Symplectic reduction - exercises

Exercise 1. Cotangents as reduction

Let G be a compact Lie group acting on a manifold M with only one orbit type (meaning that the stabiliser is always conjugated to some fixed subgroup of G). Assume further that M / G is a manifold.
Show the existence of a canonical symplectomorphism

$$
T^{*}(M / G) \cong T^{*} M / / G
$$

where the symplectic quotient is carried over the zero coadjoint orbit.

Exercise 2. Heisenberg algebra

Let (V, ω) be a finite-dimensional symplectic vector space.
a) Show that the action of V on itself by translations is weakly Hamiltonian, but not Hamiltonian.

Define the Heisenberg group $\operatorname{Heis}(V)=V \oplus \mathbb{R}$ by the group law $(v, \alpha) .(w, \beta)=$ $\left(v+w, \alpha+\beta+\frac{1}{2} \omega(v, w)\right)$, where $v, w \in V$ and $\alpha, \beta \in \mathbb{R}$.
b) Deduce the Lie bracket of the Heisenberg algebra $\mathfrak{h e i s}(V)$. Make the link to the canonical commutation relations in quantum mechanics.
c) Show that the action of $\operatorname{Heis}(V)$ on V given by $(v, \alpha) \cdot w=v+w$ is Hamiltonian and compute its moment map.

d) Show that $\mathfrak{h e i s}_{3}$ can be realized by matrices of the form

$$
\left(\begin{array}{lll}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right)
$$

Exercise 3. Calogero-Moser system
Consider $\mathrm{SU}(n)$ acting on $T^{*} \mathfrak{s u}(n)$ in a diagonal way via the adjoint action.
a) Show that this action is Hamiltonian and compute the moment map.

Define $\mathcal{O}=\{X \in \mathfrak{s u}(n) \mid \exists q \in \mathbb{R}$ such that $\operatorname{rank}(X-q \mathrm{id}) \leq 1\}$.
b) Show that \mathcal{O} is a coadjoint orbit, using the identification $\mathfrak{s u}(n) \cong \mathfrak{s u}(n)^{*}$ given by the Killing form.
c) Show that $M=T^{*} \mathfrak{s u}(n) / / \mathcal{O} \mathrm{SU}(n)$ consists of pairs $(X, Y) \in \mathfrak{s u}(n) \oplus \mathfrak{s u}(n)$, where X is diagonal with entries $\left(x_{1}, \ldots, x_{n}\right)$ and Y is uniquely determined by its diagonal entries $\left(y_{1}, \ldots, y_{n}\right)$.
d) On M, consider the Hamiltonian given by $H(X, Y)=\operatorname{tr}\left(Y^{2}\right)$. Express H in terms of $\left(x_{i}, y_{i}\right)_{1 \leq i \leq n}$.
e) Show that the functions $(X, Y) \mapsto \operatorname{tr}\left(Y^{k}\right)$ for $k=2, \ldots, n$ Poisson commute. This proves that the Hamiltonian H on M defines an integrable system.

Reference: Book by Khesin-Wendt "Geometry of infinite-dimensional groups" (chapter I-3 and II-5.4), Springer, 2009.

