

CALCULATING POWER CORRECTIONS

Giovanni Limatola

Università degli Studi di Torino and INFN sezione di Torino

Non Perturbative and Topological Aspects of QCD CERN, May 29th 2024

Based on JHEP 06 (2021) 018 [2011.14114], JHEP 01 (2022) 093 [2108.08897], JHEP 12 (2022) 062 [2204.02247]

- Overview on QCD renormalons
- The large- n_f limit
- The transverse momentum distribution of a vector boson in hadronic collision

A 3 b

- Linear power corrections affecting shape observables in e^+e^- collisions
- Fully analytic method and factorisation
- $\bullet\,$ Results for thrust and $C\mbox{-parameter}$
- Conclusions and outlooks

- Entering in a very high precision era for LHC physics (HL-LHC)
- A huge amount of new data at an unprecedented accuracy is expected
- Keep increasing the accuracy of theoretical computations
- Need an input on Non-Perturbative (NP) (hadronisation) corrections, scaling as $\mathcal{O}(\Lambda_{\rm OCD}/Q)^p$
- Absence of a solid theoretical background for estimating NP corrections for generic collider observables which do not admit an OPE

Impact of Power Corrections

• QCD Master formula

$$d\sigma = \sum_{i,j} \int dx_1 dx_2 f_{i,p}(x_1) f_{j,p}(x_2) d\hat{\sigma}_{ij}(x_1 P_1, x_2 P_2) \times \left[1 + \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p \right]$$

• $d\hat{\sigma} = d\hat{\sigma}_{\text{LO}} + \underbrace{\left(\frac{\alpha_s}{\pi}\right)}_{\simeq 10\%} d\hat{\sigma}_{\text{NLO}} + \underbrace{\left(\frac{\alpha_s}{\pi}\right)^2}_{\simeq 1\%} d\hat{\sigma}_{\text{NNLO}} + \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p d\hat{\sigma}_{\text{NP}}$
• For $Q \simeq 100 \text{ GeV}$ and $p = 1$
 $\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p \simeq 1 - 10\%$

Non Perturbative and Topological Aspects of QCD - 29.05.2024

æ

• QCD Master formula

$$d\sigma = \sum_{i,j} \int dx_1 dx_2 f_{i,p}(x_1) f_{j,p}(x_2) d\hat{\sigma}_{ij}(x_1 P_1, x_2 P_2) \times \left[1 + \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p \right]$$

• $d\hat{\sigma} = d\hat{\sigma}_{\text{LO}} + \underbrace{\left(\frac{\alpha_s}{\pi}\right)}_{\simeq 10\%} d\hat{\sigma}_{\text{NLO}} + \underbrace{\left(\frac{\alpha_s}{\pi}\right)^2}_{\simeq 1\%} d\hat{\sigma}_{\text{NNLO}} + \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p d\hat{\sigma}_{\text{NP}}$
• For $Q \simeq 100 \text{ GeV}$ and $p = 1$
 $\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p \simeq 1 - 10\%$

Summary

It is crucial to properly estimate Non-Perturbative corrections

ъ

A 3 b

Overview on renormalons

• A generic observable D in a renormalizable QFT $D[\alpha] = \sum c_n \alpha^{n+1}$

This series diverges with factorial growth

$$c_n = a^n n!$$

Need to truncate the series at its minimum value $n_{\min} = 1/(|a|\alpha)$

$$c_{n_{\min}} \alpha^{n_{\min}+1} \simeq \sqrt{\frac{2\pi}{n_{\min}}} e^{-\frac{1}{|a|c|}}$$

• The Borel technique is a useful help

$$B[D](t) = \sum_{\text{Borel Transform}} c_n \frac{t^n}{n!} \Rightarrow \tilde{D} = \underbrace{\int_0^\infty dt e^{-t/\alpha} B[D](t)}_{\text{Borel integral}} = \int_0^\infty dt e^{-t/\alpha} \frac{1}{1 - at}$$

For a > 0 (fixed sign series) we find a pole along the integration path

$$\tilde{D}_{\pm} = \int_0^\infty \mathrm{d}t e^{-t/\alpha} \frac{1}{1 - at \pm i\eta}, \text{ the ambiguity is } \tilde{D}_{+} - \tilde{D}_{-} \propto e^{-1/(a\alpha)}$$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

What about QCD?

• An $\mathcal{O}(\alpha_s)$ correction to a generic observable

$$\frac{1}{Q^p} \int^Q \mathrm{d}l^p \alpha_s$$

• An all-order computation leads to replace

$$\frac{1}{Q^p} \int_0^Q \mathrm{d}l^p \frac{\alpha_s(Q)}{1 - \alpha_s(Q)b_0 \ln (Q^2/l^2)}$$
$$= \frac{1}{Q^p} \sum_n (-1)^n (2b_0)^n \alpha_s^{n+1}(Q) \int_0^Q \mathrm{d}ll^{p-1} \ln \left(\frac{l}{Q}\right)$$
$$\propto \underbrace{\sum_n \left(\frac{2b_0}{p}\right)^n n! \alpha_s^{n+1}(Q)}_{p \to 0} \to n_{\min} = \frac{p}{2b_0 \alpha_s(Q)}$$

- Fixed sign asymptotic series!
- The ambiguity takes the form

 $e^{-p/(2b_0\alpha_s(Q))} = \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^p \to \text{The factorial growth leads to power corrections!}$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

-6/27

What about QCD?

• An $\mathcal{O}(\alpha_s)$ correction to a generic observable

$$\frac{1}{Q^p} \int^Q \mathrm{d}l^p \alpha_s$$

Summary

The factorial growth for a perturbative series is dubbed a **Renormalon** as it is strictly connected to the renormalization group flow of the QFT

$$\frac{1}{Q^{p}} \int_{0}^{n} dl^{p} \frac{\alpha_{s}(Q)}{1 - \alpha_{s}(Q)b_{0}\ln(Q^{2}/l^{2})}$$

$$= \frac{1}{Q^{p}} \sum_{n} (-1)^{n} (2b_{0})^{n} \alpha_{s}^{n+1}(Q) \int_{0}^{Q} dl l^{p-1} \ln\left(\frac{l}{Q}\right)$$

$$\propto \sum_{n} \left(\frac{2b_{0}}{p}\right)^{n} n! \alpha_{s}^{n+1}(Q) \rightarrow n_{\min} = \frac{p}{2b_{0}\alpha_{s}(Q)}$$
Fixed sign asymptotic series!
The ambiguity takes the form

 $e^{-p/(2b_0\alpha_s(Q))} = \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^r \to \text{The factorial growth leads to power corrections!}$

What about QCD?

• An $\mathcal{O}(\alpha_s)$ correction to a generic observable

 $\alpha_s(Q)$

$$\frac{1}{Q^p} \int^Q \mathrm{d}l^p \alpha_s$$

Summary

The factorial growth for a perturbative series is dubbed a **Renormalon** as it is strictly connected to the renormalization group flow of the QFT

Case of our Interest

1 110

We talk about **Infrared linear** (p = 1) renormalons arising from low momentum regions

$$\propto \underbrace{\sum_{n} \left(\frac{2b_0}{p}\right)^n n! \alpha_s^{n+1}(Q)}_{n \min} \to n_{\min} = \frac{p}{2b_0 \alpha_s(Q)}$$

Fixed sign asymptotic series!

• The ambiguity takes the form

 $e^{-p/(2b_0\alpha_s(Q))} = \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^p \to \text{The factorial growth leads to power corrections!}$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

-6/27

The Large- n_f method

- Renormalons arise taking all the radiative corrections building up the running of α_s
- The running of α_s arises from the fermion bubble insertions along the gluon propagator if one works within the Large- n_f (n_f is the number of flavour) limit
- We take the Abelian limit of QCD $(n_f \to -\infty)$, decorating each gluon line with fermionic bubbles

$$\underbrace{-ig^{\mu\nu}}{k^2 + i\eta} \rightarrow \frac{-ig^{\mu\nu}}{k^2 + i\eta} \times \frac{1}{1 + \Pi(k^2 + i\eta, \mu^2, \epsilon) - \Pi_{\rm ct}}$$

$$\Pi(k^2 + i\eta, \mu^2, \epsilon) - \Pi_{\rm ct} = \alpha_s(\mu) \left(\frac{-n_f T_R}{3\pi}\right) \left[\log\left(\frac{|k^2|}{\mu^2}\right) - i\pi\theta(k^2) - \frac{5}{3}\right]$$

• Terms $(\alpha_s n_f)^k$ are fully calculable for each k

• Non-Abelianization at the end of the computation by implementing the Large- b_0 approximation

$$n_f \rightarrow -\frac{11C_A}{4T_R} + n_l$$

▶ < 글 ▶ < 글 ▶</p>

э.

The Large- n_f method

- An all order computation can be handled by taking the $\mathcal{O}(\alpha_s)$ corrections due to a gluon with mass λ
- For a generic IR-safe observable O we take its expectation value (Ferrario Ravasio, Nason, Oleari ('19))

$$\langle O \rangle = \underbrace{\langle O \rangle^{(\mathrm{b})}}_{\text{Born}} - \frac{1}{\alpha_s} \int \mathrm{d}\lambda \frac{\mathrm{d}\langle O \rangle_{\lambda}^{(1)}}{\mathrm{d}\lambda} \left[\frac{1}{\pi b_0} \arctan \frac{\pi b_0 \alpha_s}{1 + b_0 \alpha_s \log \lambda^2 / \mu_C^2} \right]$$

where

$$\langle O \rangle_{\lambda}^{(1)} = \underbrace{T_V(\lambda) + T_R(\lambda)}_{+ T_R(\lambda)} + \underbrace{T_R^{\Delta}(\lambda)}_{+ T_R(\lambda)}$$

Virtual and real corrections for a massive gluon

Nason, Seymour('95)

$$T_R^{\Delta}(\lambda) = \frac{1}{\sigma} \frac{3\pi}{\alpha_s T_F} \lambda^2 \int \mathrm{d}\Phi_{q\bar{q}} R_{q\bar{q}}(\lambda) \delta(\lambda^2 - m_{q\bar{q}}^2) \left[O(\Phi_{q\bar{q}}) - O(\Phi_{(q\bar{q})}) \right]$$

- All the logarithmically divergent terms as $\lambda \to 0$ cancel as O is IR-safe
- A linear term in λ in $\langle O \rangle_{\lambda}^{(1)} \to \text{IR}$ linear renormalon

Large- n_f limit in literature

It provides a reliable framework for estimating renormalon corrections

- Beneke, Braun (1995): looking for power corrections in Drell-Yan total cross section, proving that claims about resummation as probe for linear power corrections were unfounded;
- Nason, Seymour (1995): issues about power corrections in shape variables observables;
- Ferrario Ravasio, Nason, Oleari (2019): leptonic observables in top production and decay are affected by IR linear renormalons;
- Ferrario Ravasio, GL, Nason (2020): absence of IR linear renormalons in the p_T distribution of a Z boson in hadronic collisions;
- Caola, Ferrario Ravasio, GL, Melnikov, Nason (2021)+Ozcelik(2022): estimate of leading power corrections affecting Shape Variables in the 3-jet region;
- Nason, Zanderighi (2023): impact of power corrections on α_s fits using shape variables in the three-jet region

・ 戸 ト ・ ヨ ト ・ ヨ ト

The p_T of the Z

- One of the cleanest and best measured LHC observables
- Useful for BSM research and for constraining α_s and PDFs at LHC (Boughezal et al. ('17))
- Sub-percent level precision for normalized distributions measured at LHC (ATLAS and CMS ('15, '19))
- Theoretical uncertainties still at the percent level
- Z+jet @NNLO in QCD (Boughezal, Campbell et al. ('16), Gehrmann-De Ridder, Gehrmann et al. ('16), Gehrmann-De Ridder et al. ('18))
- Current state of the art is N3LO+N³LL (Chen et al. ('22))

The p_T of the Z

- One of the cleanest and best measured LHC observables
- Useful for BSM research and for constraining α_s and PDFs at LHC (Boughezal et al. ('17))

Motivation

Given the high precision reached for this observable, it is crucial to look for the presence of IR linear renormalons in the moderately large transverse momentum region!

The p_T of the Z: a kinematic argument

- The soft radiation pattern is not azimuthally symmetric
- A IR linear renormalon is strictly related to soft emissions

If we model a IR linear renormalon as due to the emission of a soft particle with transverse momentum $\sim \Lambda_{\rm QCD}$, we may assume that it can also affect the p_T^Z by recoil!

The p_T of the Z: working in the Large- n_f limit

• We consider the process $d(p_1)\gamma(p_2) \rightarrow Z(p_3)d(p_4)$ to work in the Large-n_f limit and to preserve the azimuthal color asymmetry ($E_{CM} = 300 \text{ GeV}$)

We (Ferrario Ravasio, GL, Nason ('20)) found $\langle O \rangle_{\lambda}^{(1)} \sim \left(\frac{\lambda}{p_T^c}\right)^2 \log\left(\frac{\lambda}{p_T^c}\right)$

No numeric evidence of a IR linear renormalon for the transverse momentum of the Z boson!

≣ ¢)α(

The p_T of the Z: working in the Large- n_f limit

• We consider the process $d(p_1)\gamma(p_2) \rightarrow Z(p_3)d(p_4)$ to Question

Is it possible to provide an analytic argument about the presence (absence) of linear power corrections?

We (Ferrario Ravasio, GL, Nason ('20)) found $\langle O \rangle_{\lambda}^{(1)} \sim \left(\frac{\lambda}{p_T^c}\right)^2 \log\left(\frac{\lambda}{p_T^c}\right)$

No numeric evidence of a IR linear renormalon for the transverse momentum of the Z boson!

Non Perturbative corrections to Shape Variables

- Shape Variables measure the geometry of a collision and are routinely used for the extraction of α_s from e^+e^- data, from high precision calculations
- It is crucial to consider NP corrections, related to hadronization effects

- From analytic techniques we obtain the values of α_s

• Several standard deviations away from the latest world average value $\alpha_s = 0.1179 \pm 0.0009$ [PDG]

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

Non Perturbative corrections to Shape Variables

- In the past NP corrections have been considered in the two-jet limit (Webber ('95), Nason and Seymour ('95), Dasgupta and Webber ('96) and many others...)
- The extracted value of NP corrections was then extrapolated to the three-jet region for fitting α_s , assuming there were equal

Is this assumption reliable?

• In a recent work (Luisoni, Monni, Salam ('20)) the authors showed that the NP correction in the three-jet symmetric point is different from the one in the two-jet limit for the *C*-parameter

Non Perturbative corrections to Shape Variables

- In the past NP corrections have been considered in the two-jet limit (Webber ('95), Nason and Seymour ('95), Dasgupta and Webber ('96) and many others...)
- The extracted value of NP corrections was then extrapolated to the three-jet region for fitting α_s , assuming there were equal

Is this assumption reliable?

• In a recent work (Luisoni, Monni, Salam ('20)) the authors showed that the NP correction in the three-jet symmetric point is different from the one in the two-jet limit for the *C*-parameter

Main Goal

Need a general framework to evaluate NP corrections affecting Shape Variables in a generic three-jet configuration

Linear Power Corrections: an analytic argument

Question

In a theory including a gluon with mass λ , under which hypotheses do $\mathcal{O}(\lambda)$ terms arise/cancel?

- We (Caola, Ferrario Ravasio, GL, Melnikov, Nason ('21)) observed that
 - For processes involving massless particles, virtual corrections cannot give rise to linear power corrections
 - **②** NLO QCD computation taking a gluon with mass λ Collinear regions of phase space take the form

$$\int rac{\mathrm{d}^2 ec{k}_\perp}{ec{k}_\perp^2+\lambda^2} f(\eta,\phi)$$

For certain kind of observables (C-parameter, Thrust,...) one has

$$\lim_{\eta \to +\infty} f(\eta, \phi) = e^{-|\eta|}$$

③ For this kind of observables we can rely on the leading **soft** approximation

Main result

No $\mathcal{O}(\lambda)$ corrections from observables that are inclusive with respect to the soft radiation!

Linear power corrections for Shape Variables

• Linear Power corrections in the three-jet region in the large- n_f limit $\gamma^*(q) \rightarrow q(p_1) + \bar{q}(p_2) + \gamma(p_3)$

• Contributions induced by the emission of a soft massive gluon with mass λ , which can further splits $g^*(k) \to q(l)\bar{q}(\bar{l})$

Linear power corrections affecting the cumulative distribution in the Large- n_f limit $\Sigma(v) = \sum_F \int d\sigma_F \theta(V(\Phi_F) - v)$

Linear Power Corrections to Shape Variables

• $\mathcal{O}(\lambda)$ terms for an observable V can only arise from the splitting contribution to $\Sigma(v;\lambda)$

$$\mathcal{T}_{\lambda}[\Sigma(v;\lambda)] = \mathcal{T}_{\lambda}\left[\int \mathrm{d}\Phi_{q\bar{q}} 2\pi\delta(m_{q\bar{q}}^2 - \lambda^2)|M(\{p\}, l, \bar{l})|^2\theta(V(\{p\}, l, \bar{l}) - v)\right]$$

Expanding in the soft limit we get

$$\mathcal{T}_{\lambda}[\Sigma(v;\lambda)] = \underbrace{\mathcal{T}_{\lambda}\left[\int \mathrm{d}\Phi_{q\bar{q}}2\pi\delta(m_{q\bar{q}}^2 - \lambda^2)|M(\{p\}, l, \bar{l})|^2\theta(V(\tilde{p}) - v)\right]}_{\mathcal{T}_{\lambda}\left[\int \mathrm{d}\Phi_{q\bar{q}}2\pi\delta(m_{q\bar{q}}^2 - \lambda^2)|M(\{p\}, l, \bar{l})|^2\delta(V(\{\tilde{p}\}) - v) \underbrace{\left[V(\{p\}, l, \bar{l}) - V(\{\tilde{p}\})\right]}_{\text{This term is suppressed in the soft region}\right]$$

We can rely on the leading soft approximation for $M(\{p\}, l, \bar{l})$

Linear Power Corrections to Shape Variables

• The phase space can be factorized

$$\mathrm{d}\Phi_{q\bar{q}}\delta(\lambda^2 - (l+\bar{l})^2) \propto \underbrace{\mathrm{d}\tilde{\Phi}_b}_{\gamma^* \to q\bar{q}\gamma} \times \underbrace{[\mathrm{d}k]}_{\mathrm{gluon \ phase \ space}} \times \underbrace{[\mathrm{d}l][\mathrm{d}\bar{l}]}_{g^* \to q\bar{q}}$$

• We use a smooth mapping in k (in the soft limit) to construct the real momenta $\{p_i\}$ from the underlying Born momenta $\{\tilde{p}_i\}$

$$p_i^{\mu} = \tilde{p}_i^{\mu} + R_{i,\nu}^{\mu}(\{\tilde{p}\})k^{\nu} + \mathcal{O}(k_0^2)$$

• We consider shape observables V (C-parameter and Thrust) such that

 $V(\{p\},l,\bar{l})-V(\{\tilde{p}\})=[V(\{\tilde{p}\},l,\bar{l})-V(\{\tilde{p}\})]+[V(\{p\})-V(\{\tilde{p}\})]+\mathcal{O}(k_0^2)$ \bullet We only need

 $V(\{p\},l,\bar{l})-V(\{\tilde{p}\})\rightarrow V(\{\tilde{p}\},l,\bar{l})-V(\{\tilde{p}\})$

▶ ▲ 車 ▶ ▲ 車 ▶ ▲ 車 ● の Q @

Only the emission term matters!

Linear Power Corrections to Shape Variables

• Linear power corrections can only arise from

 $V(\{\tilde{p}\},l,\bar{l})-V(\{\tilde{p}\})$

After a bit of algebra

$$\mathcal{T}_{\lambda}[\Sigma(v;\lambda)] = \int \mathrm{d}\sigma^{\mathrm{b}}(\tilde{\Phi}_b)\delta(V(\{\tilde{p}\}) - v) \times \left[\mathcal{N}\mathcal{T}_{\lambda}[I_V(\{\tilde{p}\},\lambda)]\right]$$

with

$$\begin{split} I_{V}(\{\tilde{p}\},\lambda) &= \int [\mathrm{d}k] \frac{J_{\mu}J_{\nu}}{\lambda^{2}} \theta \left(\omega_{\max} - \frac{(kq)}{\sqrt{q^{2}}} \right) \int [\mathrm{d}l] [\mathrm{d}\bar{l}] (2\pi)^{4} \delta^{(4)}(k-l-\bar{l}) \\ &\times \underbrace{\mathrm{Tr} \left[l\gamma^{\mu} \bar{l} \gamma^{\nu} \right]}_{g^{*} \to q\bar{q}} [V(\{\tilde{p}\},l,\bar{l}) - V(\{\tilde{p}\})] \end{split}$$

where

• $J^{\mu} = \frac{\tilde{p}_{1}^{\mu}}{(\tilde{p}_{1}k)} - \frac{\tilde{p}_{2}^{\mu}}{(\tilde{p}_{2}k)}$ is the soft eikonal current for the emission of a massive gluon

• ω_{\max} is a UV cut-off on the gluon energy in the rest frame of q

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

Separation of soft emission and recoil contributions

$$\begin{split} V(\{p\},l,\bar{l}) - V(\{\tilde{p}\}) &= V(\{\tilde{p}\},l,\bar{l}) - V(\{\tilde{p}\}) + \frac{\partial V(\{\tilde{p}\})}{\partial \tilde{p}_{i}^{\mu}} R_{i,\nu}^{\mu}(\{\tilde{p}\})k^{\nu} \\ &+ \underbrace{\left\{ \frac{\partial V(\{\tilde{p}\},l,\bar{l})}{\partial \tilde{p}_{i}^{\mu}} - \frac{\partial V(\{\tilde{p}\})}{\partial \tilde{p}_{i}^{\mu}} \right\}}_{\text{Suppressed in the soft region!}} R_{i,\nu}^{\mu}(\{\tilde{p}\})k^{\nu} + \mathcal{O}(k_{0}^{2}) \end{split}$$

We take observables linear in the soft emissions

$$\begin{split} V(\{p\}, l, \bar{l}) - V(\{\tilde{p}\}) &\approx V(\{\tilde{p}\}, l) - V(\{\tilde{p}\}) + \frac{\partial V(\{\tilde{p}\})}{\partial \tilde{p}_{i}^{\mu}} R_{i,\nu}^{\mu}(\{\tilde{p}\}) l^{\nu} \\ &+ V(\{\tilde{p}\}, \bar{l}) - V(\{\tilde{p}\}) \frac{\partial V(\{\tilde{p}\})}{\partial \tilde{p}_{i}^{\mu}} R_{i,\nu}^{\mu}(\{\tilde{p}\}) \bar{l}^{\nu} \end{split}$$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

4 E 5

Separation of soft emission and recoil contributions

We take observables linear in the soft emissions

$$\begin{split} V(\{p\}, l, \bar{l}) - V(\{\tilde{p}\}) &\approx V(\{\tilde{p}\}, l) - V(\{\tilde{p}\}) + \frac{\partial V(\{\tilde{p}\})}{\partial \tilde{p}_{i}^{\mu}} R_{i,\nu}^{\mu}(\{\tilde{p}\}) l^{\nu} \\ &+ V(\{\tilde{p}\}, \bar{l}) - V(\{\tilde{p}\}) \frac{\partial V(\{\tilde{p}\})}{\partial \tilde{p}_{i}^{\mu}} R_{i,\nu}^{\mu}(\{\tilde{p}\}) \bar{l}^{\nu} \end{split}$$

= 1)4

We can consider the equation

$$V(\{p\},l) - V(\{\tilde{p}\}) = \frac{l_t}{q} \frac{h_V}{\eta}(\eta,\varphi)$$

- The expression vanishes in the soft limit
- No linear power corrections can arise from hard collinear divergences (Caola, Ferrario Ravasio, GL, Melnikov, Nason ('21))
- h_V must be suppressed for large $|\eta|$ and arbitrary φ

$$\begin{split} W_{V} &= \int \frac{\mathrm{d}\eta \mathrm{d}\varphi}{2(2\pi)^{3}} \frac{h_{V}(\eta,\varphi)}{q} \\ I_{V}^{\mathrm{unreg}} &= W_{V} \times \lambda F \\ F(p_{1},p_{2},\tilde{l}) &= 16\pi \int [\mathrm{d}k] \frac{J^{\mu}J^{\nu}}{\lambda^{3}} \left\{ -2\tilde{l}^{\mu}\tilde{l}^{\nu} \frac{\lambda^{8}}{(2k\tilde{l})^{5}} - \frac{g^{\mu\nu}\lambda^{6}}{2(2k\tilde{l})^{3}} \right\} \\ &= -\frac{5\pi}{64} \to \text{Constant value!} \end{split}$$

We can consider the equation

Expression to evaluate

$$\mathcal{T}_{\lambda}[\Sigma(v;\lambda)] = \int \mathrm{d}\sigma^{\mathrm{b}}(\tilde{\Phi}_{\mathrm{b}})\delta(V(\tilde{\Phi}_{\mathrm{b}}) - v)\frac{\lambda}{q}[\mathcal{N}F(qW_{V})]$$
$$= \int \mathrm{d}\sigma^{\mathrm{b}}(\tilde{\Phi}_{\mathrm{b}})\delta(V(\tilde{\Phi}_{\mathrm{b}}) - v)\frac{\lambda}{q}\left[-\frac{15\pi}{64}\alpha_{s}\pi C_{F}\int \mathrm{d}\eta\frac{\mathrm{d}\varphi}{2\pi}h_{V}(\eta,\varphi)\right]$$

$$\begin{split} W_{V} &= \int \frac{\mathrm{d}\eta \mathrm{d}\varphi}{2(2\pi)^{3}} \frac{h_{V}(\eta,\varphi)}{q} \\ I_{V}^{\mathrm{unreg}} &= W_{V} \times \lambda F \\ F(p_{1},p_{2},\tilde{l}) &= 16\pi \int [\mathrm{d}k] \frac{J^{\mu}J^{\nu}}{\lambda^{3}} \left\{ -2\tilde{l}^{\mu}\tilde{l}^{\nu} \frac{\lambda^{8}}{(2k\tilde{l})^{5}} - \frac{g^{\mu\nu}\lambda^{6}}{2(2k\tilde{l})^{3}} \right\} \\ &= -\frac{5\pi}{64} \to \text{Constant value!} \end{split}$$

ъ

A 3 b

NP correction as a shift in the shape variable

- [Monni '12] 1/σ dσ/dT - ō NNLL+NNLO + power corr NNLL+NNLO • NP corrections show up as a ALEPH data shift in the Shape Observable PRELIMINARY 10 $\tilde{\Sigma}^{\text{had}}(v) = \Sigma(v - \delta_{\text{NP}}(v)) \approx \\ \tilde{\Sigma}(v) - \frac{1}{\sigma} \frac{d\sigma}{dV} \delta_{\text{NP}}(v)$ $Q = M_{\tau}$ $\alpha_{e}(M_{7}) = 0.1146$ 10 α_{o} (2GeV) = 0.4883 10 0.3 0.1 0.2 0.4 1-T
- As the total cross section is free from linear power corrections we get

$$\delta_{\rm NP}(v) = \frac{\mathcal{T}_{\lambda}[\Sigma(v;\lambda)]}{\mathrm{d}\sigma/\mathrm{d}V}$$

• Use the parameterisation

$$\delta_{\rm NP}(v) = h\zeta(v), \quad h \equiv \delta_{\rm NP}(0)$$

NP correction as a shift in the shape variable

• As the total cross section is free from linear power corrections we get

$$\delta_{\rm NP}(v) = \frac{\mathcal{T}_{\lambda}[\Sigma(v;\lambda)]}{\mathrm{d}\sigma/\mathrm{d}V}$$

• Use the parameterisation

$$\delta_{\rm NP}(v) = \mathbf{h}\zeta(v), \quad \mathbf{h} \equiv \delta_{\rm NP}(0)$$

NP shift in the Shape Variable: $q\bar{q}$ dipole emission

- Start with the process $\gamma^* \to q + \bar{q} + \gamma$
- The only emitting dipole is the $q\bar{q}$

$$\delta^{q\bar{q}\gamma}_{\mathrm{NP}} = \mathbf{h}\zeta_{q\bar{q}}(v), \quad \zeta_{q\bar{q}}(0) = 1$$

• Comparison of the analytic result with a full large- n_f computation for $\lambda = 0.1, 0.5, 1 \text{ GeV}, q = 100 \text{ GeV}$

NP shift in the Shape Variable: realistic case

- Linear power corrections come from the soft limit of the emission amplitude
- We extended our considerations to the realistic process $\gamma^* \to q\bar{q}g$
- Three emitting dipoles $(q\bar{q}, qg, \bar{q}g)$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWE

NP shift in the Shape Variable: realistic case

• The contributions from the three dipoles are additive

• The shape of NP correction is non trivial in the three-jet region!

• Estimate of the NP correction in the three-jet region for the first time!

Conclusions and Outlooks

- Understanding Non-Perturbative corrections to collider processes is now crucial, given the high precision reached at LHC
- Large- n_f method is a reliable framework to investigate $\mathcal{O}(\Lambda_{\rm QCD}/Q)^p$ corrections
- No linear terms if integrating inclusively over the soft radiation phase space: analytical proof about the absence of IR linear renormalons in the p_T distribution of the Z boson in hadronic collisions (Ferrario Ravasio, GL, Nason ('20))
- Fully analytic prediction for NP corrections for Thrust and C-parameter away from the two-jet region (Caola, Ferrario Ravasio, GL, Melnikov, Nason, Ozcelik ('22))
- Impact of these findings for α_s fits (Nason, Zanderighi ('23))
- Linear Power Corrections to the electroweak single top production at LHC (Makarov, Melnikov, Nason, Ozcelik ('23))
- Linear Power Corrections to top quark pair production (Makarov, Melnikov, Nason, Ozcelik ('23))
- Next directions: extensions to other observables, study of resummation effects and phenomenological applications

THANKS FOR THE ATTENTION!!!

Non Perturbative and Topological Aspects of QCD - 29.05.2024

- 4 B b - 4 B b

BACKUP

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS 28/2

Renormalons structure

For $\frac{\mathrm{d}\langle O \rangle_{\lambda}^{(1)}}{\mathrm{d}\lambda} \Big|_{\lambda=0} = A$ (constant), we take the $\lambda < \mu_C$ ($\mu_C = \mu e^{5/6}$) region $-\frac{1}{b_0 \alpha_s} \frac{\mathrm{d}\langle O \rangle_{\lambda}^{(1)}}{\mathrm{d}\lambda} \Big|_{\lambda=0} \int_0^{\mu_C} \frac{\mathrm{d}\lambda}{\pi} \arctan \frac{\pi b_0 \alpha_s}{1 + b_0 \alpha_s \ln \frac{\lambda^2}{\mu_C^2}}$

Taking $a = b_0 \alpha_s, \lambda/\mu_C = l$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

The p_T of the Z in the large- n_f limit

- $\bullet\,$ No existing large- n_f computation for a process with a Born level gluon
- $d(p_1)\gamma(p_2) \to Z(p_3)d(p_4)$ as proxy for the real QCD process

• The azimuthal asymmetry of the soft emission pattern is preserved

An all-order large- n_f computation is possible

The p_T of the Z in the large- n_f limit

Evaluation of the cross section

$$\sigma = \sigma_{\rm B} - \frac{1}{b_0 \alpha_s(\mu)} \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\mathrm{d}T(\lambda)}{\mathrm{d}\lambda} \arctan \frac{\pi b_0 \alpha_s}{1 + b_0 \alpha_s \ln^2 \frac{\lambda^2}{\mu_c^2}}$$

Computation of $T(\lambda)$ for different λ values

$$T(\lambda) = T_V(\lambda) + T_R(\lambda) + T_{\oplus}(\lambda) + T_{\ominus}(\lambda) + T_{\ominus}^{\Delta}(\lambda) + T_R^{\Delta}(\lambda)$$

• The Δ terms can be neglected as we are inclusive with respect to the splitting of the gluon in a $q\bar{q}$ pair

- A - E - M-

-

• DIS scheme for subtracting the initial state collinear singularity for the gluon $(T_{\oplus}(\lambda))$

• The integration diverges as $p_{T,Z}$ approaches 0

$$F_{\rm supp} = \frac{p_{\rm T,Z}^4}{p_{\rm T,Z}^4 + p_{\rm T,cut}^4}$$

• $T_V(\lambda)$:

- **1** UV divergences extracted in CDR $(d = 4 2\epsilon)$ and canceled in the total
- 2 IR divergences regulated by the gluon mass λ
- $T_B(\lambda)$ evaluated in 4 dimensions:
 - IR divergences when q gets soft or collinear to either the initial or final d quark (arising as $\ln \lambda$, $\ln^2 \lambda$ as $\lambda \to 0$)
 - IR singularity associated with the splitting of the initial state photon

• • = • • = •

The p_T of the Z: real contribution

$$T_R(\lambda) = \int \mathrm{d} \mathbf{\Phi}_{g^*} R_{g^*}(\mathbf{\Phi}_{g^*}) \Theta(\mathbf{\Phi}_{g^*})$$

The real squared amplitude is divided in three regions

$$R^{(1)} = \frac{\frac{1}{p_{T,d}^2}}{\frac{1}{p_{T,d}^2} + \frac{1}{m_{T,g}^2} + \frac{(E_d + E_g)^2}{E_d E_g m_{d,g}^2}}R$$

$$R^{(2)} = \frac{\frac{1}{m_{T,g}^2}}{\frac{1}{p_{T,d}^2} + \frac{1}{m_{T,g}^2} + \frac{(E_d + E_g)^2}{E_d E_g m_{d,g}^2}}R$$

$$R^{(3)} = \frac{\frac{(E_d + E_g)^2}{E_d E_g m_{d,g}^2}}{\frac{1}{p_{T,d}^2} + \frac{1}{m_{T,g}^2} + \frac{(E_d + E_g)^2}{E_d E_g m_{d,g}^2}}R$$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

-33/27

The p_T of the Z: results

Our setup:

•
$$f_d^{(1)}(x = x_{\oplus}) = f_{\gamma}^{(2)}(x = x_{\ominus}) = \frac{(1-x)^3}{x}$$

- $M_Z = 91.188 \text{ GeV}$
- $E_{\rm CM} = 300 \; {\rm GeV}$

•
$$\sigma(p_T^Z > p_T^c) \ (p_T^c = 20, 40 \text{ GeV})$$

•
$$\sigma(p_T^Z > p_{\mathrm{T}}^c, 0 < y < y_{\mathrm{cut}} = 0.6)$$

• $\mu_{\rm F} = M_Z$

We fit $T(\lambda)$ with the fitting function

$$f(\lambda) = a \left[1 + b \left(\frac{\lambda}{p_{\rm T}^c} \right) + c \left(\frac{\lambda}{p_{\rm T}^c} \right)^2 \ln^2 \left(\frac{\lambda}{p_{\rm T}^c} \right) + d \left(\frac{\lambda}{p_{\rm T}^c} \right)^2 \ln \left(\frac{\lambda}{p_{\rm T}^c} \right) \right]$$

A 3 b

ъ

The p_T of the Z:results

• $\lambda = 5$ GeV excluded from the fit

- b first included and then set to 0 to study its impact on $T(\lambda)$
- $b = 0.009 \pm 0.004$ for $p_T^c = 20$ GeV and $b = 0.024 \pm 0.017$ for $p_T^c = 40$ GeV

ъ

The p_T of the Z: results for a more exclusive analysis

• $b = -0.001 \pm 0.009$ for $p_{\rm T}^c = 20$ GeV and $b = 0.015 \pm 0.025$ for $p_{\rm T}^c = 40$ GeV

We (Ferrario Ravasio, GL, Nason ('20)) found $\frac{\langle O \rangle_{\lambda}^{(1)} \sim \left(\frac{\lambda}{p_{\rm T}^c}\right)^2 \ln\left(\frac{\lambda}{p_{\rm T}^c}\right)}{\ln\left(\frac{\lambda}{p_{\rm T}^c}\right)}$

36/27

-

- A - E - M

The p_T of the Z: results for a more exclusive analysis

• $b = -0.001 \pm 0.009$ for $p_{\rm T}^c = 20$ GeV and $b = 0.015 \pm 0.025$ for $p_{\rm T}^c = 40$ GeV

We (Ferrario Ravasio, GL, Nason ('20)) found $\frac{\langle O \rangle_{\lambda}^{(1)} \sim \left(\frac{\lambda}{p_{\rm T}^c}\right)^2 \ln\left(\frac{\lambda}{p_{\rm T}^c}\right)}{\ln\left(\frac{\lambda}{p_{\rm T}^c}\right)}$

36/27

• • • • • • • •

-

The p_T of the Z: results for a more exclusive analysis

• $b = -0.001 \pm 0.009$ for $p_{\rm T}^c = 20$ GeV and $b = 0.015 \pm 0.025$ for $p_{\rm T}^c = 40$ GeV

We (Ferrario Ravasio, GL, Nason ('20)) found

$$\frac{\langle O \rangle_{\lambda}^{(1)} \sim \left(\frac{\lambda}{p_{\rm T}^c}\right)^2 \ln\left(\frac{\lambda}{p_{\rm T}^c}\right)}{\ln\left(\frac{\lambda}{p_{\rm T}^c}\right)}$$

36/27

Shape Variables: Details of the Computation

• Two shape variables O such that $\frac{d\sigma}{dO} = \sigma_0 \delta(O)$ at LO **1** Thrust (2/3 < T < 1) $\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} E_{i}} \rightarrow \begin{cases} \tau = 0 & \text{2-jet region} \\ \tau = 1/3 & \text{3-jet symmetric point} \end{cases}$ (2) C-parameter (0 < C < 1) $3 - \frac{3}{2Q^2} \sum_{i=1}^{\infty} \frac{(p_i \cdot p_j)^2}{E_i E_j} \rightarrow \begin{cases} C = 0 & \text{2-jet region} \\ C = 3/4 & \text{3-jet symmetric point} \end{cases}$ 0.4 0.5 0.3 0.4 C/a0)da/dC 0.3 0.2 0.2 0.1 0.1 ٥ 0.1 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.25 03 0

• The C-parameter has a Sudakov shoulder within the physical range (C = 3/4)

τ/σ₀)dσ/dτ

.

0.6 0.7 0.8

Direct analytic integration: the case of the C-parameter

We take V = C and decompose

$$I_C(\tilde{p}_1, \tilde{p}_2, \tilde{p}_3, \lambda) = -\frac{3\lambda}{4\pi^3 q} \sum_{i=1}^5 I_i(x, y, \lambda)$$

where

$$I_i(x,y,\lambda) = \int_0^{\beta_{\max}} \mathrm{d}\beta G_i(\beta,x,y)$$

with

- $q = \sqrt{q^2}$
- β is the velocity of the massive gluon in the q rest frame $(\beta_{\text{max}} = \sqrt{1 \lambda^2 / \omega_{\text{max}}^2})$
- x and y parameterise the three-jet kinematics
- G_5 is the most interesting one

Direct analytic integration: the case of the C-parameter

• G_5 integrable at $\beta = 1$ but not at $\beta = 0$

$$I_5^{\rm reg} = \int_{\beta_{\rm min}}^1 \mathrm{d}\beta \ G_5(x, y, \lambda)$$

• The result can be expressed in terms of the two complete elliptic integrals

$$\begin{split} G_5 &= \frac{\sqrt{1-\beta^2} \ln \left(\frac{1+\beta}{1-\beta}\right) \ln \left(\frac{\sqrt{1-\beta^2}c_{12}^2+\beta s_{12}}{\sqrt{1-\beta^2}c_{12}^2-\beta s_{12}}\right)}{64\beta^8 s_{12}x(x(y-1)+1)(xy-1)\sqrt{1-\beta^2}c_{12}^2} \\ &\times \left(\beta^6 x \left[x^2(y-1)y+x \left(-4y^2+4y-5\right)+5\right]+\beta^4 \left[x^2 \left(54y^2-54y-21x^3 (y-1)y+55x-38\right]+5\beta^2 \left[x^2 \left(-24y^2+24y+5\right)\right.\right.} \right. \\ &\left. + 11x^3 (y-1)y-17x+12\right] - 35(x-2) \left(x^2 (y-1)y+x-1\right) \right). \end{split}$$

$$\begin{split} K(z) &= \int_0^1 \frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-zt^2)}},\\ E(z) &= \int_0^1 \frac{\mathrm{d}t\,\sqrt{1-zt^2}}{\sqrt{1-t^2}} \end{split}$$

$$\mathcal{T}_{\lambda}[\Sigma(c,\lambda)] = \int \mathrm{d}\sigma^{\mathrm{b}}\delta(C(\Phi_{\mathrm{b}}) - c) \\ \times \alpha_{s}C_{F}\frac{45\pi}{16}\frac{s_{12}^{3}}{1 - z_{3}} \left[\frac{(1 + z_{3})}{2}K(c_{12}^{2}) - (1 - z_{1}z_{2})E(c_{12}^{2})\right] \left(\frac{\lambda}{q}\right) \\ \quad < \Box \times <\mathbf{O}_{F} <\mathbf{O$$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

Direct analytic integration: the case of the C-parameter

•
$$G_5$$
 integrable at $\beta = 1$ but not
at $\beta = 0$
 $I_5^{\text{reg}} = \int^1 d\beta \ G_5(x, y, \lambda)$
Check
• In the two-jet limit $(c_{12} = 0, \ z_2 \to 0, \ z_1 + z_3 \to 1):$
 $\frac{T_{\lambda}[\Sigma(0,\lambda)]}{d\sigma/dC|_{c=0}} = -\frac{15}{16}\pi^2(\frac{\lambda}{q})\alpha_s$
• In the three-jet symmetric point $(c_{12} = 0, \ z_i = 1/3):$
 $\frac{T_{\lambda}[\Sigma(3/4,\lambda)]}{d\sigma/dC|_{c=3/4}} = \frac{15}{32}\sqrt{3}\pi[3K(1/4) - 4E(1/4)](\frac{\lambda}{q})\alpha_s$
 $E(z) = \int_0^1 \frac{dt \sqrt{1-zt^2}}{\sqrt{1-t^2}}$
 $\mathcal{T}_{\lambda}[\Sigma(c,\lambda)] = \int d\sigma^b \delta(C(\Phi_b) - c)$
 $\times \alpha_s C_F \frac{45\pi}{16} \frac{s_{12}^3}{1-z_3} \left[\frac{(1+z_3)}{2}K(c_{12}^2) - (1-z_1z_2)E(c_{12}^2) \right] \left(\frac{\lambda}{q}\right)$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

54y -

Shape Variables: Computation in the Large- n_f limit

• Computation of

$$\langle O \rangle_{\lambda}^{(1)} = T_V(\lambda) + T_R(\lambda) + T_R^{\Delta}(\lambda)$$

with

$$T_R^{\Delta}(\lambda) = \frac{1}{\sigma_0} \frac{3\pi}{\alpha_s T_F} \lambda^2 \int \mathrm{d}\Phi_{q\bar{q}} R_{q\bar{q}}(\lambda) \delta(\lambda^2 - m_{q\bar{q}}^2) \bigg[O(\Phi_{q\bar{q}}) - O(\Phi_{(q\bar{q})}) \bigg]$$

• The integration diverges in the two-jet limit

$$F_{\rm supp} = C^2$$

• $T_V(\lambda)$:

() IR divergences regulated by the gluon mass λ

2 UV divergences regulated in CDR $(d = 4 - 2\epsilon)$ and canceled in the total

- $T_R(\lambda)$ evaluated in 4 dimensions:
 - **()** IR divergences arising as γ gets soft or collinear to either d or \overline{d}

• • = • • = •

Shape Variables: Computation in the Large- n_f limit

$$T_R(\lambda) = rac{1}{\sigma_0} \int \mathrm{d} \Phi_{3+1} R^{(\lambda)}_{g*}(\Phi_{3+1}) O_{3+1}$$

• The real squared amplitude is divided in three regions

$$R = R^{(1)} + R^{(2)} + R^{(3)}$$

$$\begin{aligned} R^{(1)} &= \frac{f_{d\gamma}^2 + f_{\bar{d}\gamma}^2}{f_{d\gamma}^2 + f_{\bar{d}\gamma}^2 + f_{dg}^2 + f_{\bar{d}g}^2} R \quad (\gamma \parallel d(\bar{d}), \gamma \text{ soft} \\ R^{(2)} &= \frac{f_{dg}^2}{f_{d\gamma}^2 + f_{\bar{d}\gamma}^2 + f_{dg}^2 + f_{\bar{d}g}^2} R \quad (g \parallel d) \\ R^{(3)} &= \frac{f_{\bar{d}g}^2}{f_{d\gamma}^2 + f_{\bar{d}\gamma}^2 + f_{dg}^2 + f_{\bar{d}g}^2} R \quad (g \parallel \bar{d}) \\ f_{ij} &= \frac{E_i + E_j}{(k_i + k_j)^2} \quad (i, j = d, \bar{d}, \gamma, g) \end{aligned}$$

• $R^{(1)}$ integrated within the POWHEG-BOX, $R^{(2)}, R^{(3)}$ with a separated Fortran code • $\gamma^* \to d\bar{d}\gamma q\bar{q} \Rightarrow$ IR finite as $\lambda \to 0$, QED singularity from γ (POWHEG-BOX)

Shape Variables: Results for Kinematical Distributions

- $\langle O \rangle_{\lambda}^{(1)} \langle O \rangle_{0}^{(1)}$, with $O = \delta(z z(\Phi))$, for t = 1 Thrust and C-parameter
- Computation for $\lambda = 0.5, 1$ GeV, for Q = 100 GeV
- $\bullet\,$ Comparison between analytical approach (A) and Large- $n_f\,$ limit (B)

- Behaviour in λ is nearly linear
- Excellent agreement between the two methods
- $\mathcal{O}(\lambda^2)$ entering for $C \lesssim 0.15$ and $t \lesssim 0.07$

Non Perturbative and Topological Aspects of QCD - 29.05.2024 CALCULATING POWER CORRECTIONS

Comparison with literature

- Ambiguous prediction in the bulk of the three-jet region
- Different results depending on the way of handling the recoil due to the emission of a soft massless gluon
- Perfect agreement with our results if using a mapping which satisfies our requirements (Catani-Seymour, PanLocal, PanGlobal)

• All the recoil schemes give the same prediction at the endpoints c = 0, c = 3/4, where the recoil effect are strongly suppressed

Impact on α_s fits

• Impact of NP corrections on α_s fits (Nason, Zanderighi '23)

ъ