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1 Preface

This is the write up of a nano-course on an introduction to symplectic ge-
ometry given at the summer school MAPSS in July 2024 in Les Diablerets.
It was aimed at young mathematical physicists who find themselves at any
stage of their Master program. If you find any severe mistakes, or worse,
misunderstandings, as well as typos—or you have an idea that would make
this lecture more accessible—please let me know!

As for the course, it is a gentle introduction to the wonderful world
of symplectic geometry. Motivated by classical mechanics, we generalize
the concept of a phase space and develop the first bits of the theory of
symplectic vector spaces and symplectic manifolds. The main aim of these
lecture notes is the (linear) Darboux theorem which tells us that locally
all symplectic manifolds look alike. Put differently, there exist no local
symplectic invariants!

2 Motivation: Classical Mechanics

We start with Newton’s law

mẍ = F (x) (1)

∗donaldryoumansjr@gmail.com
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which describes the motion of a particle under the influence of a force F . The
most often encountered example in physics is probably the one-dimensional
harmonic oscillator, and we shall keep up with this tradition. Neglecting
friction and damping, the harmonic oscillator describes the motion of a
particle attached to a spring.

x

In this case, once we have stretch or squeeze the spring together, there exists
a force trying to put the particle back to its initial position:

F (x) = −mν2x (2)

We can recast Newton’s second order ODEs (1) into two first order ODEs

mẋ = p

ṗ = −ν2x
(3)

The above system of ODEs admits the following solution subject to the
initial conditions x(0) = x0, p(0) = p0

x(t) = x0 cos(νt) +
p0
mν

sin(νt),

p(t) = −mνx0 sin(νt) + p0 cos(νt)
(4)

The energy of the system is given by

E = Ekin + Epot =
p2

2m
+

mν2x2

2
= H(x, p) (5)

Note that with (4)

H(x(t), p(t)) =
p20
2m

+
mν2x20

2
= E0 = cst (6)

We now define the phase space M as the space of all positions and momenta
of the particle. A point in M is simply given by (x, p). In M , the motion
describe (4) ellipses

x2(t)

a2
+

p2(t)

b2
= 1, (7)
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where a2 = 2E0
mν2

and b2 = 2mE0.

x

p

Trajectories in Phase Space

In phase space, a solution (x(t), p(t)) to (3) is just an integral curve (flow)
of the vector field v(x, p) = p/m∂x − ν2x∂p on phase space.

The vector field v(p, x) is somewhat special: Note that the ODE (3)
could be written as

ẋ =
∂H(x, p)

∂p

ṗ = −∂H(x, p)

∂x

(8)

where H(x, p) = p2

2m + mν2x2

2 as before. So the vector field looks like a
“skew-gradient”!

Remark 1. Note that from (8), geometrically ẋ denotes the tangent vector
of of the curve x(t). But then p must transform oppositely to ẋ and hence
defines a co-vector. Thus the phase space M with coordinates (x, p) is
geometrically speaking a co-tangent space M = T ∗R where the base R
defines the position of the particle. ◁

Notice that we can write (8) in matrix notation as(
ẋ
ṗ

)
=

(
0 1

−1 0

)(∂H
∂x

∂H
∂p

)
(9)

The RHS looks like almost like the gradient of H, in fact it looks like some
sort of skew-version of it. Indeed, in components we have

ṁi = ωij ∂H

∂mj
≡ (sgradω H)i (10)

3



where m = (x, p) is a point in phase space. It turns out that not ωij but
rather its inverse ωij will play a fundamental role in all that follows. We
can think of ωij = εij the total anti-symmetric symbol (ε12 = 1 = −ε21) as
a constant, non-degenerate 2-form

ω = dx ∧ dp ∈ Λ2T ∗M (11)

Remark 2. Note that ω defines a map

ω♭ : TmM → T ∗
mM , v 7→ ω(v,−) (12)

so that
(ω♭)−1 : T ∗

mM → TmM. (13)

Exercise 1
Show that sgradω H can be defined by

ω(sgradω H,−) + dH = 0 (14)

◁

Moreover, for consider any other function f ∈ C∞(M) changes along a
solution (4) according to

df(p(t), x(t))

dt
=

∂f

∂x
ẋ+

∂f

∂p
ṗ =

∂f

∂x

∂H

∂p
− ∂f

∂p

∂H

∂x

=
∂f

∂mi
ωij ∂H

∂mj

(15)

For two functions f(x, p), g(x, p) on phase space define the bracket

{·, ·} : C∞(M)× C∞(M) → C∞(M)

f × g 7→ {f, g} = ∂ifω
ij∂jg = ω−1(df, dg)

(16)

Exercise 2
Verify the following properties of the bracket

a) anti-symmetry {f, g} = −{g, f}

b) Jacobi
{f, {g, h}} = {{f, g}, h}+ {g, {f, h}}

c) {f, g} = ω(sgradω g, sgradω f)

The bracket (16) is called a Poisson bracket and endowes the space of
functions C∞(M) with the structure of a Lie algebra. Moreover, notice that
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once we have fixed the Hamiltonian H, the time-evolution along constant
energy hypersurfaces of any other function1 f ∈ C∞(M) is given by the
Poisson bracket with H

df

dt
= {f,H}. (17)

We now come to an important theorem due to Liouville which states
that the motion of an ensemble behaves like the flow of an incompressible
fluid in phase space. Note that for a phase space T ∗Rn, the constant 2-form
ω =

∑
i dx

i ∧ dpi defines a volume form

dλ =
ωn

n!
=
∏
i

dxi ∧ dpi. (18)

This volume form is known as the Liouville volume form.

Theorem 2.1 (Liouville). The Liouville volume of phase space is preserved
along classical trajectories.

Figure 1: Evolution of Liouville volume of a subset U along classical trajec-
tories

Exercise 3
Show that for U ⊂ M ,

vol(U) =

∫
U
dλ

is invariant along classical trajectories.

We will come back to give a one-line proof of this theorem.
Let us end with some structural obserevations:

1Such a function is called an observable.
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1. The system’s motion is described by a motion in a phase space M =
T ∗X whose coordinates (x, p) are position and momenta respectively.

2. The phase spaceM is equipped with an extra structure, a non-degenerate,
anti-symmetric matrix ωij which we use to define a “gradient”

sgradω f i = ωij∂jf

for any function f ∈ C∞(M).

3. The system is defined dy the datum (M,ω,H) where H ∈ C∞(M) is
known as the Hamiltonian. The motion of a particle whose energy
is given by H is defined by the ω-gradient flow of H, namely by the
Hamilton equations

ṁ = sgradω H, m = (x, p)

4. The evolution of any other observable f ∈ C∞(M) is given by the
Poisson bracket with H

df

dt
= {f,H} = ∂ifω

ij∂jH

which means in particular that the energy is conserved (constant)
along the phase space trajectories (generated by H)

dH

dt
= {H,H} = 0

5. Louville’s theorem implies that the volume volω(x, p) =
1
2ωijdm

i∧dmj

is preserved along the Hamiltonian flow.

As it turns out, the structural observations above are a special instance
of what is known as a symplectic (linear) space. In the following we will
consider its basic definitions and some of its interesting consequences.

3 Symplectic Linear Geometry

We first consider the linear case.
Let V be a finite dimensional vector space over R and ω ∈ Λ2V ∗, i.e.

ω : V × V → R, bilinear, skew-symmetric. (19)

And let
ker(ω) = {v ∈ V | ∀u ∈ V : ω(v, u) = 0}.

Definition 3.1. The pair (V, ω) is called symplectic if ker(ω) = 0, i.e. if ω
is non-degenerate.
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Remark 3 (!). We think of ω as a constant 2-form on V , namely ω ∈
Ω2(V ). ◁

Note that ω defines a map

ω♭ : V → V ∗

v 7→ ω(v, ·)
(20)

Proposition 3.1. (V, ω) is symplectic iff ω♭ is an isomorphism.

Exercise 4
Prove Proposition 3.1

Remark 4. Since we are working in finite dimensions, (V ∗)∗ = V . Let
π ∈ Λ2V . Then π defines a map π♯ : V ∗ → V by V ∗ ∋ α 7→ π♯(α,−).

Proposition 3.2. (V, ω) symplectic iff there exists π ∈ Λ2V such that
(ω♭)−1 = π♯.

Exercise 5
Prove Proposition 3.2.

◁

Examples:

1. V = R2n = T ∗Rn with basis {e1, . . . , en, f1, . . . , fn} and

ω0(ei, ej) = ω0(fi, fj) = 0 , ω0(ei, fj) = δij (21)

Often we will consider coordinates (xi, pj) for i, j = 1 . . . n of R2n.
Then, seen as a constant 2-form,

ω0 =
∑
i

dxi ∧ dpi (22)

2. Let L be a n-dimensional vector space over R. Set V = L ⊕ L∗, and
let x, y ∈ L, ξ, η ∈ L∗ and define

ω(x+ ξ, y + η) = ξ(y)− η(x). (23)

3. Let V be a finite dimensional vector space of C with hermitian form

h : V × V → C

such that h is bilinear and

h(x, y) = h(y, x) , h(x, x) ≥ 0 , h(λx, µy) = λ̄µ h(x, y) (24)

Then define
ω(x, y) = Im(h(x, y)) (25)
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Exercise 6
Prove that in all the examples (V, ω) is symplectic.

Once one has defined a new structure, one is usually interested in its sym-
metries. In our case, the symmetry of a symplectic vector space (V, ω) is
known as the symplectic group

Sp(V, ω) = {g ∈ GL(V ) | g∗ω = ω} (26)

Exercise 7
Some exercise about Sp for easy examples?

We know turn our focus to various natural but important subspaces
defined by ω. Let U ⊂ V be a linear subspace.

Definition 3.2. The symplectic complement of the linear subspace U is
defined as the space

Uω = {x ∈ V | ω(x, y) = 0 ∀y ∈ U} (27)

It is interesting to compare this definition to the annihilator Ann(U) ⊂
V ∗ of U

Ann(U) = {α ∈ V ∗ | ⟨α, x⟩ = 0 ∀x ∈ U} ⊂ V ∗. (28)

Exercise 8
Show ω♭(Uω) = Ann(U).

Remark 5. Notice that in finite dimensions,

dimUω = dimAnn(U) = dimV − dimU (29)

◁

Proposition 3.3.

(i) (Uω)ω = U .

(ii) (U1 ⊕ U2)
ω = Uω

1 ∩ Uω
2 .

Exercise 9
Prove Proposition 3.3.

Now, the symplectic complement is quite different from the orthogonal
complement, say. In particular, it allows for the possibility that U itself is
in Uω or vice versa!
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Definition 3.3. Let (V, ω) be a finite dimensional symplectic vector space
and U ⊂ V a linear subspace.

(i) U is said to be isotropic if U ⊂ Uω, equivalency if ω|U = 0.

(ii) U is said to be coisotropic if Uω ⊂ U .

(iii) U is said to be Lagrangian if U = Uω.

(iv) U is said to be symplectic if U ∩ Uω = {0}.

Exercise 10
Show that U is isotropic iff Uω is coisotropic.

Let us study some examples of this definitions.

1. isotropic subspace: Any linear subspace of dim = 1 is isotropic. Let
0 ̸= x ∈ V . Consider the line ℓx = spanR(x) ⊂ V .

Exercise 11
Show that ℓx is isotropic.

2. coisotropic subspace: any linear subspace of codim = 1 is co-isotropic.

Exercise 12
Consider (V, ω) = (R2n, ω0). Show that

U = {(x, p) ∈ V | xn = 0}

is coisotropic.

Remark 6. From the point of view of classical mechanics, V = T ∗U is
the phase space and U is the spatial configuration space. We restrict
the motion of the particle in space to the hypersurface defined by
xn = 0. This is a general phenomena: constraint motion in phase
space T ∗X is modeled by hypersurfaces of the form {ϕi(x, p) = 0} for
some functions ϕi ∈ C∞(T ∗X). We will come back to this point in
Section 4. ◁

3. Lagrangian subspace: Consider (V = L ⊕ L∗, ω0). Then L,L∗ are
Lagrangian.
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Exercise 13
Consider the symplectic space (V, ω) = (R2n, ω0). Let U =
Rn ⊂ V and f ∈ C∞(U). Show that

graph(df) =

{
(xi, pi =

∂f

∂xi
)

}
is Lagrangian.

Proposition 3.4 (linear reduction lemma). Let (V, ω) be symplectic, U ⊂
V isotropic. Then W = Uω/U is symplectic with symplectic form

ω̄([x], [y]) = ω(x, y) (30)

for any x, y ∈ Uω.

Lagrangian subspaces are very special and play an important role in
example in quantization.

Proposition 3.5. Let (V, ω) be symplectic.

(i) There exists a Lagrangian subspace L ⊂ V and dimV = 2dimL.

(ii) If L ⊂ V is Lagrangian, then there exists a Lagrangian complement
M ⊂ V such that V = L⊕M .

Proof.

(i) We already have seen that isotropic subspaces exist. Let L ⊂ V be
a maximal isotropic subbspace, in the sense that it is not contained
in any other isotropic subspace of strictly greater dimension. Then
L is Lagrangian. Indeed, if Lω ̸= L, then ∃v ∈ Lω\L so that L′ =
L⊕ spanR(v) is again isotropic: let x+ αv, y + βv ∈ L′, then

ω(x+ αv, y + βv) = ω(x, y) + αω(v, y) + βω(x, v) + αβω(v, v)

= αβω(v, v) = 0

where we used that L is Lagrangian (thus ω(x, y) = 0) and v ∈ Lω

(thus ω(v, y) = ω(x, v) = 0). Now, L′ contains L and is of strictly
greater dimension which is a contradiction to our starting assumption.
It then follows that

dimV = dimL+ dimLω = 2dimL.

(ii) Since we are working in finite dimensions, the statement is equivalent
to L ∩M = {0} with M Lagrangian. Consider an isotropic subspace
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U such that U ∩ L = {0}. Such subspaces exist: take any x ̸∈ L
(exists for dimensional reasons) and consider the line spanR(x). Now,
we claim that U if U is maximal isotropic with U ∩ L = {0}, then U
is Lagrangian.

Assume U is maximal isotropic with U ∩ L = {0} but U is not La-
grangian. Consider 0 ̸= [x] ∈ Uω/U and let Ux = U ⊕ spanR(x) which
is again isotropic. Since U ⊂ Ux, it is left to show that there exists an
[x] ∈ Uω/U such that Ux ∩ L = {0}, since this would contradict our
assumption of maximality of U . Note that [x] = [x+ y] for any y ∈ U
and since U ∩ L = {0}, x + y ̸∈ L. Now, Ux+a ∩ L = {0} for some
a ∈ U and we arrive at our desired contradiction since U ⊂ Ux+a.

Most importantly, the existence of Lagrangians implies that all finite
dimensional linear symplectic spaces are isomorphic. In fact, they are all
isomorphic to the model (R2n, ω0).

Theorem 3.6. (Linear Darboux Theorem) Let (V, ω) be a linear symplectic
space. Assume dimV = 2n. Then

(V, ω) ∼= (R2n, ω0). (31)

Proof. Let (V, ω) be symplectic, dimV = 2n. Then by Proposition 3.5,
there exists a Lagrangian subspaces L,M ⊂ V such that V = L⊕M . This
gives the following isomorphism

M ↪→ V
ω♭

−→∼= V ∗ ↠ L∗ (32)

which implies that M ∼= L∗. Explicitly, the isomorphism is given by

Φ: M → L∗ , x 7→ ω(x,−)|L

Exercise 14
Show that the kernel of the above map is empty.
Hint: Show that kerΦ ⊂ Lω and use that L is Lagrangian.

Now, choose a basis {e1, . . . , en} in L and a dual basis {f1, . . . , fn} in
M ∼= L∗. Since L,M are isotropic, one has

ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij

which is just the standard definition of ω0 on R2n.
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4 Foundations of Symplectic Geometry

We now generalize symplectic structures to symplectic structures on general
manifolds.

In the following, to fix notations, let M be a smooth manifold, ω ∈
Ω2(M). Recall that for m ∈ M , ωm ∈ Λ2T ∗

mM , (T ∗
mM,ωm) is a symplectic

vector space iff kerωm = {0}, i.e. iff ωm is non-degenerate. Now we would
like to patch these definitions together in a natural way to define the notion
of a sympelctic manifold.

Definition 4.1. (M,ω) is symplectic iff

(i) ωm is non-degenerate ∀m ∈ M

(ii) ω is closed: dω = 0.

Remark 7. The closeness condition generalizes (and relaxes) the assump-
tion that ω is constant. ◁

This definition has some quite non-trivial but interesting consequences,
which follow from our discussion of the linear case:

1. If (M,ω) is symplectic, then dimTmM = 2n for all m ∈ M and hence
dimM = 2n is even.

2. If (M,ω) symplectic, dimM = 2n, then λ = ωn

n! is nowhere vanishing
and defines a volume form known as the Liouville volume form. This
follows directly from the fact that λm = ωn

m
n! is nowhere vanishing

∀m ∈ M . In particular, M is orientable with canonical orientation
defined by λ.

3. volω(M) =
∫
M λ > 0 defines the symplectic volume of M .

4. ∀m ∈ M : ∃!πm ∈ Λ2TmM such that π♯
m = (ω♭

m)−1. The πm patch
together to a smooth bivector π : M → Λ2TM which defines a Lie
bracket (the Poisson bracket) on C∞(M) by

{f, g} := π(df, dg) = πij∂if∂jg (33)

Before we study maps between symplectic manifolds, let us look at some
examples.

1. M = R2n = T ∗Rn with coordinates {x1, . . . , xn, p1, . . . , pn} with ω0 =∑
i dx

i ∧ dpi. In this case the Liouville volume form simply takes the
form dλ =

∏
i dx

i ∧ dpi.

2. M any two-dimensional orientable manifold (e.g. S2). Then any vol-
ume form on M defines a symplectic form on M .
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3. The cotangent bundle M = T ∗X. Let π : T ∗X → X be the canonical
projection.

Proposition 4.1. There exists a unique 1-form θ on T ∗X such that
α∗θ = α for all α ∈ Ω1(X).

The 1-form θ ∈ Ω1(T ∗X) is known as the tautological 1-form. In local
coordinates {x1, . . . , xn} of X and {p1, . . . , pn} of TxX,

θ(x,p) =
∑
i

pidx
i (34)

Now, any α ∈ Ω1(X) can be seen either as a differential form αx =∑
i αidx

i or as a map X ∋ x → (x, α(x)) ∈ T ∗
xX such that π◦α = idX ,

cf. (35)

x X

T ∗X

α(x)

α∗v

kerπ∗

(35)

If we view α ∈ Ω1(X) as the map x 7→ (x, α(x)), then

α∗θ =
∑
i

αi(x)dx
i = α (36)

where on the RHS, α is interpret as a differential form on X.

Proof. Let (x, p) ∈ T ∗X. For any v ∈ T(x,p)(T
∗X), we define the

1-form θ(x,p) ∈ T ∗
(x,p)(T

∗X) by〈
θ(x,p), v

〉
= ⟨p, π∗(v)⟩ . (37)

Note that π∗ : T(x,p)(T
∗X) → Tπ(x,p)X = TxX. Now consider α : X →

T ∗X, π ◦ α = idX , so that α(x) ∈ T ∗
xX. Then〈

(α∗θ)(x,p), v
〉
=
〈
θ(x,α(x)), α∗v

〉
= ⟨α(x), π∗α∗v⟩

= ⟨α(x), (π ◦ α)∗v⟩ = ⟨α(x), v⟩

which shows that α∗θ = α.
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It is left to show that θ is unique. To do so, we will show that it
is defined on a dense subset of T (T ∗X). Recall that we can view
α ∈ Ω1(X) as a graph α : x 7→ (x, α(x)) inside T ∗X. By definition, for
any v ∈ TX one has

⟨θ, v⟩ = ⟨α∗θ, v⟩ = ⟨θ, α∗v⟩ . (38)

Now, the vector α∗v ∈ T (T ∗X) is tangent to the “curve” α(x) ⊂
T ∗X. Varying α and v we can actually find all of vectors in T (T ∗X)
except for those who are vertical, that is those that lie in kerπ∗ where
π : T ∗X → X is the canonical projection. Indeed, since π ◦ α = idX ,

π∗(α∗v) = (π∗α∗)v = (π ◦ α)∗v = v (39)

and hence α∗v for v ̸= 0 cannot belong to the kernel kerπ∗.

Proposition 4.2. The cotangent bundle T ∗X endowed with ω0 =
−dθ is symplectic.

Proof. First of all, by definition, ω0 is closed: dω0 = −d2θ = 0. It
is left to show that ω0 is non-degenerate. Locally, (ω0)(x,p) = −dθ =
−d
∑

i pidx
i =

∑
i dx

i ∧ dpi which is clearly non-degenerate.

We now shift our focus to maps between symplectic manifolds.

Definition 4.2. Let (M1, ω1), (M2, ω2) be symplectic. A map f : M1 → M2

is a symplectomorphism if

(i) f is a diffeomorphism

(ii) f∗ω2 = ω1

“Symmetries” of (M,ω) are then simply symplectoendomorpisms and in
analogy with the linear case we define

Sp(M,ω) = {f ∈ Diff(M) | f∗ω = ω} (40)

A diffeomorphism f is thus a symmetry iff it leaves the symplectic structure
invariant. In particular, infinitesimally this means that f is generated by a
vector field v preserving the symplectic structure.

Definition 4.3. A v ∈ X(M) is called symplectic if Lvω = 0, where Lv

denotes the Lie derivative along the vector field v. We denote the space of
all symplectic vector fields by

X(M,ω) = {v ∈ X(M) | Lvω = 0} (41)
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Aside: The Flow of a Vector Fields and the Lie Derivative Let M
be a smooth manifold and v ∈ X(M) be a vector field. Following the vector
field along its integral curves, we get a curve Φt whose tangent vectors are
given by the vector field v everywhere: for m ∈ M a point,

dΦt(m)

dt

∣∣∣
t=0

= vm. (42)

The curve Φt is called the flow of the vector field v and we sometimes
say that Φt integrates v. For example, Hamilton’s equation describing the
movement of a particle of a system governed by the Hamiltonian H define
a flow equation cf. (10): if (x, p) ∈ M = (R2, ω0)

ẋ(t) =
∂H

∂p
, ṗ(t) = −∂H

∂x
. (43)

The flow Φt = (x(t), p(t)) integrates the vector field

sgradω0
H = ∂pH∂x − ∂xH∂p ∈ X(M) (44)

Now, often times we are interested in how geometric objects like vectors
and co-vectors (or in general differential forms) change under the flow Φt.
To measure the infinitesimal change, we push the vector forward or pull the
co-vector back respectively along Φt and then compute the derivative with
respect to t evaluated at time t = 0. Examples:

1. Infinitesimal change of a scalar (function).

Given v ∈ X(M), let Φv
t be its flow. Let f ∈ C∞(M) be smooth

function. Then f changes infinitesimally along Φt as follows:

Lvf :=
d

dt

∣∣∣
t=0

(Φv
t )

∗f(x) =
d

dt

∣∣∣
t=0

f(Φv
t (x)) = v(x)∂xf(x). (45)

A function thus changes infinitesimally as we would expect, namely
by the derivative in the direction of the vector field v.

2. Infinitesimal change of a vector.

Given vectors v, u ∈ X(M), let Φv
t be the flow of v. Then u changes

along the Φv
t infinitesimally as follows:

Lvu :=
d

dt

∣∣∣
t=0

(Φv
t )∗u

i(x)∂x =
d

dt

∣∣∣
t=0

u(Φv
t (x))∂Φv

t (x)

= (v(x)u′(x)− u(x)v′(x))∂x

= [v, u]

(46)

3. Infinitesimal change of differential forms.
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Exercise 15
Let α ∈ Ω1(M).

a) Show that Lvα = (dιv + ιvd)α.

b) Deduce that Lv = dιv + ιvd on Ω•(M).

Hint: Consider general homogeneous elements α = α1 ∧
· · · ∧ αk ∈ Ωk(M).

The operator Lv defining the infinitesimal change is known as the Lie deriva-
tive. The representation of the Lie derivative on differential forms

Lv = dιv + ιvd (47)

is known as Cartan’s magic formula.

Let us state some important properties of Lv

(i) Lv is a derivation on C∞(M): Lv(fg) = Lv(f)g + fLv(g)

(ii) Lv is a derivation on C∞(M)⊗X(M): Lv(f⊗u) = Lv(f)⊗u+f⊗Lv(u)

(iii) Lv is a derivation on X(M): Lv([u,w]) = [Lv(u), w] + [u,Lv(w)]

(iv) Acting on differential forms, one has

• Lv(α ∧ β) = Lv(α) ∧ β + α ∧ Lv(β)

• [Lv,Lu]α = L[v,u]α

• [Lv, ιu]α = [ιu,Lv]α = ι[u,v]α

After this aside, recall that for classical mechanics (and for linear sym-
plectic geometry in general) there exists an important class of vector fields—
known as Hamiltonian vector fields—which were associated to a function,
namely

Xf (m) ≡ sgradωm
f = π−1

m ∈ TmM. (48)

Equivalently, we have defined Xf (m) as

ιXf
ωm = ωm(Xf (m),−) = df. (49)

These vector fields patch together to define a global vector field

Definition 4.4. Let (M,ω) be symplectic and f ∈ C∞(M). Then the
Hamiltonian vector field (symplectic gradient) Xf is defined by

ιXf
ω + df = 0. (50)

We denote the space of Hamiltonian vector fields by Xham(M,ω).
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Exercise 16
Show that

a) Xham(M,ω) ⊂ X(M,ω) is a Lie subalgebra.

b) {g, f} := ω(Xf , Xg) = π(dg, df) = L(Xf )g is a Lie bracket
(namely the Poisson bracket)

c) C∞(M) → Xham(M,ω) with f 7→ Xf is a Lie algebra (anti-) ho-
momorphism, i.e.

[Xf , Xg] = X{g,f} (51)

d) Proof of Liouville’s theorem: show that the Liouville volume dλ =
ωn

n! is preserved under Hamiltonian flows.

Hint: Show that LXf
λ = 0.

Theorem 4.3 (Darboux). Let (M,ω), dimM = 2n, be symplectic, then
locally we can always find coordinate charts centered at a point m ∈ M such
that there exists a symplectomorphism

(U, ωm) ∼= (R2n, ω0 =
∑
i

dxi ∧ dpi) (52)

In words, the theorem tells us that locally all symplectic manifolds look
like a cotangent bundle T ∗X. This means in particular that there exists no
local invariants!

Sketch of proof. The proof is an application of the following

Lemma 4.4 (Moser’s Trick). LetM be a smooth manifold and ωt ∈ Ω2(M),
t ∈ [0, 1] a smooth family of symplectic forms. Assume that ω̇t = dαt is exact
for some smooth family αt ∈ Ω1(M). Define the vector field vt such that
ιvtωt = −αt and assume that vt integrates to Φt ∈ Diff(M) with Φ0 = idM
(which always holds if M is compact). Then

Φ∗
tωt = ω0 (53)

Exercise 17
Show vt = −π♯

t(αt).
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Proof of lemma. The proof goes by direct calculation:

d

dt
Φ∗
tωt = Φ̇∗

tωt +Φ∗
t ω̇t

= Φ∗
t (Lvtωt + dαt)

= Φ∗
t (dιvtωt + dαt)

= Φ∗
t (−dαt + dαt) = 0

Hence Φ∗
tωt is constant in t and thus Φ∗

tωt = ω0.
Now, choose a chart ϕ : TmM = R2n ⊃ V → U ⊂ M such that ϕ(0) =

m ∈ M and dφ0 = idTM . Note that both (V, ω0) and (U, ωm) are symplectic.
Moreover, there exist two symplectic forms on V , namely ω0 and ϕ∗ωm.
Define the family

ωt = (1− t)ω0 + tϕ∗ωm (54)

for t ∈ [0, 1]. It is easy to see that dωt = 0, however its non-degeneracy for
all values of t is not so clear. However, since the statement of Darboux’s
theorem is local, we can always shrink V so that ωt is in fact non-degenerate.
Let us thus assume that ωt defines a family of symplectic forms (for V small
enough). Define the Moser 1-forms

αt = hP ω̇t (55)

where hP denotes the Poincaré homotopy operator on V . In particular,

dhP − hPd = idV . (56)

Exercise 18
Show that ω̇t = dαt.

Assume further that V is so small that vt integrates to a flow Φt on V
(otherwise, shrink V further). By Moser’s lemma,

Φ∗
1ωm = Φ∗

1ω1 = Φ∗
tωt = Φ∗

0ω0 = ω0 (57)

We end this short and vastly non exhaustive introduction to the founda-
tions of symplectic geometry by the study of some important submanifolds
of symplectic manifolds. As in the linear case, one distinguishes between
isotropic, coisotropic and Lagrangian submanifolds. Notice that a natural
way to define these submanifolds is to mimic the definition of the linear case
applied point-wise to the tangent spaces (which are indeed linear!).
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Definition 4.5. Let (M,ω) be symplectic and S ⊂ M a submanifold. More-
over let ι : S ↪→ M be the inclusion. We say that

• S is isotropic if TxS ⊂ (TxM,ω) is isotropic ∀x ∈ S, equivalently
ω|S = ι∗ω = 0.

• S is coisotropic if TxS ⊂ (TxM,ω) is coisotropic ∀x ∈ S.

• S is Lagrangian if dimS = 1
2 dimM and TxS ⊂ (TxM,ω) is isotropic

∀x ∈ S (equivalently ω|S = ι∗ω = 0).

We would like to give an important example of coisotropic submanifolds
which arise in the study of constrained Hamiltonian systems.

Consider a symplectic Hamiltonian (M,ω,H) system where (M,ω) is a
symplectic manifold—the phase space—and H ∈ C∞(M) the Hamiltonian
governing the dynamics of the system. Assume that there is a submanifold
C ⊂ M cut out by functions ϕi ∈ C∞(M):

C = {x ∈ M | ϕi(x) = 0 ∀i} (58)

and assume further that all the constraints ϕi Poisson-commute with H to
ensure that the time evolution of a point in C stays in C

ϕ̇|C = {ϕ,H}|C = 0 (59)

If we restrict the dynamics to C, we speak of a constrained Hamiltonian
system.

Definition 4.6. We call the constraint ϕi first-class if it Poisson-commutes
with all other constraints on the constraint surface

{ϕi, ϕj}|C = 0 ∀j. (60)

If the constraint ϕi does ot Poisson-commute with at least one of the other
constraints, we say that ϕi is second-class.

The geometric meaning of first-class constraints stems form the following
fact. Let IC = {f ∈ C∞(M) | f |C = 0} be the vanishing ideal of C. The
tangent bundle TC ⊂ TM and its annihilator have the following algebraic
description: for x ∈ C

TxC = {v ∈ TxM | v(f) = 0 ∀f ∈ IC} ⊂ TxM (61)

and

Ann(TxC) = {α ∈ T ∗
xM | α = dfx for some f ∈ IC} ⊂ T ∗

xM. (62)

Since ω is a symplectic form, ω♭
x : TxM → T ∗

xM is an isomorphism and by
(49) ω♭(Xf ) = df and hence

TxC
ω = (ω♭)−1

(
Ann(TxC)

)
= {Xf (x) | f ∈ IC}. (63)
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Proposition 4.5. Then the following statements are equivalent

(i) the Hamiltonian vector field Xf is tangent to C for all f ∈ IC

(ii) {IC , IC} ⊂ IC

(iii) C is coisotropic

Put differently, the Hamiltonian vector fields of first-class constraints are
tangent to the constrained surface!

Recall that we would like to study the dynamics on the constraint surface
C. Since Hamiltonian dynamics is essentially the flow of Hamiltonian flows,
we hence would like to define a symplectic form on C. A first anstaz is
to simply restrict ω to C: ωC = ι∗ω for ι : C ↪→ M the inclusion. The
problem is that if at least one of the constraints, say ϕ is first-class, then ωC

is degenerate: since Xϕ ∈ TC,

ιXϕ
ωC = ι∗ω(Xϕ,−) = ι∗dϕ = d(ι∗ϕ) = 0 (64)

First-class constraints generate a symmetry (since they commute each
other and with the Hamiltonian). Due to this symmetry, ωC is degenerate
and (C,ωC) is not symplectic. However, there exsits a way to quotient out
these symmetries resulting into a reduced phase space which is symplectic.

As an example consider X = R2 with coordinates (x, y) and the phase
space (M = T ∗X,ω0) with coordinates (px, py) in the fiber. Then

ω0 = dx ∧ dpx + dy ∧ dpy. (65)

Assume that we have a constraint

ϕpy : M → R , ϕpy(x, y, px, py) = py (66)

defining the constraint surface C = zeros(ϕpy) = {py = 0}. We would like to
study the dynamics on C. Since py is the momentum in the y-direction, the
constraint ϕpy = 0 restricts all motion to the x-direction. The Hamiltonian
vector field of ϕpy is readily computed as

Xϕpy
= ∂y (67)
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and is indeed tangent to the constraint surface C.

y

py

Cross section of C ⊂ T ∗X

∂y

However, if we restrict the symplectic form to C

ω|C = dx ∧ dpx (68)

we see that
kerω|C = span(∂y) = span(Xϕpy

) (69)

and thus ω|C is degenerate! This is intuitively clear, since the constraint
does indeed restrict all motion to the x-direction, however it does not fix
the value of y. We could introduce another constraint ϕy(x, y, px, py) = y−y0
and consider the constraint surface

C = {ϕy = ϕpy=0} = {py = 0, y = y0} (70)

Note that
{ϕy, ϕpy} = 1 (71)

and hence the constraints are all second-class (since they do not Poisson-
commute). Moreover, the Hamiltonian vector fields

Xϕpy
= ∂y, Xϕy = −∂py (72)

are not anylonger tangent to C (they move any point on C off C). In this
case, the restriction

ωC = ω|C = dx ∧ dpx (73)

is in fact symplectic and we could study dynamics on (T ∗C,ωC).
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