# Supergeometry - Oddities of the Square Take-Home Exercise 

## Part I

In this part of the exercise sheet we want to derive the Chevalley-Eilenberg differential of a Lie algebra from super geometry.
Let $G$ be a Lie group and consider its odd tangent space

$$
\begin{equation*}
\Pi T G=\left(\mathbb{R}^{0 \mid 1} \rightarrow G\right) \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
R_{g}: G \rightarrow G \quad, \quad h \mapsto h g \tag{2}
\end{equation*}
$$

be the operation of right multiplication on $G$ (which is a smooth map because $G$ is a Lie group). We define the (right) Maurer-Cartan form by the map

$$
\begin{equation*}
\theta_{g}:=\left(R_{g^{-1}}\right)_{*}: T_{g} G \rightarrow T_{g g^{-1}} G=T_{e} G=\mathfrak{g} \tag{3}
\end{equation*}
$$

Notice that $\theta$ can be seen as a $\mathfrak{g}$-valued 1-form on $G$, i.e. as an element of $\Omega^{1}(G, \mathfrak{g})$

## Exercise 1.

1. Assume $G$ is a matrix group. Show that $\left(R_{g^{-1}}\right)_{*}=g h$
2. Show that $d \theta=\frac{1}{2}[\theta, \theta]_{\mathfrak{g}}$
3. Argue that $T G=G \times \mathfrak{g}$

Recall that a map $x^{i}(\theta): \mathbb{R}^{0 \mid 1} \rightarrow G$ is locally of the form

$$
\begin{equation*}
x^{i}+\theta \psi^{i} \tag{4}
\end{equation*}
$$

where $x^{i}$ is a local coordinate in $G$ and $\psi^{i} \in \Pi T_{x} G$. Let

$$
\begin{equation*}
c^{a}=\theta^{a}(\Psi)=\theta_{i}^{a} \psi^{i} \in \Pi \mathfrak{g} . \tag{5}
\end{equation*}
$$

(Here the superscript denotes the component in $\mathfrak{g}$.)

Exercise 2. Recall that $d=\psi^{i} \partial_{i}$. Show that

$$
\begin{equation*}
d c^{a}=\frac{1}{2} f_{b c}^{a} c^{a} c^{b}=\frac{1}{2}[c, c]^{a} \tag{6}
\end{equation*}
$$

This exercise shows that $d$ acting on

$$
\begin{equation*}
\mathcal{C}^{\infty}(\Pi T G)=\Omega^{\bullet}(G) \tag{7}
\end{equation*}
$$

can be represented by

$$
\begin{equation*}
d \equiv d_{C E}=\frac{1}{2}[c, c]^{a} \frac{\partial}{\partial c^{a}} \tag{8}
\end{equation*}
$$

acting on

$$
\begin{equation*}
C_{C E}^{\bullet}=\Lambda^{\bullet} \mathfrak{g}^{*}=\Lambda^{\bullet}\left[c^{1}, \ldots, c^{\operatorname{dim} \mathfrak{g}}\right] \tag{9}
\end{equation*}
$$

The complex

$$
\begin{equation*}
\left(C_{C E}^{\bullet}, d_{C E}\right) \tag{10}
\end{equation*}
$$

is called the Chevalley-Eilenberg complex and its cohomology computes the cohomology of $\mathfrak{g}$.

## Part II

This part of the exercise sheet is about integration over odd variables. The idea is to define the integral in analogy to usual integration, namely by a linear, translational invariant map which sends total derivatives to zero.

Definition 1. Let $V=V_{0} \oplus V_{1}$ be a super vector space with even coordinates $x^{i}$ and odd coordinates $\theta^{i}$. The left derivative with respect to $\theta^{i}$ are defined on monomials in $\theta^{j}$ by

$$
\begin{equation*}
\frac{\vec{\partial}}{\partial \theta^{i}} \theta^{j}=\delta_{i}^{j} \tag{11}
\end{equation*}
$$

and is extended to $\mathcal{C}^{\infty}(V)$ as a (super)derivation, i.e.

$$
\begin{equation*}
\frac{\vec{\partial}}{\partial \theta^{i}}\left(\theta^{j} \theta^{k}\right)=\delta_{i}^{j} \theta^{k}-\delta_{i}^{k} \theta^{j} \tag{12}
\end{equation*}
$$

Analogously, the right derivative with respect to $\theta^{i}$ are defined on monomials in $\theta^{j}$ by

$$
\begin{equation*}
\theta^{j} \frac{\overleftarrow{\partial}}{\partial \theta^{i}}=\delta_{i}^{j} \tag{13}
\end{equation*}
$$

and is extended to $\mathcal{C}^{\infty}(V)$ as a (super)derivation, i.e.

$$
\begin{equation*}
\left(\theta^{j} \theta^{k}\right) \frac{\overleftarrow{\partial}}{\partial \theta^{i}}=\delta_{i}^{k} \theta^{j}-\delta_{i}^{j} \theta^{k} \tag{14}
\end{equation*}
$$

Definition 2. Let $V$ be an ordinary vector space of dimension $n$. The Grassmann/Berezin integral

$$
\begin{equation*}
\int_{\Pi V} d \theta_{1} \ldots d \theta_{n}(-): \mathcal{C}^{\infty}(\Pi V) \rightarrow \mathbb{R} \tag{15}
\end{equation*}
$$

over $\Pi V$, with coordinates $\theta^{i}$ is defined by the relations

$$
\begin{equation*}
\int_{\Pi V} d \theta^{1} \ldots d \theta^{n} \theta^{n} \ldots \hat{\theta}^{i} \ldots \theta^{1}=0 \quad, \quad \int_{\Pi V} d \theta^{1} \ldots d \theta^{n} \theta^{n} \ldots \theta^{1}=1 \tag{16}
\end{equation*}
$$

where $\hat{\theta}^{i}$ means omission of the $i$-th factor $\theta^{i}$.
Exercise 3 (Gaussian/Berezinian integration). Let $V$ be a one-dimensional vector space and $\Pi V$ the super vector space with odd coordinate $\theta$. Verify the following
a) Linearity

$$
\int_{\Pi V} a f(\theta)+g(\theta) d \theta=a \int_{\Pi V} f(\theta) d \theta+\int_{\Pi V} g(\theta) d \theta
$$

b) Translation invariance

$$
\int_{\Pi V} f\left(\theta+\theta^{\prime}\right)=\int_{\Pi V} f(\theta) d \theta
$$

c) Total derivatives are mapped to zero

$$
\int_{\Pi V} \frac{\vec{\partial} f(\theta)}{\partial \theta} d \theta=\int_{\Pi V} f(\theta) \frac{\overleftarrow{\partial}}{\partial \theta} d \theta=0
$$

d) Let $\theta=J \xi, \theta, \xi, J \in \mathbb{R}$ odd, then $d \theta=\frac{d \xi}{J}$.
e) Let $\theta^{i}=J^{i}{ }_{j} \xi^{j}$, then $d \theta^{1} \ldots d \theta^{n}=\frac{d \xi^{1} \ldots d \xi^{n}}{\operatorname{det} J}$.

Hint 1: Any function $f \in \mathcal{C}^{\infty}(\Pi V)$ is of the form $f(\theta)=f_{0}+f_{1} \theta$.
Hint to (e): Express $f_{1 \ldots n}$ as a Grassmann-Berezin integral once over $\theta^{i}$ and once over $\xi^{i}$.

## Part III

In this part we want to derive the action functional for $N=1$ quantum mechanics.

Exercise $4\left(N=1\right.$ superalgebra). Consider $\mathbb{R}^{1 \mid 1}$ with even coordinate $t$ and odd coordinate $\theta$. The space $\mathbb{R}^{1 \mid 1}$ has actually the structure of a super group with multiplication defined by

$$
\begin{equation*}
(t, \theta)\left(t^{\prime}, \theta^{\prime}\right)=\left(t+t^{\prime}+\theta \theta^{\prime}, \theta+\theta^{\prime}\right) \tag{17}
\end{equation*}
$$

a) Show that left multiplication inside $\mathbb{R}^{1 \mid 1}$ is generated by the vector field

$$
\begin{equation*}
Q=\partial_{\theta}+\theta \partial_{t} \tag{18}
\end{equation*}
$$

b) Show that right multiplication inside $\mathbb{R}^{1 \mid 1}$ is generated by the vector field

$$
\begin{equation*}
D=\partial_{\theta}-\theta \partial_{t} \tag{19}
\end{equation*}
$$

c) Verify the commutation relations

$$
\begin{equation*}
[D, D]=-2 \partial_{t} \quad, \quad[Q, Q]=2 \partial_{t} \quad, \quad[D, Q]=0 \tag{20}
\end{equation*}
$$

Exercise 5 (Supersymmetry Transformations). We will assume that $Q$, will generate the supersymmetry. Let

$$
\begin{equation*}
\Phi(t, \theta)=x(t)+\theta \psi(t) \tag{21}
\end{equation*}
$$

be a super field, i.e. a function on $\mathbb{R}^{1 \mid 1}$.
Compute the supersymmetry transformations

$$
\begin{equation*}
\delta_{\varepsilon} \Phi=\varepsilon Q(\Phi(t, \theta)) \tag{22}
\end{equation*}
$$

component-wise.
Exercise 6. Consider the action functional

$$
\begin{equation*}
S[\Phi]=-\frac{1}{2} \int_{\mathbb{R}} d t \int_{\mathbb{R}^{0 \mid 1}} d \theta \delta_{\mu \nu} \dot{\Phi}^{\mu} D \Phi^{\nu} \equiv-\frac{1}{2} \int_{\mathbb{R}} d t \int_{\mathbb{R}^{0 \mid 1}} d \theta\langle\dot{\Phi}, D \Phi\rangle \tag{23}
\end{equation*}
$$

1. Show that

$$
\begin{equation*}
S[\Phi]=\frac{1}{2} \int_{\mathbb{R}} d t \delta_{\mu \nu}\left(\dot{x}^{\mu} \dot{x}^{\nu}+\psi^{\mu} \dot{\psi}^{\nu}\right) \equiv \frac{1}{2} \int_{\mathbb{R}} d t\|\dot{x}\|^{2}+\langle\psi, \dot{\psi}\rangle \tag{24}
\end{equation*}
$$

2. Show that the model is supersymmetric, i.e.

$$
\begin{equation*}
\delta_{\varepsilon} S[x, \psi]=0 \tag{25}
\end{equation*}
$$

3. Show (25) directly from (23)

## Part IV

We now want to study the construction of $N=2$ quantum mechanics based on the ideas of the previous exercises.

Exercise 7 ( $N=2$ Superalgebra). Consider $\mathbb{R}^{1 \mid 2}$ with coordinates $(t, \theta, \bar{\theta})$ and the super group multiplication

$$
\begin{equation*}
(t, \theta, \bar{\theta})\left(t^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right)=\left(t+t^{\prime}+\theta \overline{\theta^{\prime}}+\bar{\theta} \theta^{\prime}, \theta+\theta^{\prime}, \bar{\theta}+\bar{\theta}^{\prime}\right) \tag{26}
\end{equation*}
$$

a) Show that left multiplication inside $\mathbb{R}^{1 \mid 2}$ is generated by the vector fields

$$
\begin{equation*}
Q=\partial_{\theta}+\bar{\theta} \partial_{t} \quad, \quad \bar{Q}=\partial_{\bar{\theta}}+\theta \partial_{t} \tag{27}
\end{equation*}
$$

b) Show that right multiplication inside $\mathbb{R}^{1 \mid 2}$ is generated by the vector fields

$$
\begin{equation*}
D=\partial_{\theta}-\bar{\theta} \partial_{t} \quad, \quad \bar{D}=\partial_{\bar{\theta}}-\theta \partial_{t} \tag{28}
\end{equation*}
$$

c) Verify the commutation relations

$$
\begin{equation*}
[D, \bar{D}]=-2 \partial_{t} \quad, \quad[Q, \bar{Q}]=2 \partial_{t} \tag{29}
\end{equation*}
$$

and show that all other commutators are zero.
Exercise 8 (Supersymmetry Transformations). As in the lecture, $Q, \bar{Q}$ will generate the supersymmetry. Let

$$
\begin{equation*}
\Phi(t, \theta, \bar{\theta})=x(t)+\theta \psi(t)+\bar{\theta} \bar{\psi}(t)+\theta \bar{\theta} F \tag{30}
\end{equation*}
$$

be a super field, i.e. a function on $\mathbb{R}^{1 \mid 2}$.
Compute the supersymmetry transformations

$$
\begin{equation*}
\delta_{\varepsilon} \Phi=\varepsilon Q \Phi \quad, \quad \delta_{\bar{\varepsilon}} \Phi=\bar{\varepsilon} \bar{Q} \Phi \tag{31}
\end{equation*}
$$

component-wise.
Exercise 9. Consider the action

$$
\begin{equation*}
S[\Phi]=\int_{\mathbb{R}} d t \int_{\mathbb{R}^{0 \mid 2}} d \theta d \bar{\theta} \frac{1}{2} \delta_{\mu \nu} \bar{D} \Phi^{\mu} D \Phi^{\nu} \tag{32}
\end{equation*}
$$

1. Show that

$$
\begin{equation*}
S[\Phi]=\int_{\mathbb{R}} d t\left(\frac{1}{2}\|\dot{x}\|^{2}-\left\langle\bar{\psi}, \partial_{t} \psi\right\rangle+\frac{1}{2}\|F\|^{2}\right) \tag{33}
\end{equation*}
$$

2. Show that $S[\Phi]$ is supersymmetric, i.e.

$$
\begin{equation*}
\delta_{\varepsilon} S[\Phi]=\delta_{\bar{\varepsilon}} S[\Phi]=0 \tag{34}
\end{equation*}
$$

3. Show that (34) directly from (32).
