Nonperturbative signals in jet observables

- **Cristian Baldenegro** Sapienza Università di Roma
- Nonperturbative and topological aspects of QCD
- May 29th–30th

European Research Council

Jet formation is a multiscale probe of QCD evolution

Cristian Baldenegro (Sapienza)

Jet formation is a multiscale probe of QCD evolution

Cristian Baldenegro (Sapienza)

Jet substructure in a nutshell

Identifying onset of hadronization in jet showers

Nontrivial to separate "perturbative" & "nonperturbative" components

Parton-level

Hadron-level

This talk:

Two approaches to understand jet showers in a modular fashion

Energy-flow-based observables

Clustering-based observables

Phase-space of QCD branchings in the Lund plane

Lund planes (or diagrams) are a 2D representation of the phase-space of $1 \rightarrow 2$ splittings:

In soft & collinear limit of QCD, emissions fill the Lund plane uniformly

$$\mathcal{P} \propto \alpha_{\rm s} \frac{\mathrm{d}k_{\rm T}}{k_{\rm T}} \frac{\mathrm{d}\Delta R}{\Delta R} = \alpha_{\rm s} \mathrm{d}\ln(k_{\rm T}) \mathrm{d}\ln(\Delta R) \leftarrow \text{approximate self-similarity of QCD}$$

Cristian Baldenegro (Sapienza)

Promoting the Lund plane to a tool: the Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064

- 1. Jet is reclustered with Cambridge–Aachen algorithm (pairwise clustering with angular ordering)
 - . Follow clustering tree in reverse (large \rightarrow small angles), **along the hardest branch**
 - Register kinematics of branching at each step

$$\begin{split} \Delta R &= \sqrt{(y^{\text{softer}} - y^{\text{harder}})^2 + (\phi^{\text{softer}} - \phi^{\text{harder}})^2} \\ \text{CMS, ALICE} \quad k_{\text{T}} &= p_{\text{T}}^{\text{softer}} \Delta R \\ \text{ATLAS} \quad z &= p_{\text{T}}^{\text{softer}} / (p_{\text{T}}^{\text{harder}} + p_{\text{T}}^{\text{softer}}) \end{split}$$

F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064

Define a *jet-averaged* number of emissions, **the** ``**primary**" **Lund jet plane density**

$$\rho(k_{\rm T}, \Delta R) \equiv \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_{\rm T}/{\rm GeV}) {\rm d}\ln(R/\Delta R)}$$

At leading order, it's "sculpted" by $\alpha_{\rm S}({\rm k_T})$

$$\rho(k_{\rm T}, \Delta R)_{\rm LO} \approx \frac{2}{\pi} C_{\rm R}^{\rm eff} \alpha_{\rm S}(k_{\rm T})$$

With $C_R = C_A = 3$ for $g \rightarrow gg$ or $C_F = 4/3$ for $q \rightarrow qg$

Cristian Baldenegro (Sapienza)

Mechanisms "factorize" in the Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064

ATLAS primary Lund jet plane density

R=0.4 jets (standard R in Run-2)

PRL 124, 222002 (2020)

Dijet selection, $p_{T, jet1} > 675 \text{ GeV } \& p_{T, jet2} > \frac{2}{3} p_{T, jet1}$

Charged-particle tracks for substructure

Momentum fraction of the emissions for vertical axis of Lund plane:

$$z = p_{T,softer} / (p_{T,softer} + p_{T,harder})$$

Multidimensional unfolding

Factorization properties in action (ATLAS)

PRL 124, 222002 (2020)

Variation of hadronization model, with the same parton shower (Sherpa2 string vs hadronization)

Variation of parton shower, same hadronization model (Herwig7.1 angle vs dipole)

CHSUALI DAIGENERIO (Sapienza)

CMS primary Lund jet plane densities arXiv:2312.16343, accepted by JHEP

R=0.8 jets

Probing k_T from ~1 GeV to 700 GeV, and $0.005 < \Delta R < 0.8$

$$k_{\rm T} = p_{\rm T}^{\rm softer} \Delta R$$

Lund vs cluster fragmentation? Hadronization region (k_T ~ 1 GeV)

Cristian Baldenegro (Sapienza)

...Or could it be something else, e.g., the FSR k_T cutoff choice? average pp Lund density: parton level G. Salam's slide

Hadron-level: FSR k_r cutoff choice shouldn't matter...

average pp Lund density: hadron level (with underlying event / MPI)

17

G. Salam's slide

0.9

0.8

0.7

0.6

0.5

0.

0.

0.

Could it lead to double counting?

PYTHIA8 shower $k_{T,cutoff}$ **variations** ($k_{T} \sim 1$ GeV) arXiv:2312.16343, accepted by JHEP

Cristian Baldenegro (Sapienza)

arXiv:2312.16343, accepted by JHEP

Shower $k_{T,cutoff}$ decouples at $k_{T} \sim 4$ GeV

String tension sensitivity

High k_T > 8 – 36 GeV

Similar onset for analytical calculations ($k_{\tau} \sim 3$ GeV)

Cristian Baldenegro (Sapienza)

Energy-flow-based observables

Energy-energy correlators

Mapping out different stages of jet formation

Energy-weighted two-particle correlations

Angular separation $x_{L} = \Delta R_{ii} = \sqrt{\Delta y^{2} + \Delta \phi^{2}}$

Energy weights E_iE_j: hard pairs are rewarded, soft pairs are penalized

Proposed since the early days of QCD for e⁺e⁻, now explored specifically for jet substructure

Energy-energy correlators

Separation of perturbative & nonperturbative regimes

Cristian Baldenegro (Sapienza)

Comparison to analytical calculations

Based on K. Lee, B. Meçaj, I. Moult arXiv:2205.03414

Perturbative region at high-R_L (NLO+NLL+NP)

At small R_L, free-hadron scaling is followed, deviation due to transition to short-distance physics

Scaling behavior with jet p_{τ}

Peak of $p_T^{jet} R_I$ distribution suggests a characteristic universal scale $\lambda_{NP} \sim 2-3$ GeV

Cristian Baldenegro (Sapienza)

Sensitivity to infrared scales in MC

Not sensitive to FSR k_{τ} cutoff (different from Lund plane), but sensitive to string tension

Comparison with MC generators

PYTHIA8 (string model) describes data in nonperturbative regions

HERWIG7/SHERPA2 (cluster models) off by ~20% at small x_L

(Seemingly) opposite conclusions wrt the Lund plane analyses

Two-particle angular correlations (*a la* heavy-ions) Unexpected nonzero v₂ in high-multiplicity pp and pPb by CMS (*PLB* 765 (2017) 193, *PLB* 718 (2013) 795)

Since then, searches pushing the boundaries towards even smaller systems

Search for intrajet collective behavior (small system?)

Near-side ridge-like structure at $\Delta \phi^* \sim 0$

 $p_{\tau}^{jet} > 550 \text{ GeV}$

40

60

N

80

100

20

Cristian E

arXiv:2312.17103, submitted to PRL

Nonzero v_2 reproduced by SHERPA2, PYTHIA8 CP5 up to N_{ch} ~ 80

Increasing $v_{\rm 2}$ with large $\rm N_{ch}$ not described by these MC predictions

Could be extended (e.g., EEC in $\Delta \eta - \Delta \varphi$? Lund emissions as function of k_{T,cut}?)

Summary

• Mapping out weakly- and strongly-coupled regimes via the Lund jet plane picture and with N-point energy correlators

Collective-like behavior in jets with high-N_{ch}

Example of synergy between heavy-ion & high-energy communities

• Lund plane & EECs have complementary sensitivities to infrared scales

Two-particle angular correlations (a la heavy-ions)

- Near-side ridge typical sign of collective behavior

- Fourier harmonics decomposition, nonzero $V_{2\Lambda}$ associated with anisotropic expansion

Two-point correlators (E2C)

arXiv:2402.13864, submitted to PRL

Free hadron region (low x₁)

PYTHIA8 CP5 describes data better than HERWIG7 CH3/SHERPA2

Perturbative region (high x_L)

PYTHIA8 CP5 undershoots data at higher jet p_T

HERWIG7 CH3 & SHERPA2 describe data better

ATLAS Lund subjet multiplicities

Proposed by R. Medves, A. Soto-Ontoso, G. Soyez, JHEP04(2023)104

Count emissions with k_T > k_{T,cut}. Using the *full* Lund jet tree (N_{Lund}) or for primary Lund emissions (N^{primary}) Lund

More inclusive observable, closely related to (sub)jet multiplicities at LEP

Charged-particles for substructure,

data-based rescaling for an effective full-particle k_{T}

Cristian Baldenegro (Sapienza)

Sherpa2 describes the k_{T,cut} = 1 GeV category better. Better global description by Herwig7 angle-ordered

Cristian Baldenegro (Sapienza)

averaged Lund subjet multiplicities vs k_{T, cut}

Other MCs tend to **undershoot** 39 D&topology @ CERN-TH

Extraction of α_{s} from jet substructure

Ratio of three-point to two-point correlators (E3C/E2C)

Using **NLO+NNLL**_{approx} pQCD calculation with nonperturbative corrections

$$\alpha_{s}(m_{z}) = 0.1229^{+0.0040}_{-0.0050} (\sim 4 \%)$$

Most precise extraction of $\alpha_s(m_z)$ with jet substructure

Quark/gluon degeneracy broken in E3C/E2C ratio, allows for breaking "10% uncertainty" barrier

Cristian Baldenegro (Sapienza)

Particle correlations using φ^* and η^* coordinates (restricted to 0.86 < $|\eta^*| < 5$), transverse momentum relative to the jet axis j_T (0.3 < j_T < 3 GeV)

Cristian Baldenegro (Sapienza)

No near-side ridge at $\Delta \phi^* \sim 0$

arXiv:2312.17103, submitted to PRL

E3C/E2C sensitive to running α_{s}

Running of α_s in the jet shower

CMS-PAS-SMP-22-007

Recall LO pocket formula for Lund density:

$$\frac{1}{N^{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_T) {\rm d}\ln(R/\Delta R)} \simeq \frac{2}{\pi} C_R \alpha_s(k_T)$$

Running $\alpha_{s}(k_{T})$ from few GeV to ~60 GeV qualitatively describes the data (Assuming q/g fractions from PYTHIA8)

