
Supergeometry - Oddities of the Square

Take-Home Exercise

Part I

In this part of the exercise sheet we want to derive the Chevalley-Eilenberg
differential of a Lie algebra from super geometry.
Let G be a Lie group and consider its odd tangent space

ΠTG = (R0|1 → G). (1)

Let
Rg : G→ G , h 7→ hg (2)

be the operation of right multiplication onG (which is a smooth map because
G is a Lie group). We define the (right) Maurer-Cartan form by the map

θg := (Rg−1)∗ : TgG→ Tgg−1G = TeG = g (3)

Notice that θ can be seen as a g-valued 1-form on G, i.e. as an element of
Ω1(G, g)

Exercise 1.

1. Assume G is a matrix group. Show that (Rg−1)∗ = gh

2. Show that dθ = 1
2 [θ, θ]g

3. Argue that TG = G× g

Recall that a map xi(θ) : R0|1 → G is locally of the form

xi + θψi, (4)

where xi is a local coordinate in G and ψi ∈ ΠTxG. Let

ca = θa(Ψ) = θaiψ
i ∈ Πg. (5)

(Here the superscript denotes the component in g.)

1



Exercise 2. Recall that d = ψi∂i. Show that

dca =
1

2
fabcc

acb =
1

2
[c, c]a. (6)

This exercise shows that d acting on

C∞(ΠTG) = Ω•(G) (7)

can be represented by

d ≡ dCE =
1

2
[c, c]a

∂

∂ca
(8)

acting on
C•
CE = Λ•g∗ = Λ•[c1, . . . , cdim g] (9)

The complex
(C•

CE , dCE) (10)

is called the Chevalley-Eilenberg complex and its cohomology computes the
cohomology of g.

Part II

This part of the exercise sheet is about integration over odd variables.
The idea is to define the integral in analogy to usual integration, namely by
a linear, translational invariant map which sends total derivatives to zero.

Definition 1. Let V = V0⊕V1 be a super vector space with even coordinates
xi and odd coordinates θi. The left derivative with respect to θi are defined
on monomials in θj by −→

∂

∂θi
θj = δji (11)

and is extended to C∞(V ) as a (super)derivation, i.e.

−→
∂

∂θi
(
θjθk

)
= δji θ

k − δki θj (12)

Analogously, the right derivative with respect to θi are defined on monomials
in θj by

θj
←−
∂

∂θi
= δji (13)

and is extended to C∞(V ) as a (super)derivation, i.e.

(
θjθk

) ←−∂
∂θi

= δki θ
j − δji θ

k (14)
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Definition 2. Let V be an ordinary vector space of dimension n. The
Grassmann/Berezin integral∫

ΠV
dθ1 . . . dθn (−) : C∞(ΠV )→ R (15)

over ΠV , with coordinates θi is defined by the relations∫
ΠV

dθ1 . . . dθn θn . . . θ̂i . . . θ1 = 0 ,

∫
ΠV

dθ1 . . . dθn θn . . . θ1 = 1 (16)

where θ̂i means omission of the i-th factor θi.

Exercise 3 (Gaussian/Berezinian integration). Let V be a one-dimensional
vector space and ΠV the super vector space with odd coordinate θ. Verify
the following

a) Linearity ∫
ΠV

af(θ) + g(θ)dθ = a

∫
ΠV

f(θ)dθ +

∫
ΠV

g(θ)dθ.

b) Translation invariance∫
ΠV

f(θ + θ′) =

∫
ΠV

f(θ)dθ.

c) Total derivatives are mapped to zero∫
ΠV

−→
∂ f(θ)

∂θ
dθ =

∫
ΠV

f(θ)

←−
∂

∂θ
dθ = 0.

d) Let θ = Jξ, θ, ξ, J ∈ R odd, then dθ = dξ
J .

e) Let θi = J i
jξ

j , then dθ1 . . . dθn = dξ1...dξn

det J .

Hint 1: Any function f ∈ C∞(ΠV ) is of the form f(θ) = f0 + f1θ.

Hint to (e): Express f1...n as a Grassmann-Berezin integral once over θi and
once over ξi.
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Part III

In this part we want to derive the action functional for N = 1 quantum
mechanics.

Exercise 4 (N = 1 superalgebra). Consider R1|1 with even coordinate t
and odd coordinate θ. The space R1|1 has actually the structure of a super
group with multiplication defined by

(t, θ)(t′, θ′) = (t+ t′ + θθ′, θ + θ′) (17)

a) Show that left multiplication inside R1|1 is generated by the vector field

Q = ∂θ + θ∂t (18)

b) Show that right multiplication inside R1|1 is generated by the vector field

D = ∂θ − θ∂t (19)

c) Verify the commutation relations

[D,D] = −2∂t , [Q,Q] = 2∂t , [D,Q] = 0 (20)

Exercise 5 (Supersymmetry Transformations). We will assume that Q, will
generate the supersymmetry. Let

Φ(t, θ) = x(t) + θψ(t) (21)

be a super field, i.e. a function on R1|1.
Compute the supersymmetry transformations

δεΦ = εQ
(
Φ(t, θ)

)
(22)

component-wise.

Exercise 6. Consider the action functional

S[Φ] = −1

2

∫
R
dt

∫
R0|1

dθ δµνΦ̇
µDΦν ≡ −1

2

∫
R
dt

∫
R0|1

dθ ⟨Φ̇, DΦ⟩ (23)

1. Show that

S[Φ] =
1

2

∫
R
dt δµν

(
ẋµẋν + ψµψ̇ν

)
≡ 1

2

∫
R
dt ∥ẋ∥2 + ⟨ψ, ψ̇⟩ (24)

2. Show that the model is supersymmetric, i.e.

δεS[x, ψ] = 0 (25)

3. Show (25) directly from (23)
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Part IV

We now want to study the construction of N = 2 quantum mechanics based
on the ideas of the previous exercises.

Exercise 7 (N = 2 Superalgebra). Consider R1|2 with coordinates (t, θ, θ̄)
and the super group multiplication

(t, θ, θ̄)(t′, θ′, θ̄′) = (t+ t′ + θθ̄′ + θ̄θ′, θ + θ′, θ̄ + θ̄′) (26)

a) Show that left multiplication inside R1|2 is generated by the vector fields

Q = ∂θ + θ̄∂t , Q̄ = ∂θ̄ + θ∂t (27)

b) Show that right multiplication inside R1|2 is generated by the vector fields

D = ∂θ − θ̄∂t , D̄ = ∂θ̄ − θ∂t (28)

c) Verify the commutation relations

[D, D̄] = −2∂t , [Q, Q̄] = 2∂t (29)

and show that all other commutators are zero.

Exercise 8 (Supersymmetry Transformations). As in the lecture, Q, Q̄ will
generate the supersymmetry. Let

Φ(t, θ, θ̄) = x(t) + θψ(t) + θ̄ψ̄(t) + θθ̄F (30)

be a super field, i.e. a function on R1|2.
Compute the supersymmetry transformations

δεΦ = εQΦ , δε̄Φ = ε̄Q̄Φ (31)

component-wise.

Exercise 9. Consider the action

S[Φ] =

∫
R
dt

∫
R0|2

dθdθ̄
1

2
δµνD̄ΦµDΦν (32)

1. Show that

S[Φ] =

∫
R
dt

(
1

2
∥ẋ∥2 −

〈
ψ̄, ∂tψ

〉
+

1

2
∥F∥2

)
(33)

2. Show that S[Φ] is supersymmetric, i.e.

δεS[Φ] = δε̄S[Φ] = 0 (34)

3. Show that (34) directly from (32).

5


