}$ distribution

• Saturated likelihood test p-value of $16\% \rightarrow Model$ able to describe the data

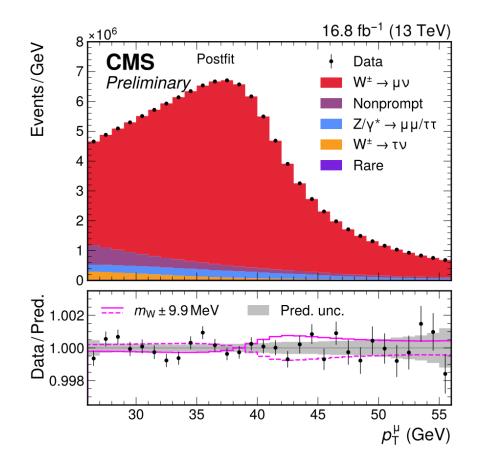
W-like measurement yields m_z compatible with PDG and our dilepton m_z

$$m_{\rm Z} - m_{\rm Z}^{\rm PDG} = -6 \pm 14 \,\mathrm{MeV}$$


David Walter

Theory model validation

Compare postfit p_T^z distributions from W-like Z fit or direct dilepton $p_T^z y^z$ fit with unfolded data


- Good qualitative agreement
- W-like Z fit to single letpon kinematics able to constrain theory uncertainties

 \rightarrow W fit to single lepton kinematics able to constrain theory uncertainties

Result

$m_{\rm W} = 80360.2 \pm 9.9 \,{\rm MeV}$

Source of uncortainty	Impact (MeV)			
Source of uncertainty	Nominal	Global		
Muon momentum scale	4.8	4.4		
Muon reco. efficiency	3.0	2.3		
W and Z angular coeffs.	3.3	3.0		
Higher-order EW	2.0	1.9		
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8		
PDF	4.4	2.8		
Nonprompt background	3.2	1.7		
Integrated luminosity	0.1	0.1		
MC sample size	1.5	3.8		
Data sample size	2.4	6.0		
Total uncertainty	9.9	9.9		
-				

Many additional studies and cross checks performed

Summary & conclusions

First measurement of m_W from CMS

- Most precise at LHC
- In agreement with the SM and measurements except CDF
- Document: [CMS-PAS-SMP-23-002]
- More complete <u>seminar</u> (recorded)

Major advances in theory modeling and muon calibration

• Setting the base for further precision measurements

Backup

	Source of uncertainty CM	S Impact	(MeV)
Comparison with ATLAS	Source of uncertainty	Nominal	Global
	Muon momentum scale	4.8	4.4
	Muon reco. efficiency	3.0	2.3
Compared to ATLAS, in addition to our larger data set	W and Z angular coeffs.	3.3	3.0
 Better constraints on theory (PDFs, non perturbative,) 	Higher-order EW	2.0	1.9
	$p_{\rm T}^{\rm V}$ modeling	2.0	0.8
 Reduced EW unc. due to newer photos version 	PDF	4.4	2.8
 Total calibration + muon eff. "only" 10% better, 	Nonprompt background	3.2	1.7
but Z-independent scale calibration, physics driven model	Integrated luminosity	0.1	0.1
	MC sample size	1.5	3.8
	Data sample size	2.4	6.0
	Total uncertainty	9.9	9.9

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	Γ_W	PS
p_{T}^ℓ ATLAS m_{T}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
$m_{\rm T}$	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Comparison with CDF

CDF has advantages from $p\overline{p}$ collider for theory, and from low tracking material for calibration

• But they didn't do a W-like Z measurement

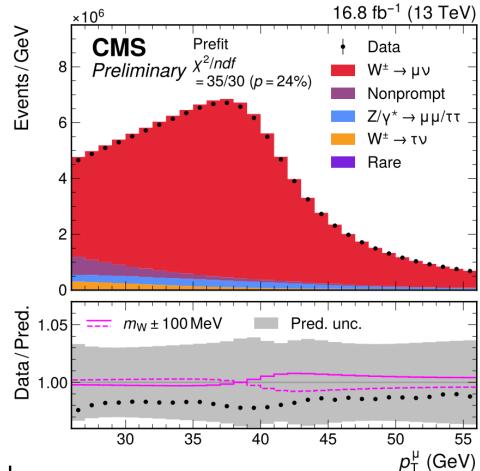
Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\rm T}^{\rm Z}$ model	1.8
$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

Source of uncertainty CMS	Impact	(MeV)
Source of uncertainty	Nominal	Global
Muon momentum scale	4.8	4.4
Muon reco. efficiency	3.0	2.3
W and Z angular coeffs.	3.3	3.0
Higher-order EW	2.0	1.9
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8
PDF	4.4	2.8
Nonprompt background	3.2	1.7
Integrated luminosity	0.1	0.1
MC sample size	1.5	3.8
Data sample size	2.4	6.0
Total uncertainty	9.9	9.9

Event selection

Select isolated muons from single muon trigger

• 26 < p_T < 56; $|\eta|$ < 2.4; multiple quality criteria

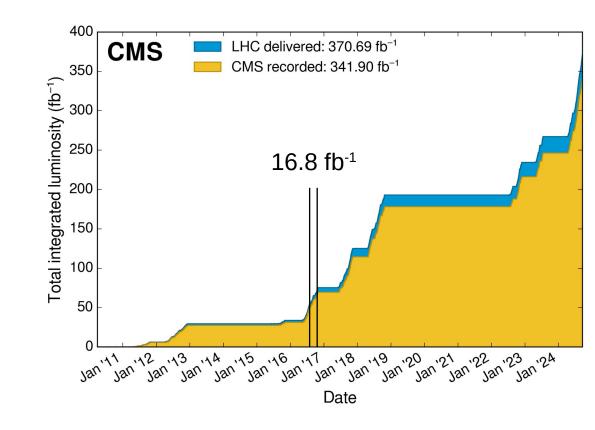

Transverse mass cut of $m_T(\mu, MET) > 40GeV$ to reject QCD multijet events with nonprompt muons (and to predict them)

• Using DNN based DeepMET algorithm

Selected events are

- 89% W $\rightarrow \mu \nu$
- 4% Z→μμ/ττ
- 2% W→τν
- <1% Rare
- 4% Nonprompt

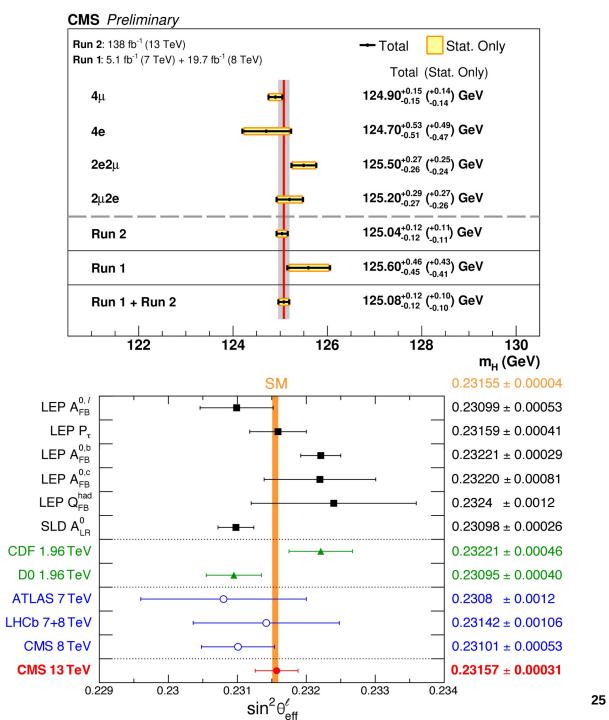
- > From simulation
- From data via "extended" ABCD method
- Verified in secondary vertex control region


The Data

Using Run 2 pp collision data with $\sqrt{s} = 13$ TeV taken in second half of 2016

- Well-understood part of Run 2 data
- On average 30 pileup interactions
- "Only" 10% of 13TeV data but largest data sample ever used for a W boson mass measurement
- >100 million selected events for us, HL LHC is now
- Challenging, but also offers new opportunities

General strategy:

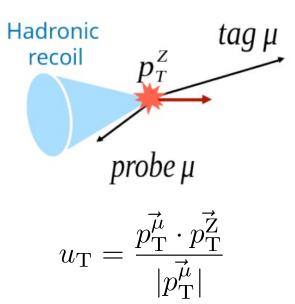

• Exploit large dataset for maximal in-situ constraints on theoretical modeling

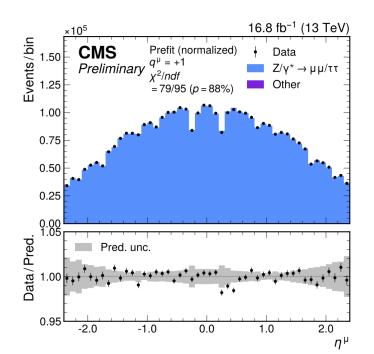
Precision SM measurements

Recent progress in precision measurements of SM parameters

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summar	y, √ s = 1.96-13 TeV	April 2024
LHC comb. (Feb 2024), 7+8 TeV LHC topy	IG [1]		
statistical uncertainty		total stat	
total uncertainty		m _{top} ± total (stat ± syst ± recoil)	GeVI Ldt Ref.
LHC comb. (Feb 2024), 7+8 TeV		172.52 ± 0.33 (0.14 ± 0.30)	≤20 fb ⁻¹ [1]
World comb. (Mar 2014), 1.9+7 TeV	-	173.34 ± 0.76 (0.36 ± 0.67)	≤8.7 fb ⁻¹ , [2]
ATLAS, I+jets, 7 TeV		172.33 ± 1.27 (0.75 ± 1.02)	4.6 fb ⁻¹ , [3]
ATLAS, dilepton, 7 TeV		173.79 ± 1.42 (0.54 ± 1.31)	4.6 fb ⁻¹ [3]
ATLAS, all jets, 7 TeV		175.1±1.8 (1.4±1.2)	4.6 fb ⁻¹ , [4]
ATLAS, dilepton, 8 TeV	4	172.99 ± 0.84 (0.41± 0.74)	20.3 fb ⁻¹ , [5]
ATLAS, all jets, 8 TeV		173.72 ± 1.15 (0.55 ± 1.02)	20.3 fb ⁻¹ , [6]
ATLAS, I+jets, 8 TeV		172.08 ± 0.91 (0.39 ± 0.82)	20.2 fb ⁻¹ , [7]
ATLAS comb. (Feb 2024) 7+8 TeV		172.71 \pm 0.48 (0.25 \pm 0.41)	≤ 20.3 fb ⁻¹ [1]
ATLAS, leptonic inv. mass, 13 TeV	+ = + - 1	$174.41 \pm 0.81~(0.39 \pm 0.66 \pm 0.00 \pm 0.000 \pm 0.000 \pm 0.0000 \pm 0.00000000$	0.25) 36.1 fb ⁻¹ , [8]
ATLAS, dilepton (*), 13 TeV		$172.21 \pm 0.80~(0.20 \pm 0.67 \pm 0.00 \pm 0.00 \pm 0.00 \pm 0.000 \pm 0.000 \pm 0.0000 \pm 0.0000 \pm 0.00000000$).39) 139 fb ⁻¹ [9]
CMS, I+jets, 7 TeV	+1	$173.49 \pm 1.07 \; (0.43 \pm 0.98)$	4.9 fb ⁻¹ , [10]
CMS, dilepton, 7 TeV	-	$172.5 \pm 1.6 \; (0.4 \pm 1.5)$	4.9 fb ⁻¹ , [11]
CMS, all jets, 7 TeV		$173.49 \pm 1.39 \; (0.69 \pm 1.21)$	3.5 fb ⁻¹ , [12]
CMS, I+jets, 8 TeV		$172.35 \pm 0.51 \; (0.16 \pm 0.48)$	19.7 fb ⁻¹ , [13]
CMS, dilepton, 8 TeV		172.22 ^{+0.91} _{-0.95} (0.18 ^{+0.89} _{-0.93})	19.7 fb ⁻¹ , [14]
CMS, all jets, 8 TeV		172.32 ± 0.64 (0.25 ± 0.59)	19.7 fb ⁻¹ , [13]
CMS, single top, 8 TeV		172.95 ± 1.22 (0.77 ^{+0.97} _{-0.93})	19.7 fb ⁻¹ , [15]
CMS comb. (Feb 2024), 7+8 TeV		172.52 ± 0.42 (0.14 ± 0.39)	≤ 19.7 fb ⁻¹ [1]
CMS, all jets, 13 TeV		$172.34 \pm 0.73 \; (0.20 \begin{array}{c} ^{+0.66} \\ _{-0.72} \end{array})$	35.9 fb ⁻¹ [16]
CMS, dilepton, 13 TeV		172.33 ± 0.70 (0.14 ± 0.69)	35.9 fb ⁻¹ , [17]
CMS, I+jets, 13 TeV		171.77 ± 0.37	35.9 fb ⁻¹ , [18]
CMS, single top, 13 TeV		172.13 ^{+0.76} _{-0.77} (0.32 ^{+0.69} _{-0.71})	35.9 fb ⁻¹ , [19]
CMS, boosted, 13 TeV	4	173.06 ± 0.84 (0.24)	138 fb ⁻¹ , [20]
* Preliminary	[1] arXiv:2402.08713 [2] arXiv:1403.4427 [3] EPJC 75 (2015) 330 [4] EPJC 75 (2015) 158 [5] PLB 761 (2016) 350 [6] JHEP 09 (2017) 118 [7] EPJC 79 (2019) 290	[9] ATLAS-CONF-2022-058 [10] JHEP 12 (2012) 105 [11] EPJC 72 (2012) 2202 [12] EPJC 74 (2014) 2758 [13] PRD 93 (2016) 072004	ISJ CMS-PAS-TOP-22-001 I6J EPJC 79 (2019) 313 I7J EPJC 79 (2019) 368 I8J EPJC 83 (2023) 963 I9J JHEP 12 (2021) 161 20J EPJC 83 (2023) 560
165 170	175	180	185
m _{to}	_p [GeV]		

Muon selection efficiencies


Correct simulated samples with muon selection efficiency scale factors


- Inner/outer tracking, selection, isolation and trigger efficiencies
- Measured in $Z \rightarrow \mu \mu$ data using tag and probe procedure
- Differentially in muon $p_T \eta$, charge
- Smoothing procedure in p_T to mitigate statistical uncertainties

Isolation sensitive to hadronic recoil of Z (and W)

- Probe muon at low p_T more likely to fall in hadronic recoil
- Different recoil in W and Z events
- Isolation and trigger efficiencies also measured in boson recoil $u_{\rm T}$

Further corrections for muon prefiring

Recoil calibration

DNN based algorithm (DeepMET) to estimate hadronic recoil for missing transverse energy

- Improved resolution and efficiency for QCD multiject background rejection
- Calibrated in $Z \rightarrow \mu\mu$ events

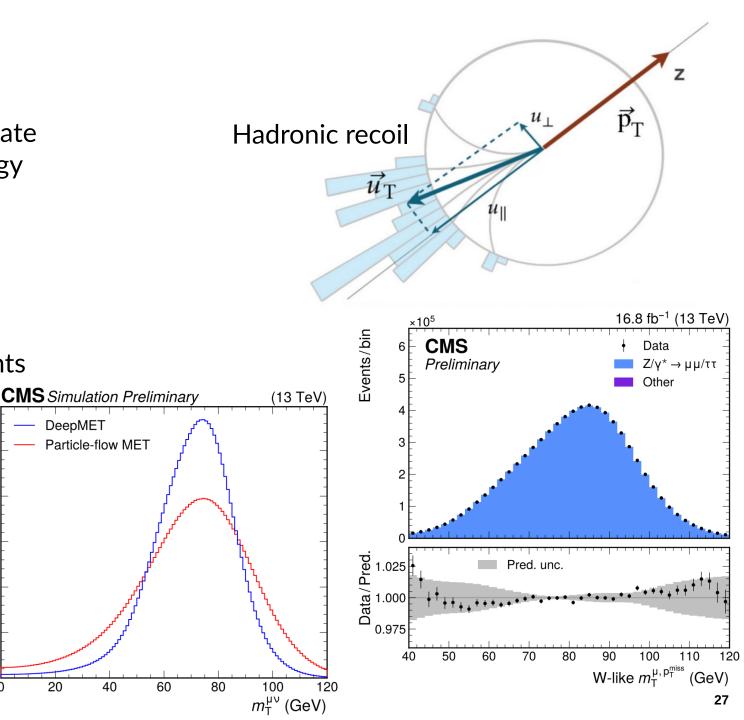
Mitigate difference between Z and W events

Events/bin

0.020

0.015

0.010

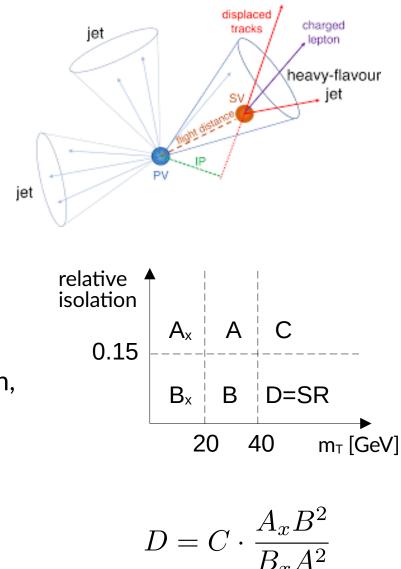

0.005

0.000

20

- Different vertex efficiency
 - \rightarrow Vertex agnostic algorithm

Resulting uncertainties negligible on final measurement (<0.3MeV)


Nonprompt background

QCD multijet events with muons that are not prompt

- B hadron decays, Light meson in flight decays, ...
- Large cross section and insufficient modeling

Estimated from sideband regions in data

- Extended ABCD method with 3 bins m_T and 2 bins in isolation
- Evaluated in fine bins in p_T , η , charge
- Prompt background in sideband region subtracted from simulation, repeated for each systematic variation

Nonprompt background

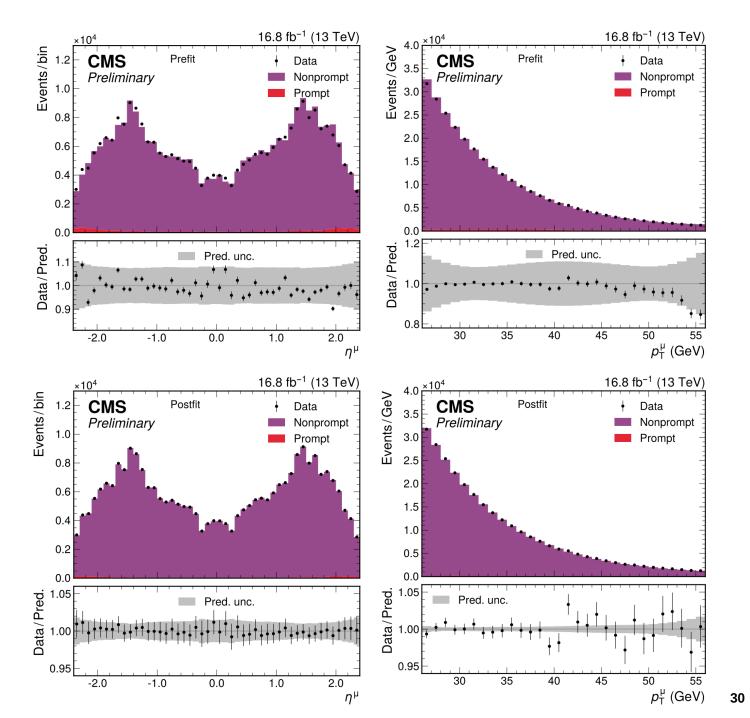
Smoothing each sideband region with exponential of a polynomial to maintain good statistical properties

Agreement between prediction and observation checked in QCD simulation

- Total correction factor of 0.85 derived
- Additional uncertainties assigned to cover residual shape and normalization differences

$$f_i(p_{\mathrm{T}}) = \mathrm{e}^{P_i(p_{\mathrm{T}})}$$
$$f_{\mathrm{D}}(p_{\mathrm{T}}) = \mathrm{e}^{\sum_i w_i P_i(p_{\mathrm{T}})}$$

5

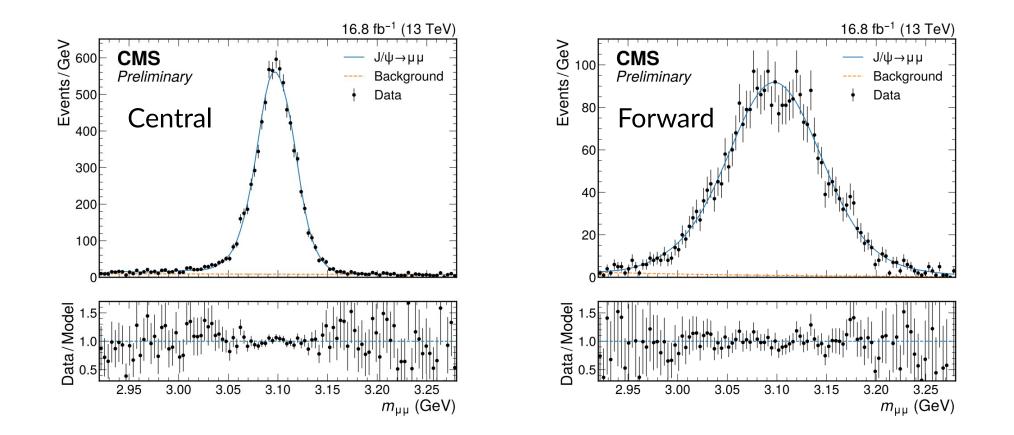

Nonprompt background

Estimation validated in secondary vertex region in data

- Events with a muon coming from from a secondary vertex
- Very pure in QCD multijet events

Performed fit in bins of (p_T , η , charge)

- Good visible agreement
- p-value of 98%


Muon veto efficiencies

Mainly $Z \rightarrow \mu\mu$ events with both muons in acceptance but one is not reconstructed or identified

- Shape of background similar to W but shifted to lower p_T
 - can introduce large bias on m_w if not corrected
- Delicate topic, can not be tested in W-like Z measurement
- Measured based on generator level quantities
- Alternative veto selection and scale factors as cross check

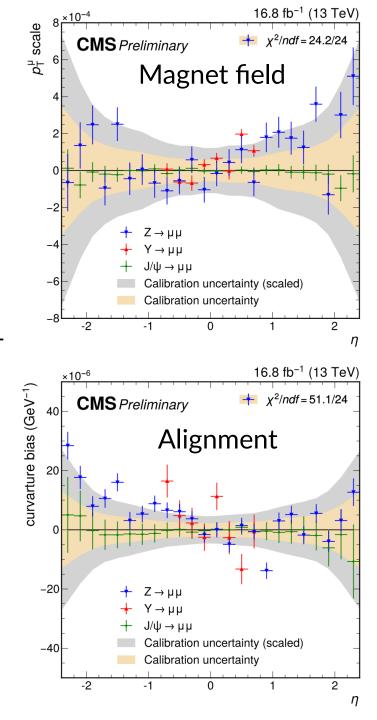
After restoring parameterization, fitting model to J/ψ data

- Fits are finely binned in di-muon kinematics (η^+ , p_T^+ , η^- , p_T^-)
- Extract J/ψ mass from peak of distribution

Extracted J/ ψ mass values translated into model parameters via χ^2 fit

$$\begin{array}{c|c} \text{Magnetic field} & \text{alignment} \\ \bullet & \bullet \\ \delta k/k = A_{i\eta}k - \epsilon_{i\eta} + qM_{i\eta}/k \\ \bullet \\ \text{Energy loss (material)} \end{array}$$

Muon momentum calibration


Assess calibration closure by re-evaluating model on Y(1S) and Z data

- Y only in central due to worse resolution at high |η| and overlapping peaks
- No significant bias in magnet field term
- Slight tension in alignment term

Uncertainty on calibration parameters from J/ψ inflated by factor of 2.1

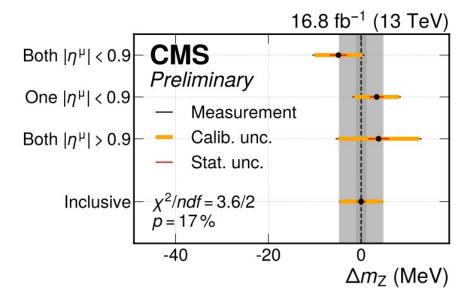
- Cover all possible biases
- Proxy for missing systematic uncertainties

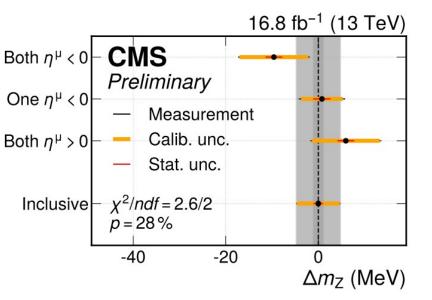
Source of uncertainty	Nuisance	Uncertainty
Source of uncertainty	parameters	in m_W (MeV)
J/ψ calibration stat. (scaled $\times 2.1$	l) 144	3.7
Z closure stat.	48	1.0
Z closure (LEP measurement)	1	1.7
Resolution stat. (scaled $\times 10$)	72	1.4
Pixel multiplicity	49	0.7
Total	314	4.8

34

Muon momentum resolution calibration

Resolution corrected with similar parameterized model


$$\left(\frac{\sigma_{p_T}}{p_T}\right)^2 = a^2 + c^2 \cdot p_T^2 + \frac{b^2}{1 + \frac{d^2}{p_T^2}} \leftarrow \text{Correlations}$$


Multiple scattering Hit resolution

- Extracted from J/ψ and Z data
- Negligible impact on m_z or m_w

Muon momentum calibration

Assigning separate mass parameter in different phase space regions

Electroweak effects

Main EW effect from QED FSR included in simulation

• Using Photos++ with QED LL including $\gamma \rightarrow ee/\mu\mu$ pair production and matrix element corrections (MEC) ~NLO QED

Factorize higher order EW uncertainties:

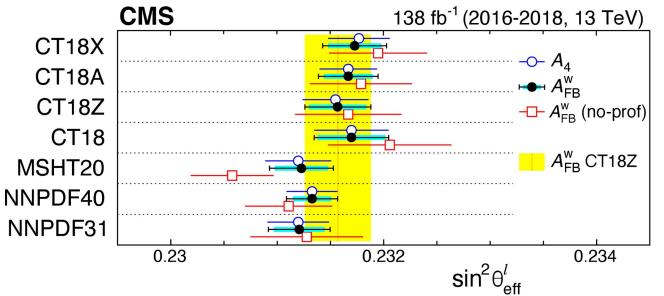
ISR < 0.1 MeV

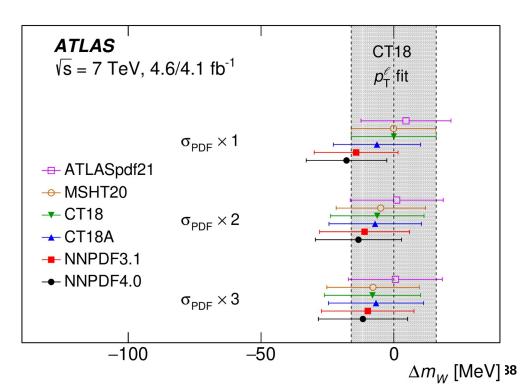

Switching on/off QED ISR in pythia

FSR ~ 0.3 MeV

- Horace QED FSR
- Photos++ MEC off

Virtual ~1.9 MeV

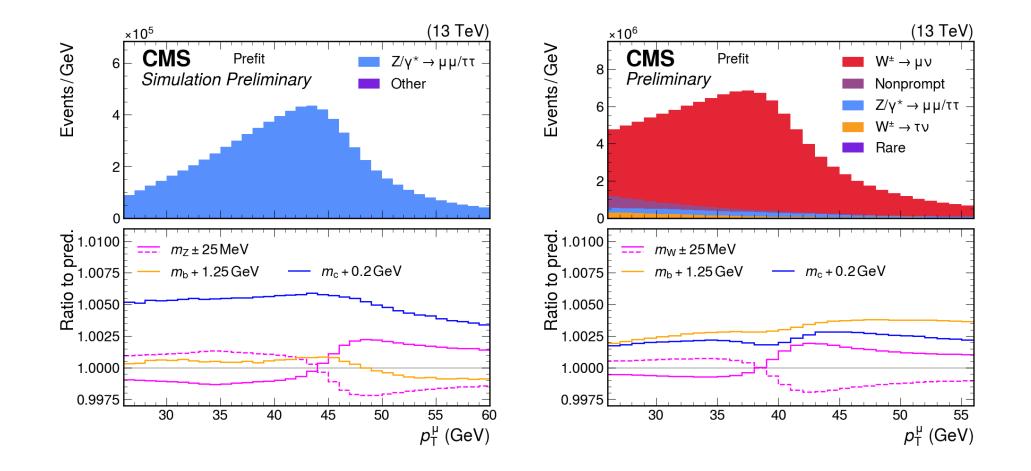

- Z: Powheg NLO+HO EW
- W: ReneSANCe NLO+HO EW



Lepton transverse momentum based m_w measurement

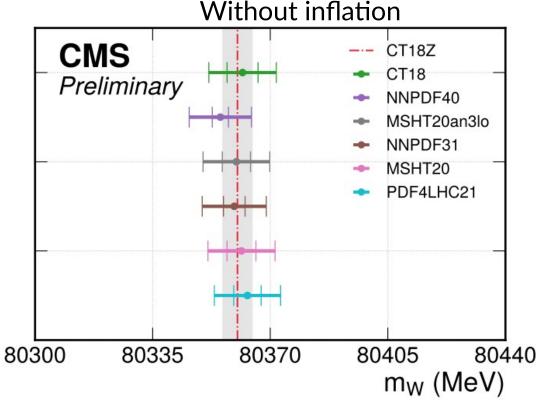
At the LHC, boson production described in parton distribution functions (PDFs)

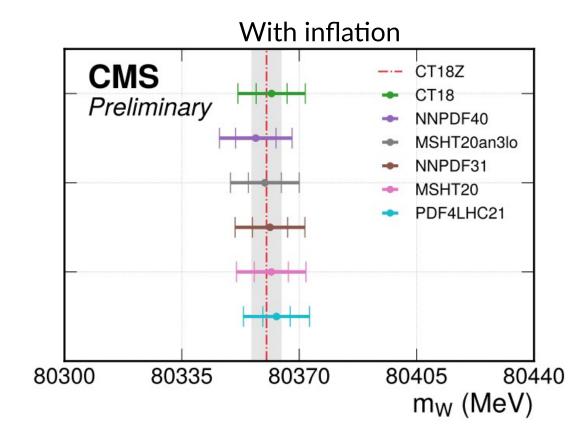
- Previous measurements have shown large spread for different PDF sets
 - E.g. missing theory uncertainties in PDFs
 - But can be directly constrained from data



Heavy quark mass effects

Different contributions from heavy flavor quarks in production of W and Z

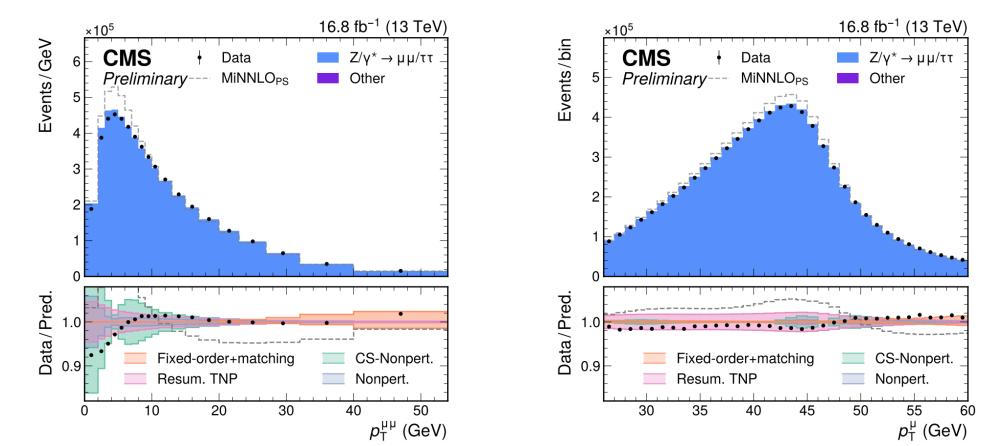

• Effect of quarks masses in variable flavor scheme PDFs accounted for



Results from different PDF sets

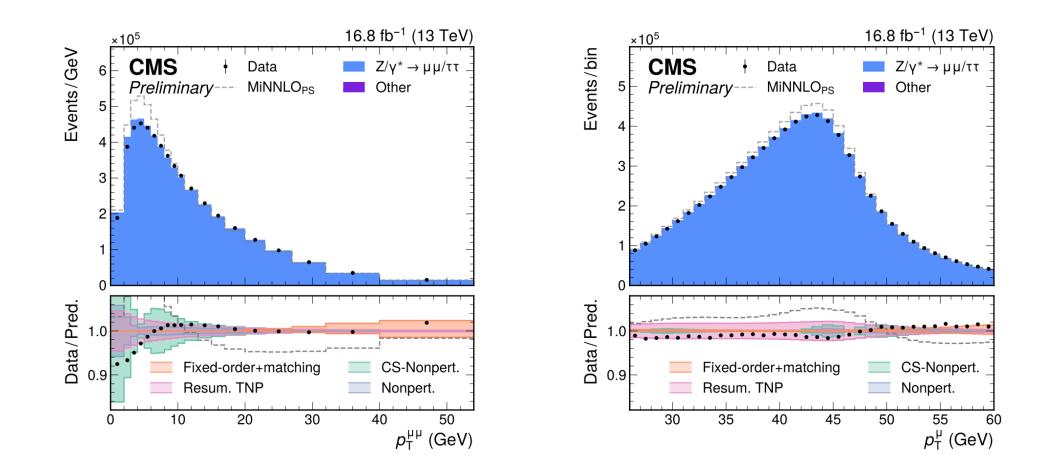
Measurement repeated for different PDF sets

- If not inflated, spread larger than assigned uncertainty
- If inflated, consistent values



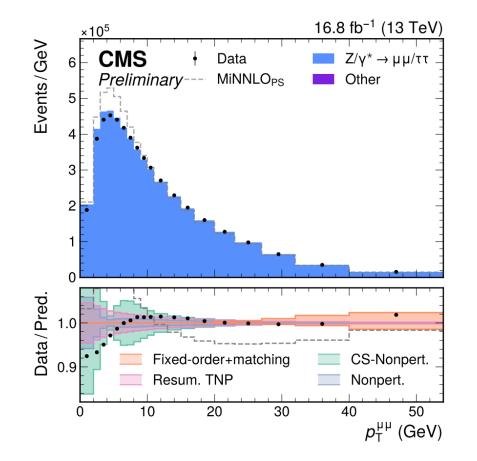
Modeling of W, Z boson transverse momentum – fixed order as

1) Fixed order expansion in α_s , relevant at $p_T^V > 30 \text{GeV}$


- Nominal prediction from MiNNLO_{PS} event generator has NNLO in α_s
- Missing higher orders subdominant source of uncertainty
- Assessed by varying μ_R and $\mu_F \rightarrow$ also used for angular coefficients

Modeling of W, Z boson transverse momentum – fixed order as

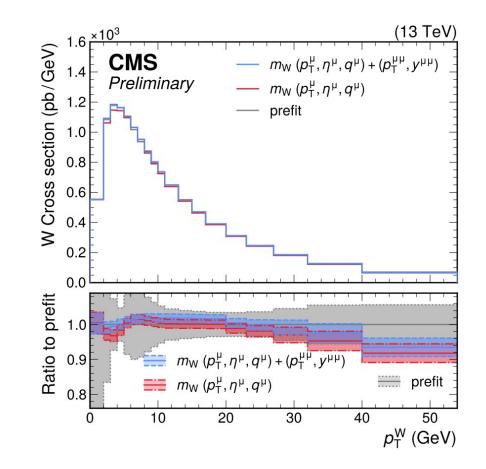
2) Resummation expansion in log(p_T^V/m_V), relevant at medium and low p_T^V


• Nominal prediction corrected with N³LL from SCETlib

Modeling of W, Z boson transverse momentum – non perturbative

3) Non perturbative, relevant at $p_T^z < 10$ GeV

- E.g. Residual transverse motion of partons inside proton (intrinsic k_T)
- Active field of research (TMD PDFs, lattice QCD)
- Using phenomenological models to be tuned to the data
- Collins–Soper (CS) kernel, universal for W and Z
- Others (Intrinsic k_T) not universal for W and Z
- Using SCETlib program with loosely constrained to minimal nonperturbative effects


Simultaneous fit of W and Z dilepton

Extract m_W by simultaneously fitting single lepton p_T , η , charge and dilepton p_T , y distributions Obtained result w.r.t. nominal fit $\Delta m_W = +0.6$ MeV

- Decreased uncertainty to 9.6MeV
- Postfit p_T^w distribution largely consistent with nominal fit

Only used as cross check since correlations of theory uncertainties between W and Z are less well understood

• E.g. no complete flavor dependent model

Helicity cross section fit

W production at LHC described by a decomposition into angular coefficients using spherical harmonics of second order

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}m\,\mathrm{d}y}\underbrace{\mathrm{d}\cos\theta^{*}\,\mathrm{d}\phi^{*}}_{\mathrm{from \,muons}} = \frac{3}{16\pi} \underbrace{\frac{\mathrm{d}\sigma_{\mathrm{UL}}}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}m\,\mathrm{d}y}}_{\mathrm{UD}^{2}\left[(1+\cos^{2}\theta^{*})+\sum_{i=0}^{7}\underbrace{A_{i}(p_{\mathrm{T}},m,y)}_{i=0}\right] \cdot \underbrace{P_{i}(\cos\theta^{*},\phi^{*})}_{\mathrm{Fi}(\cos\theta^{*},\phi^{*})}$$
W differential Decay angles from muons in W rest frame Unpolarized cross section Angular coefficients encode W polarization Spherical harmonics encode W decay

If angular coefficients and unpolarized cross section are known for all values of p_T^w , y^w and W charge, muon kinematics are known

Idea: simultaneous extraction of m_W and helicity cross sections in bins of p_T^W , y^W , charge

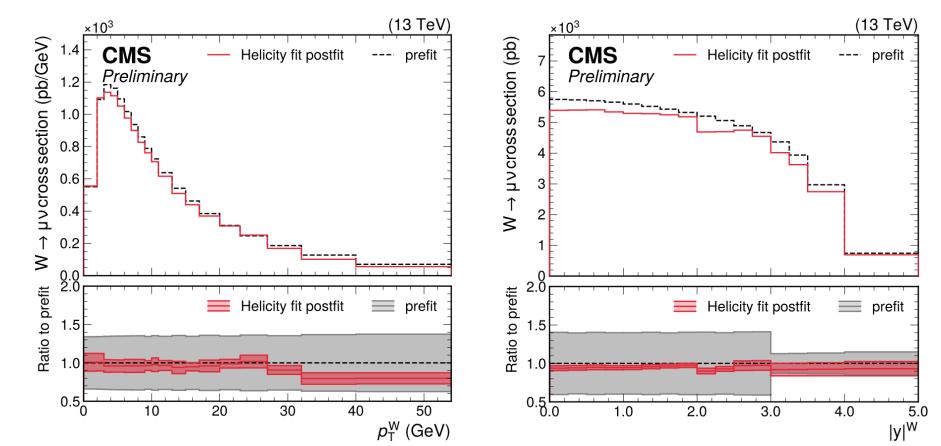
• Reduced theory/model dependence for larger statistical uncertainty

Angular coefficients

W production at LHC described by a decomposition into angular coefficients using spherical harmonics of second order

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}m\,\mathrm{d}y}\underbrace{\mathrm{d}\cos\theta^{*}\,\mathrm{d}\phi^{*}}_{\mathrm{from muons}} = \frac{3}{16\pi} \underbrace{\frac{\mathrm{d}\sigma_{\mathrm{UL}}}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}m\,\mathrm{d}y}}_{\mathrm{UL}^{2}\left[(1+\cos^{2}\theta^{*})+\sum_{i=0}^{7}\underbrace{A_{i}(p_{\mathrm{T}},m,y)}_{i=0}\right] \cdot \underbrace{P_{i}(\cos\theta^{*},\phi^{*})}_{\mathrm{Fi}(\cos\theta^{*},\phi^{*})}$$
W differential Decay angles from muons in W rest frame Unpolarized cross section Angular coefficients encode W polarization Spherical harmonics encode W decay

Angular coefficients describe translation from p_T^V to p_T^{μ} spectrum

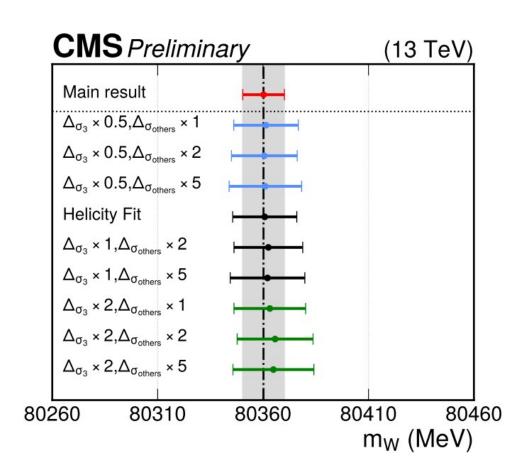

Modeled with NNLO accuracy in a_s from MiNNLO_{Ps} event generator

• Scale variations μ_R and μ_F decorrelated for A_i to account for missing higher orders

Helicity cross section fit

Limited sensitivity to constrain all components in current fit

- Only consider σ₀ σ₄
- Regularize with constraints to nominal predictions
- Relevant theory uncertainties retained


Helicity cross section fit

Consistent result obtained

 $m_{\rm W} = 80360.9 \pm 15.2 \,{\rm MeV}$

Measured W mass stable vs. magnitude of prefit uncertainties σ_3 more sensitive to W mass and less well constrained

• scaled independently from everything else

Uncertainties

Nominal

- Change in m_W when varying systematic group by 1σ
- Correlations across different sources
- Statistical uncertainty in case of no systematics

Global

- Systematic uncertainties constrained by data are counted as statistical
- Different sources are uncorrelated
- Statistical uncertainty is expected spread of result

Difference between nominal and global impacts indicate level of constraints

Source of uncertainty	Impact (MeV)	
	Nominal	Global
Muon momentum scale	4.8	4.4
Muon reco. efficiency	3.0	2.3
W and Z angular coeffs.	3.3	3.0
Higher-order EW	2.0	1.9
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8
PDF	4.4	2.8
Nonprompt background	3.2	1.7
Integrated luminosity	0.1	0.1
MC sample size	1.5	3.8
Data sample size	2.4	6.0
Total uncertainty	9.9	9.9

Some technical remarks

In total, >4000 nuisance parameters

Fitted distribution with >2000 bins

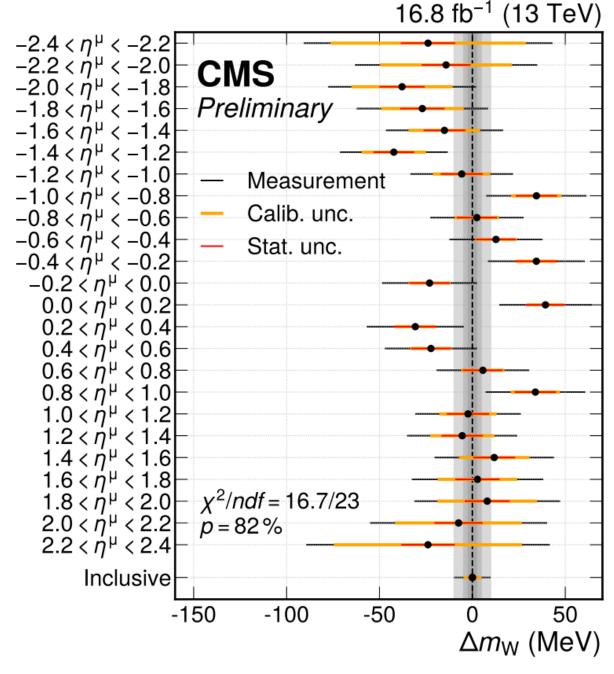
Fast turnaround has been essential to enabling an analysis at this level of complexity

- Multi-threaded RDataFrame to process events to high-dimensional boost histograms
- Tensorflow based profile likelihood fit
- Full analysis runs in ~2 hours

Systematic uncertainties	W-like m_Z	mw
Muon efficiency	3127	3658
Muon eff. veto	_	531
Muon eff. syst.	343	
Muon eff. stat.	2784	
Nonprompt background	—	387
Prompt background	2	3
Muon momentum scale	338	
L1 prefire	14	
Luminosity	1	
PDF (CT18Z)	60	
Angular coefficients	177	353
\widetilde{W} MINNLO _{PS} μ_{F} , μ_{R}	-	176
Z MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	176	
PYTHIA shower $k_{\rm T}$	1	
$p_{\rm T}^{\rm V}$ modeling	22	32
Nonperturbative	4	10
Perturbative	4	8
Theory nuisance parameters	10	
c, b quark mass	4	
Higher-order EW	6	7
Z width	1	
Z mass	1	
W width		1
W mass	-	1
$\sin^2 \theta_W$	1	
Total	3750	4859

50

Further cross checks


Separate m_w parameters defined in different phase space regions gives good compatibility

Measurements of mass difference between

- $\eta < 0$ and $\eta > 0$: 5.8 ± 12.4 MeV
- Central and forward η : 15.3 ± 14.7 MeV
- W⁺ and W⁻: 57 ± 30 MeV

Comment on charge difference

- Correlation between m_W^+ and m_W^- is -40%
- But correlation between m_W and m_W^+ m_W^- is 2%

