
A (VERY) SHORT COURSE IN GENERAL RELATIVITY

FRIDRICH VALACH

1. Very brief introduction

This is a set of brief lecture notes for a very short course on general relativity
delivered at MAPSS 2024 in Les Diablerets.

The notes are mostly based on the excellent differential geometry book Differen-
tial geometry and Lie groups for physicists by Marián Fecko. Other good literature
might be Geometry, topology and physics by Mikio Nakahara.

2. Preliminaries/language from differential geometry

◦ manifold (space) M = nice topological space with a smooth atlas
◦ tangent vector at p ∈M = equivalence class of curves passing through p
◦ tangent space TpM = vector space of tangent vectors at p
◦ cotangent space T ∗pM = dual of TpM
◦ (local) frame {eµ} = collection of bases at each p ∈ U ⊂M
◦ coordinate frame = frame of type eµ = ∂xµ for some coordinates xµ

◦ Einstein summation convention = summation over repeated index assumed
◦ tensor at p = element of a tensor of type k, l at every point
◦ tensor field t ∈ Tkl = choice of an element in the above space at every point
◦ C∞ = space of smooth functions on M , i.e. T0

0

◦ X = space of vector fields on M , i.e. T1
0

◦ components tab...cd... of t = coefficients in t = tab...cd...(x)ea⊗eb⊗· · ·⊗ec⊗ed⊗ . . .
◦ differential form = completely antisymmetric tensor field in T0

m

◦ Ωm = space of differential forms of degree m
◦ de Rham differential = operator d on the space Ωm of differential forms
◦ wedge product ∧ : Ωm ⊗ Ωn → Ωm+n = “multiplication” operation on Ω
◦ pullback of a tensor field α ∈ T0

m along a map f : M → N :

f∗α = f∗(αµ...ν(x)dxµ ⊗ · · · ⊗ dxν) = αµ...ν(f(x))dfµ(x)⊗ · · · ⊗ dfν(x)

◦ Lie derivative LX along a vector field X = expresses change along the flow

3. Basic notions in Riemannian geometry

3.1. Metric.

Definition. A metric (or metric tensor) is a tensor field g ∈ T0
2 which is both

◦ symmetric, i.e. g(x, y) = g(y, x) ∀x, y ∈ TmM
◦ nondegenerate, i.e. the map

TmM → T ∗mM, x 7→ g(x, · )

is an isomorphism

at all points m ∈M .

Definition. Metric is called Riemannian if it is positive definite. Otherwise we call
it pseudo-Riemannian. A (pseudo-)Riemannian manifold is a manifold equipped
with a (pseudo-)Riemannian metric.

1



2 FRIDRICH VALACH

In coordinates we have gµν = gνµ, (g(x, · ))µ = gµνx
ν

Convention. We identify TmM ∼= T ∗mM via x 7→ g(x, · ). In other words we just
write xµ for (g(x, · ))µ = gµνx

ν .

This is also the reason why in Riemannian geometry we are careful with the
horizontal spacing of indices, e.g. we write tµρν instead of tµρν , for coefficients of a
tensor of type T2

1 . One exception is (sometimes) δµν .

Exercise. Why don’t we care about the horizontal index positioning for δµν ? ◦

Convention. We denote the components of the inverse of g by gµν (instead of
(g−1)µν), i.e. we have for instance

gµνgνρ = δµρ , gµνg
νρ = δρµ, xµ = gµνxν .

Definition. Any submanifold i : N →M of a pseudo-Riemannian manifold (M, g)
inherits an induced metric i∗g. (Note that if g has indefinite signature then i∗g
does not have to be a true metric as it can be degenerate.)

Exercise. Calculate the induced metric on a unit 2-sphere S2, embedded in the
Euclidean 3-dimensional space, parametrised by

x = sinϑ cosϕ, y = sinϑ sinϕ, z = cosϑ.

The result should be i∗g = dϑ⊗ dϑ+ sin2 ϑ dϕ⊗ dϕ. ◦

Definition. The length of a curve γ : [a, b]→M in a pseudo-Riemannian manifold
is defined as

length(γ) :=

∫ b

a

√
|g(γ̇, γ̇)|dτ, γ̇(τ) := d

dτ γ(τ) ∈ Tγ(τ)M.

Definition. We say that ξ ∈ X is a Killing vector field if Lξg = 0.

3.2. Connection.

Definition. A connection (or covariant derivative) on a manifold M is a bilinear
map ∇ : X× X→ X, denoted ∇XY := ∇(X,Y ), satisfying

∇fXY = f∇XY, ∇X(fY ) = f∇XY + (Xf)Y, ∀X,Y ∈ X, f ∈ C∞.

Given a connection ∇, we can also define the action of ∇X on C∞ and T0
1 by

∇Xf := Xf, 〈∇Xα, Y 〉 := ∇X〈α, Y 〉−〈α,∇XY 〉, ∀f ∈ C∞, α ∈ T0
1 , Y ∈ X

and then to any Tpq by requiring that for any tensors t, s we have

∇X(t⊗ s) = (∇Xt)⊗ s+ t⊗∇Xs.

Definition. Let xµ be any local coordinates on M . We define the Christoffel sym-
bols Γµνρ(x) by

∇∂ν∂ρ = Γµνρ∂µ.

We also set Γµνρ := gµσΓσνρ. Note that these are non-tensorial, i.e. they are not
coefficients of a tensor.

Exercise. Calculate (in terms of Christoffel symbols) what is ∇∂µdxν . Check that

(∇XY )µ = Xν∂νY
µ +XνΓµνρY

ρ, ∀X,Y ∈ X.

Write down the corresponding formula for ∇Xt for an arbitrary tensor field t. ◦

Definition. Fix a connection ∇. For any pair of vector fields X,Y we define the
curvature operator as the map

R(X,Y ) : X→ X, R(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ].
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Exercise. Check that the expression R(X,Y )W is C∞-linear in all three of X,Y,W ,
i.e. R(fX, Y )W = fR(X,Y )W , etc., for any function f ∈ C∞. Thus the curvature
operator is in fact a “pointwise” operator

TmM ⊗ TmM ⊗ TmM → TmM,

i.e. it is a tensor field of type T1
3 . ◦

Definition. This tensor field is called the Riemann tensor R ∈ T1
3 (associated to

∇). Explicitly, in any frame ea

Rabcd := 〈ea, R(ec, ed)eb〉 = 〈ea, ([∇ec ,∇ed ]−∇[ec,ed])eb〉.

Definition. The torsion of a connection ∇ is the map

T : X× X→ X, T (X,Y ) := ∇XY −∇YX − [X,Y ].

Exercise. Check that T (X,Y ) is C∞-linear in X,Y , i.e. it defines a tensor T ∈ T1
2 .

Explicitly, in any frame T abc = 〈ea,∇ebec −∇eceb − [eb, ec]〉. ◦

3.3. Levi-Civita connection. Let (M, g) be a pseudo-Riemannian manifold.

Theorem (Fundamental theorem of pseudo-Riemannian geometry). There exists
a unique connection s.t. T = 0 and ∇g = 0.

Definition. This is called the Levi-Civita connection.

Exercise. Prove the theorem and derive the formula for the Levi-Civita connection:

Γµνρ = 1
2g
µσ(∂ρgσν + ∂νgσρ − ∂σgνρ).

In particular, note that Γµνρ is symmetric in νρ. ◦

From now on, ∇ will always be the Levi-Civita connection, unless otherwise stated.

Exercise. Show that (for a Levi-Civita connection) the Riemann tensor has the
following symmetries:

Rabcd = R[ab]cd = Rab[cd] = Rcdab, Ra[bcd] = 0 ◦

Exercise. How many independent components does a tensor satisfying the above
symmetries have (in d dimensions)? ◦

Definition. Let (M, g) be a pseudo-Riemannian manifold.

◦ The Ricci tensor R ∈ T0
2 is defined as Rab := Rcacb.

◦ The scalar curvature R ∈ T0
0
∼= C∞ is defined as R := gabRab.

Exercise. Show that the Ricci tensor is symmetric. ◦

Exercise. Why do we take the contraction on first and third index in defining the
Ricci tensor? (What do we get if we contract other pairs of indices?) ◦

4. Remark on alternative notation

Let us now briefly comment on an alternative notation, which is very often quite
convenient, especially with more complex expressions. Returning to the general
setup, let us consider any connection ∇ on M . First, since ∇fXt = f∇Xt for any
f ∈ C∞, X ∈ X, t ∈ Tpq , we actually obtain a tensor ∇t ∈ T

p
q+1, i.e.

(∇t)(X, . . . ) = (∇Xt)(. . . ).

Similarly, iterating this construction we obtain

∇ . . .∇︸ ︷︷ ︸
n times

t ∈ T
p
q+n.
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Crucially, we will denote the components of this tensor (in a given frame ea) by
putting indices on the ∇’s — for instance if the tensor t has components tabc then

(1) (∇∇∇t)abcdef =: ∇a∇b∇ctdef .
This is to be contrasted with an expression like

∇ea∇eb∇ectdef ,
which simply means considering the components tabc of the tensor t, and taking the
derivative of these (seen as functions) in the direction of ec, then it the direction of
eb, and then ea, or with an expression like

(∇ea∇eb∇ect)def ,
which means taking the covariant derivative of the tensor t in the direction of ec,
then taking the covariant derivative of the resulting tensor in the direction of eb
and then finally ea, and then we take the components of the final result. The big
advantage of the notation (1) is that the resulting expression forms components of
a tensor, which is not the case with the other two formulas.

Exercise. Check that for any tensor field t

∇a∇bt...... = (∇ea∇ebt−∇[ea,eb]t)
...
... ◦

Exercise. Check that for a torsion-free connection we have the Ricci identity

[∇a,∇b]Xc := ∇a∇bXc −∇b∇aXc = RcdabX
d, ∀X ∈ X. ◦

5. Geodesics

We start with the observation that on a given pseudo-Riemannian manifold
(M, g) the natural notion of acceleration for a curve γ : [a, b]→M is ∇γ̇ γ̇.

Exercise. Check that ∇γ̇ γ̇ is well-defined, even though γ̇ is not a vector field. ◦

In the special case of no acceleration we get the following:

Definition. A geodesic is a curve γ : [a, b]→M satisfying ∇γ̇ γ̇ = 0.

Exercise. Show that this condition can be written as

ẍµ + Γµνρẋ
ν ẋρ = 0. ◦

Note that here by “curve” we mean the entire map [a, b]→M , not just its image
in M .

Exercise. Show that g(γ̇, γ̇) (the square of the length of the velocity vector) is
preserved along the geodesic. ◦

Exercise. Show that if we parametrise the geodesic differently, i.e. we replace γ by
γ′ := γ ◦ ϕ for ϕ : [a, b]→ [a, b] a diffeomorphism, then

(2) ∇γ̇′ γ̇′ = fγ̇′,

where f is a function on [a, b]. Conversely, if we start with a solution of (2) we can
reparametrise it to obtain ∇γ̇ γ̇ = 0. ◦

Proposition. The geodesic equation is the Euler–Lagrange equation for

S(γ) := 1
2

∫ b

a

g(γ̇, γ̇)dτ.

Exercise. Show this. ◦

Note that this provides a very easy way to derive the Christoffel symbols.
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Exercise. Calculate the Christoffel symbols on S2 and find out if there are any
geodesics with constant ϕ or constant ϑ. ◦

Proposition. The Euler–Lagrange equation for the (reparametrisation-invariant)
functional

length(γ) =

∫ b

a

√
|g(γ̇, γ̇)|dτ

has the form (2), i.e. the length-extremising curves are precisely geodesics up to
parametrisation.

Exercise. Show this. ◦

Exercise. Are geodesics always local minima of the length functional? (hint: con-
sider going from Quito to Campala by taking the “wrong way”). ◦

6. Normal coordinates and applications

Fix a pseudo-Riemannian manifold (M, g). Note that for every point m ∈ M
and for every v ∈ TmM there exists a unique geodesic γv with γv(0) = m and
γ̇v(0) = v defined on some interval [−ε, ε].

Proposition. There exists an open set U ⊂ TmM , containing the origin, such that
the exponential map

exp: U →M, v 7→ γv(1)

is a diffeomorphism between U and a neighbourhood of m ∈M .

Definition. Fix a point m ∈M . Let eµ be any orthonormal basis1 of TmM , giving
(linear) coordinates xµ on U . The corresponding local coordinates (also denoted
xµ) on M , defined via the exponential map, are called normal coordinates.

Proposition. In normal coordinates we have ∂µgνρ = 0 at the point m. In partic-
ular Γµνρ(m) = 0.

It is extremely useful to know that these coordinates exist, even without know-
ing their explicit form. To see this in practice, consider the following coordinate
expressions for the Lie derivative and the exterior differential:

(3) (LXY )i = Xj∂jY
i − Y j∂jXi, (dα)ij = 2∂[iαj], X, Y ∈ X, α ∈ T0

1 .

We now claim that in all these expressions we can replace ∂ by ∇, and the equalities
will still hold, i.e.

(4) (LXY )i = Xj∇jY i − Y j∇jXi, (dα)ij = 2∇[iαj], X, Y ∈ X, α ∈ T0
1 .

To see this, we reason as follows. First, note that both the expressions

Xj∂jY
i − Y j∂jXi and Xj∇jY i − Y j∇jXi

are tensorial (i.e. are components of a tensor) — in the first case this is because
it is merely the component of the Lie derivative. Second, if we take the normal
coordinates around any point m, the two expressions coincide (since Γµνρ(m) = 0).
However, the equality of any two given tensors is independent of any coordinate
choice, i.e. the two expressions must coincide in any coordinate system, which
establishes the equivalence. The same argument holds for d. In fact, for the Lie
derivative of any tensor field, and for d of any differential form, we can always make
the replacement

∂i → ∇i.

1This is the basis such that all members of the basis are orthogonal to each other, and the
inner product of each member with itself is ±1 (depending on what is the signature of the metric).
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Finally, note that in the expression (4) (in contrast to (3)) we can in fact use any
frame, not just a coordinate frame (i.e. frame of a type ∂xµ for some coordinates
xµ).

Exercise. Check that such a reasoning is no longer possible if we have an expression
which is second (or higher) order in derivatives. ◦

Exercise. Show that in normal coordinates around point m we have at that point:

Rµνρσ = −(∂µ∂[ρgσ]ν − ∂ν∂[ρgσ]µ). ◦

Exercise. Use this, together with the above reasoning, to easily derive the symme-
tries of the Riemann tensor (which hold in any coordinates/frame). ◦

Exercise. Show that the Killing equations can be written as

∇(aξb) = 0. ◦

7. Einstein equations and Einstein–Hilbert action

7.1. An aside on the metric volume form. Consider an oriented (n-dimensio-
nal) pseudo-Riemannian manifold. For any point m ∈ M , pick any oriented or-
thonormal basis ea of TmM . Define

ωg := e1 ∧ · · · ∧ en.

Exercise. Show that ωg is independent of the choice of the particular frame ea. ◦

Definition. This gives a globally-defined and nowhere vanishing differential form
ωg of the top degree, called the metric volume form.

Proposition. In local (oriented) coordinates xµ

ωg =
√
|det gµν |dx1 ∧ · · · ∧ dxn.

7.2. Einstein equations. We wish to write down some equations governing the
dynamics of spacetime, and we wish them to take the form

some sort of curvature = κ × something describing the matter content,

where κ ∈ R is some constant. Physics supplies a pretty good candidate for the
RHS, namely the stress-energy tensor. This is a symmetric tensor Tµν which is
conserved, i.e.

∇µTµν = 0.

Let’s see if we can find a suitable candidate for the LHS. Furthermore, we want to
follow the usual physical lore which suggests to find an expression that is at most
of second order in derivatives of the physical field, i.e. in this case the metric. A
reasonable quantity which has the required form (symmetric tensor T0

2) is

Eµν := aRµν + bRgµν + cgµν ,

for some constants a, b, c ∈ R. We can absorb one of the constants in the redefinition
of κ; we will use this to set a = 1. Next, we need to impose ∇µEµν = 0. For this
we will use the contracted Bianchi identity

∇µRµν = 1
2∇νR.

Exercise. Check that (with a = 1) we have ∇µEµν = 0 if and only if b = − 1
2 . ◦

Finally, renaming the constant c to Λ, we obtain the Einstein equations

Rµν − 1
2Rgµν + Λgµν = κTµν .

The constants Λ and κ are called the cosmological constant and the Einstein grav-
itational constant, respectively.
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Exercise. Show that in the vacuum, i.e. for Tµν and Λ vanishing, the Einstein
equations are equivalent to Rµν = 0 (provided the dimension is more than 2). ◦

7.3. Einstein–Hilbert action.

Definition. Define the Einstein–Hilbert action as

SEH(g) =
1

2κ

∫
M

(R− 2Λ)ωg.

Proposition. Einstein equations arise as the Euler–Lagrange equations for

SEH(g) + Sm(ϕ, g),

where Sm is the matter action, and

Tµν = − 2

ωg

δSm
δgµν

.

8. Dictionary between general relativity and differential geometry

8.1. A brief reminder of special relativity.

◦ The spacetime in special relativity is described by the Minkowski space
M := R4, with the following metric of signature (3, 1):

η = diag(−1, 1, 1, 1).

The first direction (denoted t) is the time, other directions (denoted x, y, z)
correspond to space, thus

η = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz.

This corresponds to a “viewpoint” of a fixed “inertial” observer (in these
units we set the speed of light to 1).
◦ Points of M are called events (they correspond to things that happen at a

precise time and in a precise location). Real movement of a particle traces
out a curve γ in M, called the worldline. The space of vectors v ∈ M with
g(v, v) = 0 is called the lightcone. Massive particles move along curves
which are contained within this lightcone, i.e. with g(γ̇, γ̇) < 0.
◦ The group of isometries of M is called the Poincaré group. It can be de-

scribed as SO(3, 1)nR4, where R4 corresponds to translations and SO(3, 1)
is corresponds to transformations fixing the origin in M and is called the
Lorentz group. An isometry of M is interpreted as passing to a coordinate
system corresponding to a different observer. More explicitly,

– elements in R4 correspond to translated observers
– elements of SO(3) ⊂ SO(3, 1) correspond to rotated observers
– observer moving with a constant velocity ~u = (ux, uy, uz) and pass-

ing through the origin at time 0 corresponds to a (Lorentz) boost ; in
particular if the velocity is (u, 0, 0) then the transformation is

γ −uγ 0 0
−uγ γ 0 0

0 0 1 0
0 0 0 1

 , γ :=
1√

1− u2

in other words, boosts in the t, x subspace correspond to hyperbolic
rotations (

cosh θ − sinh θ
− sinh θ cosh θ

)
∈ SO(1, 1),

where θ (defined by tanh θ = u) is called rapidity
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– other elements in (the connected component of the identity of) the
Poincaré group can be obtained by combining the above

◦ The time measured by the clock of any observer moving along some curve
γ(τ) in M corresponds to the length (measured using η) of the curve, i.e.

time from a to b =

∫ b

a

√
|η(γ̇, γ̇)|dτ

8.2. Dictionary in general relativity.

◦ Spacetime is a pseudo-Riemannian manifold of signature (3, 1), potentially
also carrying some “matter” (described in terms of some fields whose dy-
namics is governed by Sm), satisfying the Einstein equations.
◦ Test particles2 move along geodesics.
◦ Normal coordinates correspond to a freely falling observer — such an ob-

server feels that the surrounding metric looks at first approximation like the
Minkowski metric, and then deviates from it in second order, corresponding
to the fact that in normal coordinates gµν(x) = ηµν + O(x2).
◦ Time measured by the clock of any observer moving along some curve

corresponds to the length of the curve.

9. Cartan structure equations

Let us now try to reformulate the story of (general) connections in terms of
differential forms.

Definition. Consider a connection ∇ on M , and choose a local frame ea. We then
define the associated forms3 ωab ∈ Ω1, T a ∈ Ω1, Ωab ∈ Ω2 by

(ωab)c := Γacb, (T a)bc := T abc, (Ωab)cd := Rabcd.

Exercise. Show that under the change of frame e′a = Abaeb we have

ω′ab = (A−1)acω
c
dA

d
b + (A−1)acdA

c
b, or in short ω′ = A−1ωA+A−1dA. ◦

Proposition. The following Cartan structure equations hold

de+ ω ∧ e = T, dω + ω ∧ ω = Ω,

or, written more fully,

dea + ωab ∧ eb = T a, dωab + ωac ∧ ωcb = Ωab.

Exercise. Show this. ◦

Corollary. Let now (M, g) be a pseudo-Riemannian manifold, ∇ the Levi-Civita
connection, and ea a local orthonormal frame. Then ωab := ηacω

c
b are antisym-

metric, and we have

dea + ωab ∧ eb = 0, dωab + ωac ∧ ωcb = Ωab.

Let us now look at the particularly interesting case of a Riemannian (i.e. positive-
definite) metric in 2 dimensions.

Exercise. Show that in this case, if ea is an orthonormal frame,4

(5) Rabcd = Kεabεcd, Rab = Kδab, R = 1
2K, Ωab = Kεabe

1 ∧ e2,
for some function K (called Gaussian curvature). ◦

2i.e. small objects whose presence doesn’t affect the surrounding spacetime
3Here Γabc is the obvious extension of the definition of Christoffel symbols (defined for a

coordinate basis ∂µ) to an arbitrary frame ea.
4εab here is the completely antisymmetric tensor normalised such that ε12 = 1.
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Similarly, in an orthonormal basis we have ωab = εabα, for some 1-form α. The
Cartan structure equations then give a particularly nice system:

(6) de1 + α ∧ e2 = 0, de2 − α ∧ e1 = 0, dα = Ke1 ∧ e2.

This gives the following simple algorithm for determining all the curvature tensors
for a given 2d Riemannian space:

◦ Find an orthonormal coframe e1, e2. This can be often quickly read off
from the metric, e.g. for S2 with g = dϑ⊗ dϑ+ sin2 ϑdϕ⊗ dϕ we can take
e1 = dϑ, e2 = sinϑdϕ)

◦ Calculate α from the first two equations in (6).
◦ Calculate K from the last equation.
◦ Express the desired curvature tensors using (5).

Exercise. Calculate the curvature tensors for S2. ◦

Exercise. Consider the 2-dimensional surface embedded in R3 as

x = (a+ b sinψ) cosϕ, y = (a+ b sinψ) sinϕ, z = b cosψ.

What is this? Calculate the Gaussian curvature. ◦

10. Some famous solutions

Let us now very briefly discuss some famous solutions to Einstein equations.

10.1. Maximally symmetric spacetimes. This subsection applies to any dimen-
sion d ≥ 3. Before listing the options, let us define the pseudo-Riemannian space
Mp,q to be Rp+q with constant diagonal metric of signature (p, q).

The maximally symmetric spacetimes of signature (d − 1, 1), which solve the
Einstein equations with T = 0, are now:

◦ Minkowski space Md−1,1
◦ de Sitter space

dSd :=

{
x ∈Md,1 s.t. |x|2 =

(d− 1)(d− 2)

2Λ

}
, Λ > 0

◦ anti-de Sitter space

AdSd :=

{
x ∈Md−1,2 s.t. |x|2 =

(d− 1)(d− 2)

2Λ

}
, Λ < 0

The parameter Λ corresponds to the value of the cosmological constant for these
solutions. (Minkowski spacetime has Λ = 0.) We see that both de Sitter and anti-de
Sitter spacetimes can be understood as (pseudo)spheres.

Exercise. What is the topology of de Sitter and anti-de Sitter space? ◦

Exercise. Calculate the scalar curvature of AdS and dS (in an easy way) in terms
of Λ, using the fact that the scalar curvature is constant. ◦

Proposition. A pseudo-Riemannian manifold of signature (p, q) is locally isomet-
ric5 to Mp,q iff the Riemann tensor vanishes.

5i.e. isomorphic as a pseudo-Riemannian manifold
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10.2. Black hole solutions. Let us now discuss black hole solutions in 4d (i.e.
with signature (3, 1)). The simplest black hole solution was found by Schwarzschild
in 1916. It has Λ = T = 0 and it look as follows:

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2, dΩ2 = dϑ2 + sin2 ϑdϕ2.

Here ϑ, ϕ parametrise a 2-sphere, r ∈ (2M,∞), t ∈ R, and M > 0 is a parameter
(mass of the black hole). Note that something wrong seems to be happening as
r → 2M . However, one can check that this is merely a problem of the coordinates,
and nothing terrible happens to the metric itself — although the subspace r = 2M
is actually physically interesting and corresponds to the black hole horizon. In fact,
there are other coordinates, such as Kruszkal–Szekeres coordinates, which extend
the Schwarzschild ones beyond the horizon and give an expression for g which is
nonsingular at the horizon. Still, one can show that there is a point hidden under
the horizon, where the curvature goes to infinity — this is a true singularity.

Theorem (Birkhoff). The Schwarzschild solution is the most general spherically
symmetric solution of Einstein equations in vacuum (i.e. with Λ = 0 and T = 0).

Assuming the presence of the electromagnetic field, i.e. allowing a nonzero Tµν
of a specific form, one has the more general Reissner–Nördstrom solution

g = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1
dr2 + r2dΩ2,

describing the charged black hole of mass M and electric charge Q.
Even more generally, one has the Kerr–Newman solution, describing a rotating

charged black hole with a mass.

10.3. Cosmological spacetimes. Observational data suggests that on very large
scales our universe is, to a very good approximation, spatially homogeneous and
isotropic. The most general such metric is the FLRW (Friedmann–Lemâıtre–
Robertson–Walker) metric

g = −dt2 + a2(t)(dr2 + S2(r)dΩ2), S(r) =


sin r

r

sinh r

the three options corresponding to a spatially spherical, flat, and hyperbolic uni-
verse, respectively. We see that this metric has only one parameter a(t), depending
on a single variable. Plugging this into Einstein equations (with a suitable choice
of matter content and Λ) we obtain the Friedmann equations for the parameter a
and the matter parameters.

11. Gravitational waves

Let us now look at perturbation of the flat Minkowski metric. Starting with the
Minkowski spacetime M = M3,1, we perturb the metric to

gµν = ηµν + hµν ,

with hµν very small.

Exercise. Show that the Ricci tensor takes the form

Rµν = − 1
2∂

ρ∂ρhµν − 1
2∂µ∂νh

ρ
ρ + ∂σ∂(µh

σ
ν) + O(h2),

where the indices are raised/lowered using the flat constant metric η. ◦
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Now note that after a change of coordinates the metric stays physically the same
but we can get a different expression for hµν . If the infinitesimal diffeomorphism
which performs this change of coordinates is given by a vector field ξ, we should
therefore consider the equivalence

h ∼ h+ εLξη, i.e. hµν ∼ hµν + 2ε∂(µξν).

Using this freedom, we can “fix a (harmonic/Lorenz) gauge”

∂µh
µ
ν = 1

2∂νh
ρ
ρ,

i.e. in each class of physically equivalent metric perturbations we choose a repre-
sentative h satisfying this condition.

Exercise. Show that, after imposing the harmonic gauge condition, the vacuum (i.e.
Λ = T = 0) Einstein equations Rµν = 0 reduce (up to O(h2)) to

∂ρ∂ρhµν = 0,

which we recognise as the wave equation. ◦
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