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1 Preface

This is the write up of a nano-course on an heuristic introduction to superge-
ometry given at the summer school MAPSS in July 2024 in Les Diablerets.
Apart from fuzzy definitions, if you find any severe mistakes, or worse, mis-
understandings, as well as typos—or you have an idea that would make this
lecture more accessible—please let me know!

∗donaldryoumansjr@gmail.com
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As for the course, it tries to convey the simple idea that many objects we
naturally come across in geometry and physics are bilinear of odd objects;
and that giving these oddities some more attention is well worth the time!

2 Motivation

Let us start with a curious observation:

Principal of taking square roots.(Kapranov [2])
It is useful to take square roots of familiar things.

This seems like a rather bold statement, after all taking square roots
always feels a bit unnatural. Let us therefore look at some motivating ex-
amples.

1. i2 = −1. The idea of a square root of −1 lead to complex analysis
and from there to a myriad of beautiful mathematics. And maybe we
could already stop here because this example clearly shows the power
of“taking a square root” of a familiar object.

2. Consider A a skew-symmetric matrix. Then detA = Pf(A)2 where
Pf(A) is the Pfaffian of A. Also in this case, the square root—the
Pfaffian—has exciting applications in mathematics and physics alike,
ranging from characteristic classes (for example, the Euler class of a
Rimannian manifold can be defined as the Pfaffian of its curvature) to
the theory of differential equations (Pfaffian systems).

3. Quantum mechanics: The probability of finding a particle in a specific
state is described by the square (of the modulus) of the wave function,
ρψ = |ψ|2, where ψ ∈ C is the wavefunction.

4. if (X, g) is a Riemannian manifold, then its space of differential forms
Ω•(X) admits an inner product (−,−)g. A natural operator to study
is the (Beltrami-)Laplacian ∆g of X. It can be written as

∆g = [d, d∗]

where d denotes the exterior derivative (de Rham differential) of X
and d∗ its dual with respect to the inner product (−,−)g.

5. Let A be a gauge field (connection on some principal G-bundle) and
∇A the associated covariant derivative. Then the field strength FA, is
the square of ∇A

FA = ∇2
A.
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There is one more example, which we shall use as the main motivation of
this text, at least from the point of view of physics, namely supersymmetry.
Instead of defining what we mean by supersymmetry right away, let us study
an example.

The Quantum Bosonic Harmonic Oscillator The quantum harmonic
oscillator can be described in terms of the algebra freely generated by two
generators subject to the condition that their commutator is 1:

AB = C[a, a∗]/{[a, a∗] = 1, [a, a] = [a∗, a∗] = 0} (1)

where
[a, a∗] = aa∗ − a∗a.

The generator a is usually called a bosonic annihilation operator, a∗ a
bosonic creation operator. The name comes from the lowest weight rep-
resentation of A. Let |0⟩ be a lowest weight such that a|0⟩ = 0. We now
“excite states” (defining a new state) by acting with the creation operator
a∗ on the vacuum: |1⟩ = a∗|0⟩. Then we can construct a bosonic Hilbert
space (the Fock space) by iteratively acting with a∗

HB =

{
|n⟩ = (a∗)n√

n
|0⟩ | n ∈ N

}
(2)

One defines a number operator

NB = a∗a (3)

which is diagonal in the basis |n⟩, namely NB|n⟩ = n|n⟩.

Exercise 1
Show that

[NB, a] = −a , [N, a∗] = a∗

The Hamiltonian of the system is expressed in terms of N as follows

HB = ℏωB
(
N +

1

2

)
, (4)

which is then also diagonal in the basis |n⟩

HB|n⟩ = En|n⟩ , En = ℏωB
(
n+

1

2

)
(5)

Remark 1. The algebra generated by the bosonic creation and annihilation
operators a∗ and a admits a nice realization as the Weyl algebra

W = C[∂x, x] (6)
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generated by a = ∂x and a∗ = x. Indeed, one directly finds [∂x, x] = 1.
The bosonic Fock space is then simply given by complex polynomial in one
variable x

HB = C[x]. (7)

The number operator takes the form N = x∂x—the Euler vector field—and
simply extracts the degree. Therefore, the basis |n⟩ diagonalizing N is given
by the monomials xn, with the vacuum state being just |0⟩ = 1. ◁

The Quantum Fermionic Harmonic Oscillator Instead of the com-
mutation relation

aa∗ − a∗a = 1

we could be bold and study what happens if we flip the sign. As we will see,
flipping signs is not so innocent as it might seem, after all 1 + 1 and 1 − 1
differ drastically.

Let us thus consider the free algebra generated by generators c and c∗

subject to the following relation

{c, c∗} = cc∗ + c∗c = 1 , {c, c} = {c∗, c∗} = 0. (8)

Notice that both, c and c∗ are nilpotent elements:

0 = {c, c} = 2c2 = 0 =⇒ c2 = 0 (9)

and similar for c∗. The nil potency of c and c∗ feels a bit odd if one has
not worked with zero-divisors before. We shall therefore refer to such vari-
ables as odd or interchangeably as fermionic. The fermionic creation and
annihilation algebra is therefore defined by

AF = C[c, c∗]/{{c, c∗} = 1, {c, c} = {c∗, c∗} = 0} (10)

Let us again consider the lowest weight representation. Let |0⟩ be the lowest
weight, i.e. c|0⟩ = 0. In analogy to before we may define the first excited
state by |1⟩ = c∗|0⟩. However, this time we see that the next excited state
does not exist

c|1⟩ = c2|0⟩ = 0. (11)

So, fermions do not like each other much . . .
The fermionic Hilbert space (Fock space) is finite dimensional and in

this case has just two elements

HF = {|0⟩, |1⟩}. (12)

Analogously to the bosonic oscillator, one defines a number operator

NF = c∗c (13)
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which measures the occupation of the state

NF |0⟩ = 0 , N |1⟩ = 1|1⟩. (14)

Exercise 2
Show that

[NF , c] = −c , [NF , c
∗] = c∗

The Hamiltonian of the system is defined by

HF = ℏωF
(
NF −

1

2

)
(15)

Remark 2. Nilpotent elements of an algebra are not so scary as they might
seem at first. To demystify them a bit, consider the following realization
the fermionic creation and annihilation algebra in term of 2× 2 matrices:

c =

(
0 1
0 0

)
, c∗ =

(
0 0
1 0

)
. (16)

It is then not hard to show that

c2 = (c∗)2 =

(
0 0
0 0

)
, {c, c∗} = cc∗ + c∗c =

(
1 0
0 1

)
. (17)

In this realization, c, c∗ act on R2 and

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

Exercise 3
Compute the number operator N and the Hamiltonian H.

◁

The Supersymmetric Quantum Harmonic Oscillator Wementioned
in the beginning that supersymmetry is supposed to be a symmetry between
bosons and fermions. The idea now is simple, let’s try to combine the bosonic
and fermionic harmonic oscillator!

Consider thus the algebra generated by bosonic operators a, a∗ and
fermionic operators c, c∗ subject to the bosonic and fermionic commutator
relations we have studied before

A = AB ⊗AF (18)
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where we recall the bosonic and fermionic commutator relations

[a, a∗] = 1 , {c, c∗} = 1 , c2 = (c∗)2 = 0. (19)

We again study the lowest weight representation of A. As before, we denote
the lowest wight—the vacuum—by |0⟩ which is annihilated by both a and
c: a|0⟩ = c|0⟩ = 0. The Fock space of the model is given by

H = HB ⊗HF = {|nB, nF ⟩ | nB = 0, 1, 2, . . . , nF = 0, 1} (20)

where we usually abbreviate |0, 0⟩ = |0⟩. The Hamiltonian is simply the
sum of the bosonic and fermionic Hamiltonians

H = HB +HF = ℏωB
(
NB +

1

2

)
+ ℏωF

(
NF −−

1

2

)
(21)

where the number operators NB ≡ NB ⊗ id and NF ≡ id⊗NF only act on
the bosonic factor HB and the fermionic factor HF respectively.

Now, an interesting phenomena happens, if we consider the case where
the frequencies are the same, ωB = ωF = ω. In this case, the Hamiltonian
simplifies to

H = ℏω(NB +NF ) (22)

which leads to a number of interesting observations:

(i) All energies are positive (assuming ℏω > 0)

E(nB, nF ) = ℏω(nB + nF ) ≥ 0, (23)

where nB ∈ N0 and nF = 0, 1.

(ii) States with non-zero energy come in pairs of opposite parities as E(nB+
1, 0) = E(nB, 1).

(iii) There exists a symmetry between these states. Let

Q =
√
ℏω(a⊗ c∗) ,

√
ℏω(a∗ ⊗ c) (24)

Exercise 4
Show that

a) Q2 = (Q∗)2 = 0

b) H = {Q,Q∗}

c) [Q,H] = [Q∗, H] = 0

The symmetry generated by Q and Q∗ is known as supersymmetry and in-
deed relates bosons to fermions. In particular, since Q and Q∗ commute
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with the Hamiltonian, they preserve the energy eigenspaces.

To end this motivational section, let us recall the two main points we
learned so far:

1. It is interesting to consider square roots, as they often lead to new and
interesting mathematical structures.

2. Just as square roots, nilpotent elements can lead to interesting new
phenomena.

In the following we will explore the idea of nilpotent elements from the
mathematical point of view, where we will focus on the algebra of functions
on some space. If the ring of functions on a manifold admits nilpotent ele-
ments, we will call them supermanifolds and we stumbled without noticing
into the realm of super geometry. Ultimately, these considerations will lead
us to a first construction of supersymmetry in physics.

3 Before Supermanifolds

3.1 Super Vector Spaces

Before we can speak about supermanifolds, we need to lay down the foun-
dations.

Definition 3.1. A super vector space is a Z/2Z-graded vector space, i.e. a
vector space V together with a fixed decomposition

V = V0 ⊕ V1. (25)

Elements of V0 are called even (bosonic); elements of V1 are called odd
(fermionic).

If dimV0 = p and dimV1 = q, we set dimV = p | q.

Definition 3.2. We define a parity map

|·| : V → Z/2Z (26)

by its action on homogeneous elements

|v| =

{
0 if v ∈ V0
1 if v ∈ V1

(27)

Definition 3.3. If V,W are super vector spaces, a homomorphism between
V and W is a linear map f : V → W preserving the grading, i.e. such that
f(Vi) ⊂Wi. We denote the space of all homomorphisms by Hom(V,W ).

Let us look at some examples.
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1. Rp|q ≡ Rp ⊕Rq. We call coordinates xi on Rp even coordinates and θi

on Rq odd coordinates.

2. If V andW are super vector spaces, then Hom(V,W ) is a super vector
space.

Exercise 5
Show that f ∈ Hom(V,W ) is equivalent to a pair of maps
(f0, f1) such that f0(V1) = f1(V0) = 0.

3. Let V be an ordinary vector space, then V defines a super vector space
with V ≡ V0. Then one defines the super vector space ΠV by V ≡ V1.
The map Π: V → V which simply shifts the parity is known as the
parity reversal map.

4. Let V be an ordinary vector space. Then Λ•V = ΛevV ⊕ ΛoddV .

Notice that Λ•V is actually Z-graded: Λ•V =
⊕

k Λ
kV . This Z-

grading reduces to the “super”-terminology when considering it mod-
ulo 2.

3.2 Functions and Integrals

In understanding supermanifolds, one important tool is to understand its
ring of functions. But before we walk we might want to try to crawl and
hence we will still focus on super vector spaces in this section.

Definition 3.4. Let V = V0 ⊕ V1 be a super vector space. Functions on V
are defined by their Taylor expansion in the odd variables θ ∈ V1, i.e.

C∞(V ) = C∞(V0)⊗ Λ•V1∗ (28)

Assuming coordinates xiinV0 and θi ∈ V1 function f ∈ C∞(V ) is there-
fore of the form

f(x, θ) = f0(x) + fi(x)θ
i + fij(x)θ

iθj + . . . (29)

where the coefficients f0(x), fi(x), fij(x) etc. are functions. In particular,
the fij(x), fijk(x) etc. are completely antisymmetric by the nature of the
commutation relations θiθj = −θjθi of Λ•V ∗

1 .
In particular, if V is an ordinary vector space, then

C∞(ΠV ) = Λ•V ∗. (30)

Now that we have a definition of functions on a super vector space, in
order to have a notion of some kind of “super calculus”, we would like to
differentiate and integrate them.
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Differentiation is easy—we simply take derivatives with respect to the
odd variables θi in the same way we take derivatives with respect to the
even variables xi. However, due to the anti-commuting nature of the θi we
actually have to be more careful and define a left as well as a right derivative.

Definition 3.5. Let V = V0 ⊕ V1 be a super vector space with even coor-
dinates xi and odd coordinates θi. The left derivative with respect to θi are
defined on monomials in θj by

−→
∂

∂θi
θj = δji (31)

and is extended to C∞(V ) as a (super)derivation, i.e.

−→
∂

∂θi
(
θjθk

)
= δji θ

k − δki θj (32)

Analogously, the right derivative with respect to θi are defined on monomials
in θj by

θj
←−
∂

∂θi
= δji (33)

and is extended to C∞(V ) as a (super)derivation, i.e.

(
θjθk

) ←−∂
∂θi

= δki θ
j − δji θ

k (34)

Let us now turn our attention to integration. But what should an integral
over a super vector space be? Notice that we have handled the odd variables
rather algebraically, and we shall continue to do so.

Recall that if V is an ordinary integral, we can think of the integral as
a map ∫

V
· dx : C∞(V )→ R (35)

which is

(i) Linear∫
V
af(x)+g(x)dx = a

∫
V
f(x)dx+

∫
V
g(x)dx, a ∈ R, f, g ∈ C∞(V ).

(ii) Translation invariant∫
V
f(x+ y)dx =

∫
V
f(x)dx.

(iii) Total derivatives are mapped to zero∫
V
f ′(x)dx = 0.
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The idea is now to define the integral over odd variables in a similar way,
namely by a linear, translational invariant map which sends total derivatives
to zero.

Definition 3.6. Let V be an ordinary one-dimensional vector space and
ΠV be the parity shifted super vector space with odd coordinates θ. We
define the Grassmann-Berezin integral∫

ΠV
· dθ : C∞(ΠV ) = Λ•V ∗ → R (36)

by ∫
ΠV

dθ = 0 ,

∫
θdθ = 1. (37)

Exercise 6
Verify the following properties

a) Linearity∫
ΠV

af(θ) + g(θ)dθ = a

∫
ΠV

f(θ)dθ +

∫
ΠV

g(θ)dθ.

b) Translation invariance∫
ΠV

f(θ + θ′) =

∫
ΠV

f(θ)dθ.

c) Total derivatives are mapped to zero∫
ΠV

−→
∂ f(θ)

∂θ
dθ =

∫
ΠV

f(θ)

←−
∂

∂θ
dθ = 0.

Hint: Any function f ∈ C∞(ΠV ) is of the form f(θ) = f0 + f1θ.

The generalization to multiple odd variables is straightforward

Definition 3.7. Let V be an ordinary vector space of dimension n. The
Grassmann-Berezin integral over ΠV , with coordinates θi is defined by the
relations∫

ΠV
θn . . . θ̂i . . . θ1dθ1 . . . dθn = 0 ,

∫
ΠV

θn . . . θ1dθ1 . . . dθn = 1 (38)

where θ̂i means omission of the i-th factor θi.
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Remark 3. In laymen’s terms, the Grassmann-Berezin integral selects (up
to a sign) the top-part f12...n of a function

f(θ) = f0 + fiθ
i + fijθ

iθj + · · ·+ f12...nθ
1 . . . θn

◁

The last thing we want to look at is how the “measure” dθ1 . . . dθn trans-
forms under a coordinate transformation.

Exercise 7
Verify the following transformation behavior under a change of vari-
ables

a) Let θ = Jξ, θ, ξ, J ∈ R odd, then dθ = dξ
J .

b) Let θi = J ijξ
j , then dθ1 . . . dθn = dξ1...dξn

det J .

Hint: express f1...n as a Grassmann-Berezin integral once over θi and
once over ξi.

Write about Berezinian?

3.3 Super Algebras

Recall that for a super vector space V = V0 + V1 its space of functions was
given by

C∞(V ) = C∞(V0)⊗ Λ•V ∗
1 (39)

Now, C∞(V ) inherits the structure of a super vector space with

C∞(V )− 0 = C∞(V0)⊗ ΛevV ∗
1 , C∞(V )0 = C∞(V0)⊗ ΛoddV ∗

1 . (40)

But just as the (vector) space of functions on an ordinary vector space admits
a multiplication turning it into an algebra, so does the space of functions
on a super vector space, turning it into a superalgebra The multiplication
of C∞(V ) is given by ordinary point-wise multiplication in C∞(V0) together
with the wedge product in C∞(V1). If f(x), g(x) ∈ C∞(V0) and α, β ∈ Λ•V ∗

1 ,
then

· : C∞(V )× C∞(V )→ C∞(V )(
f(x)α, g(x)β

)
7→ f(x)α · g(x)β = f(x)g(x)α ∧ β.

(41)

Note that this multiplication is associative, preserves the grading

|f(x)α · g(x)β| = |f(x)αβ|+ |g(x)β| (42)
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and satisfies

f(x)α · g(x)β = (−1)|f(x)α||g(x)β|g(x)β · f(x)α. (43)

Such an algebra is known as a (super-)commutative superalgebra. In general
we define a superalgebra as follows

Definition 3.8. An associative superalgebra (over R) is an associative Z/2Z-
graded algebra A = A0 + A1 whose multiplication · : A × A → A preserves
the grading, that is for homogeneous elements a, b ∈ A, |a · b| = |a|+ |b|.

A superalgebra A is called super-commutative if a · b = (−1)|a||b|b · a.

Let us look at some examples.

1. An ordinary commutative algebra A (like the algebra of functions on a
smooth manifold) defines a superalgebra concentrated in even degrees:
A ≡ A0.

2. The Grassmann (exterior) algebra of an ordinary vector space V de-
fines a super-commutative superalgebra

A = (Λ•V,∧)

3. The Grassmann algebra of the dual V ∗ of an ordinary vector space V ∗

defines the super-commutative superalgebra

A = (Λ•V ∗,∧) = R[θ1, . . . , θn]/{θiθj = −θiθj}

4. A super Lie algebra g = g0 ⊕ g1 is defined by a super vector space
together with a (super) Lie bracket [·, ·] : g × g → g such that for
homogeneous elements x, y, z ∈ g the following conditions hold

(i) symmetry: [x, y] = −(−1)|x||y|[y, x]
(ii) The bracket has degree 0: |[x, y]| = |x|+ |y|
(iii) Jacobi identity: [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]

Exercise 8
Let g be a super Lie algebra. Show that the Jacobi identity is equiv-
alent to

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0
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4 Towards Supermanifolds

4.1 A Heuristic Definition

The question what a supermanifold precisely is can be quite intricate and we
shall in the following give a rather heuristic definition, a working-definition
so to speak. In all what follows we will be guided by the geometers truth —
think globally, work locally.

Definition 4.1. A supermanifold M of dimension n|m is locally modeled
on Rn|m and then patched together to a global object.

We thus treat supermanifolds just as ordinary manifolds, which are lo-
cally modeled by Rn by studying their local models. When we say locally
modeled by Rn|m we mean that there exists the notion of local coordinates
which now can be even or odd.

An other approach, which complements our first working-definition, is
to define a supermanifold via its structure sheaf, i.e. its ring of functions.

Definition 4.2. A supermanifold M of dimension n|m is a locally ringed
space (M,OM ) which is locally isomorphic to (U, C∞(U)⊗ΛV ∗) for U ⊂ Rn
open and V some m-dimensional vector space.

Notice that
C∞(U)⊗ ∧V ∗ = C∞(U ×ΠV ) (44)

such that we can think of the supermanifold M locally as U × ΠV . But
this is just the same as saying that M is locally modeled on Rn|n and
hence coincides with our intuitive picture given in Definition 4.1. However,
Definition 4.2 is more general.

To really grasp what is going on, it is best to look at examples.

4.2 What’s the Fuzz all about?

Definition 4.2 is very algebraic geometric in nature, as it suggests that we
should understand a supermanifold by its ring of functions. Let us see how
one could approach such an endeavor in practice. We will follow the excel-
lent exposition of Freed [1].

Suppose P is a supermanifold whose ring of functions is given by

C∞(P) = R[θ]/(θ2), (45)

the ring of polynomials generated by one generator θ subject to the condition
θ2 = 0. We thus think of θ as an odd variable.

Now, given any map f : M → N between two manifolds, super or not,
we naturally get a map C∞(N) → C∞(M) (assigning a manifold to its
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ring of functions is just a contravariant functor). This is rather intuitive,
for if f : M → N and ϕ ∈ C∞(N), we obtain a map ϕ ◦ f ∈ C∞(M) by
composition.

Let M be an ordinary smooth manifold. As we have just recalled,a map
f : P → M induces a map C∞(M) → C∞(P) = R[θ]/(θ2). Any such map
necessarily looks as follows

f 7→ A(f) +B(f)θ (46)

Now, by functoriality, this assignment is a algebra homomorphism, that is
for two maps f, g : P →M

fg 7→ A(fg) +B(fg)θ
!
=

(
A(f) +B(f)θ

)(
A(g) +B(g)θ

)
(47)

expanding the RHS we find

A(fg) +B(fg)θ
!
= A(f)A(g) +

(
A(f)B(g) +B(f)A(g)

)
θ. (48)

Since A(f) ∈ C∞(P)0 = R, that A defines an algebra homomorphism

A : C∞(M)→ R. (49)

All such homomorphisms are given by evaluation maps with respect to some
point m ∈ M and hence A = evm : f 7→ f(m). It then follows that once we
identify A with evm for some m ∈ M , B = Bm must be a derivation over
functions on M , namely

Bm(fg) = A(f)Bm(g) +Bm(f)A(g) = f(m)Bm(g) +Bm(f)g(m). (50)

Therefore, we can identify Bm with a tangent vector in TmM . Hence the
space of maps P →M can be thought of as the tangent bundle of M

Maps(P,M) ∼= TM. (51)

This is a remarkable observation. It suggests that points in our supermani-
fold P are equivalent to the data of an abstract point and a direction. So,
P looks like a abstract point surrounded by a cloud of directions - a cloud
of “fuzz” [1] and we will henceforth refer to it as the fuzzy point :

•
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But what about the converse, i.e. what about maps into P? Suppose that
we are given a map f : M → P. Following the above strategy, we ought to
study the resulting map C∞(P)→ C∞(M). Since C∞(M) does not have any
nilpotent elements, any such map must map θ to the constant zero function.
This means that any functionM → P maps the whole ofM to a single point
in P — the geometric point of P. Put otherwise: ordinary objects cannot
probe fuzz. Fuzz needs to be probed by fuzz. Hence, in order to really probe
a supermanifold, we have to consider maps from a supermanifoldM into P.
So how to understand maps M → P then? Well, if we believe the previous
ideas, we need to add some fuzz to M to turn it into a supermanifold. For
example, we could simply consider the supermanifold

M × S

for some supermanifold S and then consider maps

M × S → P. (52)

We call such maps parametrized by S. If M is just a point, we would call
the map {pt} × S → P an S-point of P.

4.3 Three versions of ΠTX

Now that we gained first experience with supermanifolds, let us consider an
example where we have more than just one geometric point. A very nice
example is the parity shifted tangent bundle of ΠTX of a smooth manifold
X. Below, we will give three viewpoints on ΠTX. Our first approach in
understanding ΠTX comes from our intuitive definition of supermanifolds,
i.e. by gluing local charts. Our second approach will be by studying the
functions of ΠTX. Finally, we will investigate ΠTX from the point of view
of parametrized maps R0|1 → X.

4.3.1 Gluing Local Charts

Recall that locally, the tangent space TpX of an n-dimensional smooth man-
ifold X at a point p ∈ X is given by the collection of pairs

TpX = {(p, v) | v ∈ Rn}. (53)

and for any open chart U of X centered at p, we can identify

TUX = U × Rn (54)

The local tangent spaces TUX are then glued together according to the
following rule: if x denotes a local coordinate on U , and x̃ another coordinate
on Ũ , and on the overlap U∩Ũ we have x̃ = x̃(x), then the transition function
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from one coordinate patch to the other is given by the Jacobian ∂x̃i(x)
∂xj

and
we glue the elements in the fiber according to

ṽi =
∂x̃i

∂xj
vj (55)

Recall that the parity reversing operator Π simply shifts the parity of a
vector and hence we will define locally

ΠTpX = {(p, ψ) | ψ ∈ ΠRn = R0|n}. (56)

and over an open chart U

ΠTUX = U × R0|n. (57)

To define ΠTX globally, we now glue the (odd) fibers according to the gluing
rule we had before, namely if x is a local coordinate in U x̃ is a coordinate
in Ũ , and on the overlap U ∩ Ũ we can express x̃ = x̃(x), then we glue the
fibers according to

ψ̃i =
∂x̃i

∂xj
ψj . (58)

4.3.2 Functions on ΠTX

Let us know look at the functions on ΠTX. We start with the local model.
Let U be an open coordinate chart of X centered around a point p ∈ X. By
our considerations in the previous section, ΠTUX = U ×R0|n and therefore

C∞(ΠTUX) = C∞(U × R0|n) = C∞(U)⊗ Λ•[ψ1, . . . , ψn] (59)

where Λ•[ψ1, . . . , ψn] denotes the exterior algebra over R generated by ψ1, . . . , ψn.
A function on ΠTUX is therefore of the form

α(x, ψ) =
∑
k

∑
i1<i2<···<ik

αi1...ik(x)ψ
i1 . . . ψik (60)

Now, let again x be a coordinate on U , x̃ a coordinate on Ũ and x̃ = x̃(x)
on the overlap U ∩ Ũ , then

α(x̃(x), ψ̃) =
∑
k

∑
i1<i2<···<ik

αi1...ik(x̃)ψ̃
i1 . . . ψ̃ik

=
∑
k

∑
i1<···<ik

∑
j1<···<jk

αi1...ik(x̃)
∂x̃i1

∂xj1
. . .

∂x̃ik

∂xjk
ψj1 . . . ψjk

=
∑
k

∑
j1<···<jk

αi1...ik(x)ψ
i1 . . . ψik

(61)

16



where

αi1...ik(x) =
∑
k

∑
i1<···<ik

αi1...ik(x̃)
∂x̃i1

∂xj1
. . .

∂x̃ik

∂xjk
. (62)

But this is just the transformation behavior of a differential form on X! We
can therefore conclude that

C∞(ΠTX) ∼= Ω•(X) (63)

where the isomorphism is given by the local assignment

ψi 7→ dxi (64)

4.3.3 The Space of Odd Curves in X

Our third approach to ΠTX is in spirit quite similar to how we understood
the fuzzy point. This time, however, we want to probe ΠTX by maps into
ΠTX.

Proposition 4.1. A map Y → ΠTX is the same as a parametrized map
R0|1 × Y → X, i.e. a parametrized odd curve in X.

Proof. Consider a map x : R0|1 × Y → X. Let θ be the odd coordinate of
R0|1 and y a local coordinate on Y, then locally

xi(θ, y) = xi(y) + θψi(y) (65)

where xi(y) denotes a local coordinate on X. Moreover, if x̃(x) is any other
local coordinate on X then

x̃i(x(y, θ) = x̃i(x(y) + θψ) = x̃i(x(y)) + θ
∂x̃i

∂xj
ψj = x̃i(y) + θψ̃i(y) (66)

where

ψ̃i(y) =
∂x̃i

∂xj
ψj . (67)

But this is just the transformation behavior of an odd vector! Hence, by
assigning

xi(y) + θψi(y) 7→ (xi(y), ψi(y)) (68)

we can identify
{R0|1 × Y → X} ∼= {Y → ΠTX} (69)

From now on, we will drop the parametrization and simply think of maps
R0|1 → X as elements of ΠTX.
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Remark 4. This is of course not quite true. We have already seen that we
can only probe fuzz with fuzz and an ordinary smooth manifold is not very
fuzzy. What we should have in mind is the simplest possible supermanifold
Y parametrizing our map. Intuitively, we would like to take Y = {pt} just
a point since formally we would then indeed obtain

{R0|1 × {pt} → X} = {R0|1 → X}.

But Y needs to be super and thus the simplest thing we could do is consider
the super point Y = R0|1. ◁

So what is the advantage of viewing ΠTX as the space of odd curves
R0|1 → X? Well, for once maps R0|1 → X inherit an action of Diff(R0|1.
And, as we will see shortly, this has marvelous consequences.

But first, let us briefly say what we mean by Diff(R0|1). We simply mean
the automorphism group of R0|1. Any (parametrized1) map R0|1 → R0|1 is
necessarily of the form

aθ + β (70)

for a even and β odd. This means that we can identify

Maps(R0|1,R0|1) = R1|1 (71)

and Diff(R0|1) are just invertible maps.

Exercise 9
Show that a map aθ + β is invertible if and only if a ∈ R∗. Conclude
that Diff(R0|1) = R∗ × R0|1 ⊂ R1|1 is generated by the two vector
fields

∂θ , θ∂θ

A diffeomorphism ϕ(θ) = aθ+ β ∈ Diff(R0|1) acts on a map xi + θψi by

ϕ : xi + θψi 7→ xi + (aθ + β)ψi (72)

that is

ϕ :

{
xi 7→ xi + βψi

ψi 7→ aψi
(73)

Hence, the action of Diff(R0|1) on the space of odd curves R0|1 → X is
generated by the vector fields

d = ψi
∂

∂xi
, E = ψi

∂

∂ψi
(74)

1We will be sloppy and do not write the parametrization explicitly.
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satisfying the commutation relations

d2 =
1

2
[d, d] = 0 , [E, d] = d. (75)

Observe in particular that d is odd, i.e. augments the parity by 1. We can
give a geometric interpretation to both vector fields: First, observe that
X(ΠTX) = Der(C∞(ΠTX)). Now, recall that C∞(ΠTX) ∼= Ω•(X) by
ψi 7→ dxi locally. With this observation we have d,E ∈ Der(Ω•(X)) and

d = dxi
∂

∂xi
, E = dxi

∂

∂(dxi)
. (76)

Therefore, the vector field d is nothing else then the de Rham differential
(exterior derivative) and E measures the (form) degree. Hence, by studying
ΠTX from the point of view of odd curves R0|1 → X, we see that there
exists natural vector fields d,E ∈ X(ΠTX) which endow (C∞(ΠTX), d, E)
with the structure of a cochain complex, namely a Z-grading, given by the
action of E, and a differential d squaring to zero. This observation is an
instance of a more general

Proposition 4.2 (Kontsevich). A supervector space V together with an
action of Diff(R0|1) is the same as the datum of a cochain complex (V •, d).
If Diff(R0|1) is generated by δ = ∂θ and E = θ∂θ, then the differential d is
induced by the action of δ and the grading is given by the action of E .

We want to end this section by mentioning another natural vector field
on ΠTX, namely if v ∈ X(X) is a vector field on X, then

ξv = vi(x)
∂

∂ψi
∈ X(ΠTX). (77)

Exercise 10

a) Argue that ξv is odd.

b) Compute the commutators [d, ξv] and [E, ξv]. What is the parity
of [d, ξv]?

c) What is the geometric interpretation of ξv and [d, ξv]?

19



Exercise 11 (*)
Consider X = G a compact connected Lie group. Consider the action
of right multiplication Rg : G → G sending h → hg. Then ωg =
(Rg−1)∗ : TgG→ TeG = g. Using ωg, we can trivialize TG, i.e. realize
TG = G× g globally.a

a) Show that if G is a matrix group, ωg = dgg−1 and consequently
dωg =

1
2 [ωg, ωg]

b) Argue that we can use ωg to trivialize ΠTG = G × Πg. Give an
example of local coordinates.

c) What is C∞(G×Πg)?

d) Compute d as a derivation of C∞(G×Πg).

aNote that this trivialization could be done equally well if we would have chosen
left multiplication Lg : h 7→ gh instead of Rg. The trivialization is hence not
canonical.

5 Towards Supersymmetry

5.1 The N = 1 Supersymmetric Model

Before we talk about supersymmetry, let us briefly recall what one under-
stands under a Lagrangian field theory.

A Lagrangian field theory is given by the following data

• a spacetime Σ (source)

• a target space X (usually a smooth Riemannian manifold)

• a space of field F = Maps(Σ, X)

• an action functional S ∈ C∞(F)

The action functional is usually not completely arbitrary but subject to
certain constraints. For example we usually want S to be invariant under
the actions of the symmetry group of Σ (e.g. the Poincaré group if Σ is
Riemannian). Once we are equipped with such an action functional, the next
step is to look at its extremal points. The resulting equations are known
as the Euler-Lagrange (EL) equations of the theory and one often defines
the phase space of the theory as the solution space of the EL equations. A
solution of the EL equation describes a classical field.

Let us describe the Lagrangian field theory of a free particle moving on a
manifold. As our spacetime we simply take the real line R with coordinate t.
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We think of t as time. As our target space, we consider (X, g) a Riemannian
manifold. The space of fields are then paths x : R→ X, that is we set

F = Maps(R, X) (78)

Now, our space time R has a symmetry group given by the group structure
on R via addition, or translation. Finite translations are generated by the
vector field ∂t which induces a vector field on F which acts by

x(t) 7→ ẋ(t) (79)

If our target manifold X is curved, then ẋ describes the tangential map of
x, i.e. its linearization and therefore it takes values in the pullback bundle
x∗TX. We can then use the metric g on X to construct an action functional
X which is invariant under time translations (the symmetry group of our
spacetime):

S[x] =
1

2

∫
R
g(ẋ, ẋ)dt. (80)

Exercise 12
Show that the EL equation associated to (80) is given by the geodesic
equation

∇ẋẋ = 0

where ∇ is the Levi-Civita connection on defined by the metric g.

Classical particles thus move on geodesic of X and all such geodesics can
be uniquely described by a starting point x0 and a starting direction ẋ0. The
phase space of the free particle is therefore in one-to-one correspondence with
the tangent space TX. In fact, it is more useful to use the Riemannian metric
g on X to describe the phase space as the cotangent space T ∗X ∼=g TX.
This is done by simply going from velocities ẋµ to momenta pµ = gµν ẋ

ν .
To sum up, we describe a free particle by a map R → X and a theory

by choosing an action functional invariant under the induced action of the
symmetry group of the spacetime R. It seems now natural to add some fuzz,
i.e. to define the super particle by a map R1|1 → X.

Let us fix our target manifold to be a Riemannian manifold (X, g) as
before. Consider the super spacetime R1|1 with even coordinates t and odd
coordinates θ. The space of super fields is then simply the space of maps
from our super spacetime into our target manifold

F = Maps(R1|1, X). (81)

As before, let us determine the symmetry group of our spacetime. The super
vector space R1|1 admits the following group law

(t, θ)(t′, θ′) = (t+ t′ + θθ′, θ + θ′) (82)
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Exercise 13

a) Show that(82) is generated by either one of the vector fields

D = ∂θ − θ∂t , Q = ∂θ + θ∂t.

b) Show that D generates right translations and Q generates left
translations.

c) Show that D is a left-invariant and Q is right invariant.

d) Compute D2 = 1
2 [D,D].

Either of the vector fields D or Q generate the induced action of the
symmetry group of R0|1 on F . Let us focus on D. As usual, we define a
x(t, θ) ∈ F by its Taylor expansion in the odd variable θ

x(t, θ) = x(t) + θψ(t) (83)

and analogously to our discussion of ΠTX one can show that ψ takes values
in Πx∗TX. It follows that

D : x(t, θ) 7→ −θẋ(t) + ψ (84)

that is

D :

{
x(t) 7→ ψ(t)

ψ(t) 7→ −ẋ(t)
(85)

Likewise, one can show that

Q :

{
x(t) 7→ ψ(t)

ψ(t) 7→ ẋ(t)
(86)

Let us postpone the construction of an action functional invariant under
(85) to Exercise 14. For the time being, we focus on the result:

S[x, ψ] =
1

2

∫
R
g(ẋ, ẋ) + g(ψ,∇∂tψ)dt (87)

Exercise 14
Consider x(t, θ) ∈ F . Show that (87) is equivalent to

1

2

∫
R
g
(
ẋ(t, θ), Dx(t, θ)

)
dtdθ
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Exercise 15
Show that the EL equations of (87) are given by

∇∂t ẋ = R(ψ,ψ)ẋ , ∇∂tψ = 0

where R(ψ,ψ)ẋµ = Rµναβψ
αψβẋν .

Exercise 16
Show that (87) is invariant under (85).
Hint: Use the results of Exercise 15.

Remark 5. The phase space of the model governed by the action (87)
is the solution space of the EL equations computed in Exercise 15. This
solution space can be parametrized by the initial conditions (x0, ẋ0, ψ0) and
geometrically corresponds to the parity shifted pullback bundle

Πp∗TX → TX

over TX where p : TX → X denotes the canonical projection. ◁

Let us now shift our attention from the left invariant vector field D, to
the right invariant vector field Q. It is not hard to see that

Q2 =
1

2
[Q,Q] = ∂t (88)

so that Q is actually a square root of the generator of time translations!
But the generator of time translation, once we quantize the theory, should
be the Hamiltonian and hence we expect that the Hamiltonian of our quan-
tum theory is actually a square of two odd operators. Moreover, it follow
immediately from the (super) Jacobi identity that

[Q, ∂t] = 0 (89)

and hence we would expect that in the quantum theory Q is an odd symme-
try, as it commutes with the Hamiltonian. This symmetry is called a super
symmetry since it maps bosons (even) to fermions (odd) and vice versa, cf.
(86). In this context, the action (87) of the super particle is known as an
1D N = 1 supersymmetric model.

Exercise 17 (*)
Construct the 1D N = 2 supersymmetric model by considering the
super spacetime R1|2 with an even coordinates t and two odd coordi-
nates θ, θ̄. This model is called supresymmetric quantum mechanics.
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5.2 SUSY QM

Quantization of the model N =1 supersymmetric model is rather involved.
In general, quantization is an art form and we would like to not discuss it
here in detail. We may simply think of the quantization procedure as a black
box machinery which we can feed a classical theory and which gives us back
an associated Hilbert space and a Hamiltonian acting on said Hilber space.
The Hamiltonian is the quantization of the generator of time translations
and as we have seen it may happen that the theory admits an extra odd
symmetry (or more!) such that the Hamiltonian can be written as a square
of these symmetries. As we have seen way back in the motivation when
we studied the supersymmetric quantum harmonic oscillator, the fact that
the Hamiltonian is a square of odd operators has far reaching consequences.
And in this section we want to explore heuristically some of these conse-
quences. We will focus on the overall structure of supersymmetric quantum
mechanics, i.e. of the 1D N =2 supersymmetric model which we constructed
in Exercise 17, as defined by Witten [4].

Definition 5.1. Supersymmetric quantum mechanics is defined by the fol-
lowing data:

1. a graded Hilbert spaceH =
⊕

p≥0Hp which splits into a super Hilbertspace

H = Hev⊕Hodd via the reduction of the grading Z→ Z/2Z. Elements
of Hev are called bosons, elements of Hodd fermions

2. an odd (degree 1) vector field Q with dual Q∗ such that

(i) Q2 = 1
2 [Q,Q] = 0

(ii) H = 1
2 [Q,Q

∗]

Let us discuss first consequences of this definition. Firstly, one can show
that the H is positive

⟨ψ|H|ψ⟩ = 1

2
⟨ψ|[Q,Q∗]|ψ⟩ = 1

2
(∥Q|ψ⟩∥+ ∥Q∗|ψ⟩∥) ≥ 0. (90)

Secondly, since [H,Q] = 0, non-zero energy eigenstates must come in pairs
of opposite parity: If |n⟩ is an eigenstate of H with non-zero energy En ̸= 0,
then Q|n⟩ has also energy En but opposite parity. This allows us to conclude
that

dimHevn = dimHoddn (91)

whenever En ̸= 0. This observation allows us to compute the partition
function of the model purely in terms of the dimensions of the zero-energy
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eigenspaces

Z(β) = TrH

(
(−1)F e−βH

)
=

∑
n≥0

e−βEn

(
dimHevn − dimHoddn

)
= dimHev0 − dimHodd0

=
∑
p

(−1)p dimHp0

(92)

Here (−1)F denotes the parity operator which simply detects whether a
space is bosonic (even) or fermionic (odd). It acts by +1 on Hev and by −1
on Hodd. A remarkable fact about (92) is that the RHS is independent of
β! In physics, β is the inverse temperature and we may think of it as the
length of the “thermal circle”—the compactification of our naive spacetime.
Of importance is that β introduces a (geometric) scale. However, since the
result is independent of β the theory is independent of that scale! One says
that supersymmetric quantum mechanics is topological.

Now, since Q is a symmetry, we expect that it leaves physical states
invariant Q|ψ⟩phys = 0. Such states are called Q-closed. Since Q2 = 0, takes
of the form |ψ⟩ = Q|χ⟩ trivially satisfy this property. Such states are called
Q-exact. However, expectation values of physical observables involving those
states vanish: if Q(A) and B are two (physical) observables, then

⟨(QA)B⟩ ≡ TrQ(A)Be−βH = TrQ
(
ABe−βH

)
= 0 (93)

Since Q is a symmetry and hence TrQ(. . . ) = 0.
Hence, the space of physical states is equivalent to the cohomology of

Q, namely to Q-closed states modulo Q-exact states. Let us compute the
Q-cohomology in the basis of energy eigenstates. Suppose that |n⟩ is an
energy eigenstate of with energy En ̸ 0. Suppose further that Q|n⟩ = 0. It
then follows that

|n⟩ = 1

En
H|n⟩ = 1

2En
(QQ∗ +Q∗Q) |n⟩ = Q

(
1

2En
Q∗|n⟩

)
. (94)

Therefore, |n⟩ is Q-exact and hence zero in the Q-cohomology. That means
that the whole cohomology of Q is concentrated in the ground states

H•
Q ⊂ H0. (95)

Now, we know that H ≥ 0. It then follows that H|ψ⟩ = 0 if and only if
Q|ψ⟩ = Q∗|ψ⟩ = 0 which shows that

H•
Q ⊃ H0. (96)
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Since we are dealing with finite dimensional objects, we can conclude that
in fact

H•
Q
∼= H0. (97)

This allows a very elegant interpretation of the partition function in homo-
logical algebraic terms, namely as the Euler characteristic of the cochain
complex (H, Q)

Z =
∑
p≥0

(−1)p dimHp0 =
∑
p≥0

(−1)p dimHp
Q = χ(H, Q). (98)

To digest these abstract notions, let us end with some examples.

Example 1. Let (X, g) be a Riemannian manifold and H = Ω•(X), Q = d,
Q∗ = d∗. Then the Hamiltonian is given by the Laplacian on X: H =
1
2 [d, d

∗] = 1
2∆g. The space of ground states of degree p is thus given by the

kernel of the Laplacian acting on p-forms. It is known that this space is
isomorphic to the p-th de Rham cohomology of X

Hp0 = ker∆g|Ωp(X)
∼= Hp

dR (99)

Moreover, evoking another deep theorem, the partition function then calcu-
lates the Euler characteristic of X

Z =
∑
p

(−1)p dimHp
dR = χ(X) (100)

◀

Example 2. Let (X, g, f) be a Riemannian manifold together with a spec-
ified Morse function f ∈ C∞(X). Consider again the Hilbert space H =
Ω•(X). This time, define

Qs = e−sfdesf = d+ sdf∧

Q∗
s =

(
e−sfdesf

)∗
= d∗ + sι(grad f)

(101)

Exercise 18 1. Show that H•
Qs
∼= H•

Q0
and conclude that Zs =

χ(X) is independent of s.

2. Show that

Hs =
1

2
[Qs, Q

∗
s] =

1

2

(
∆+ s(Lgrad f + L∗grad f ) + s2∥grad f∥2g

)
.

The parameter s introduces a scale. However we have seen that the
partition function is independent of that scale. Hence we can study the
model perturbatively, namely in the limit s → ∞. Classically, the ground
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states (lowest energy eigenstates) now sit at the minima of the potential
term in the Hamiltonian V = s2∥grad f∥2f , i.e. at points where grad f = 0.
But these points are nothing else than the critical points of f !

It is a theorem that locally there exists coordinates yi centered around a
fixed critical point p such that f takes the form f(y) = f(p) +

∑
i λ

2
i (y

i)2 +
. . . , wheree λi are the eigenvalues of the Hessian Hessp(f) of f at p. In
these coordinates, and in the limit s→∞, the Hamiltonian as an operator
on H = Ω•(X) takes the form

Hs ∼ s
∑
i

− ∂2

(∂yi)2
+ λ2i (y

i)2 + λi[dy
i∧, ι(∂yi)] +O

(√
s
)

(102)

One can now construct zero-energy eigenstates as follows: Observe first that
it follows from the term linear in λi that if λi < 0, the presence of dyi in a
state kerψ ∈ Ω•(X) lowers the energy; if λi > 0, the presence of dyi raises
the energy. Hence, our lowest energy states |ψ⟩ should be a differential form
of degree µ(p) = |{λi < 0}|. The number µ(p) depends on the cricital point
p and is known as the Morse index of f at p, i.e.

|ψ(p)⟩ ∈ Ωµ(p)(X) (103)

Exercise 19
Define |ψi⟩ by the rule{

λi < 0 : |ψi⟩ = eλi(y
i)2/2dyi

λi > 0 : |ψi⟩ = e−λi(y
i)2/2

Show that |ψ⟩ = ∧i|ψi⟩ has zero-energy to leading order in s.

Exercise 19 shows that the pertrubative ground states defined above are
not necessarily zero-energy states. However, they have zero-energy in leading
order in s. In particular, this shows that since H•

Qs
= H•

Q0
, there exists at

least bk = dimHk
Q0

true (i.e. E = 0) ground states. Let mk the number
of perturbative ground states of form-degree k, or equivalently the number
of critical points of f if index µ(p) = k. From the above considerations it
follows that

bk ≤ mk. (104)

These inequalities are known as weak Morse inequalities. They are a mar-
velous set of inequalities in particular because they relate analytical prop-
erties of the function f with toplogical properties of the manifold X.

Remark 6. From a physical perspective, the phenomena that some pertur-
bative groundstates may have non-zero energy is related to the phenomena
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of quantum tunneling. If we are facing a classical theory with a degener-
ate ground state, then in its quantization the groundstate might split into a
true ground sate and a slightly excited state. A perturbative ground state as
discussed above can be such an excited state and thus might have non-zero
energy. ◁

◀

Example 3. Let X be a smooth manifold and G a Lie group acting on
X. The action of G is generated by vector fields va ∈ X(X) associated to
a basis ea of the Lie algebra g of G. These vector fields are known as the
fundamental vector fields, defined as follows: let x ∈ g and f ∈ C∞(X).
Consider the flow etx which acts (as an element in G) on X by etx ·x. Then
we define the fundamental vector field x♯ ∈ X(X) by

x♯(f) =
d

dt
f(etx · x)

∣∣
t=0

(105)

Then the va = e♯a.
Now, consider as Hilbert space

H = (W (g)⊗ Ω•(X))basic (106)

where
W (g) = Λ•g∗ ⊗ Sym• g (107)

is the Weyl algebra associated to g with odd ca generating the factor Λ•g∗

and even coordinates ua generating the factor Sym• g. Then take

Q = dW + ddR = −1

2
[c, c]a

∂

∂ca
− ua ∂

∂ca
+ dxµ

∂

∂xµ
(108)

and

Q∗ = ca
∂

∂ua
+ d∗ (109)

Exercise 20

a) Show that Q2 = 0

b) Show that H = 1
2

(
∆g + ua ∂

∂ua + ca ∂
∂ca

)
The cohomology of Q is known as the Weyl model of the equivariant

cohomology of X. Let us briefly sketch the idea of equivariant cohomology.
Ideally, the action of G on X is nice enough (most of all fixed-point free) so
that the orbit space X/G is again a smooth maniofld and we can compute its
de Rham cohomology. But sometimes, the G-action is not quite so nice and
X/G is not a smooth manifold. However, for a topologist, only the homotopy
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type of the topological space X/G matters. After all, the cohomology of a
topological manifold is a topological invariant. Hence, a topologist would
simply replace X by some other space X̃ which admits a nice G-action such
that on one hand XG = X̃/G is again smooth manifold and on the other
hand X̃/G and X/G are homotopically the same. It turns out that this can
be achieved by setting

X̃ = X × EG

where EG is the total space of the universal bundle over the classifying space
BG. Roughly speaking, EG is a G-bundle over a space BG calssifying
all principal G-bundles over X: Any G-bundle P → X over X can be
constructed as the pull back of EG → BG by some map f : X → BG.
Another important property is that EG is simply connected and therefore X
and X×EG have the same homotopy type. One then defines the equivariant
cohomology by

H•
G(X) = H•(XG).

Let us come back to our model. The summand ua ∂
∂ua + ca ∂

∂ca of the
Hamiltonian is the Euler vector field and simply counts the degree in u and
c. Hence, the ground states are given by

ker(H) ∼= ker∆g. (110)

Now, on one hand

Z =
∑
p

(−1)p dimHp(H, Q) =
∑
p

(−1)p dimHp((M × EG)/G) = χ(MG).

(111)
On the other hand

z =
∑
p

(−1)p dimHp0 =
∑
p

(−1)p dimker∆g|Ωp(X) =
∑
p

(−1)p dimHp
dR = χ(X)

(112)
and we can conclude that the Euler characteristic of XG is the same as the
Euler characteristic of X

χ(XG) = χ(X) (113)

◀
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