QGP signals in small systems

Non-Perturbative and Topological Aspects of QCD May 28th, 2024

Katarína Křížková Gajdošová

Czech Technical University in Prague

This work was supported by a grant from The Czech Science Foundation, grant number: 23-07499S

Creation of quark-gluon plasma in large systems

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements:

anisotropic flow

Thermalised medium

Signatures:

modification of hadronisation thermal photon radiation

Measurements:

particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

100

1015

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

t (fm/c)

Creation of quark-gluon plasma in large systems

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements:

anisotropic flow

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Thermalised medium

Signatures:

modification of hadronisation thermal photon radiation

Measurements:

particle yields particle spectra

100

1015

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

t (fm/c)

Near-side ridge: consequence of QGP

Near-side long-range ridge in azimuthal correlations between two particles

Direct consequence of the presence of the QGP

 $\Delta \varphi, \Delta \eta$

Non-Perturbative and Topological aspects of QCD | 28.05.2024

 $\Delta \varphi, \Delta \eta$

Anisotropic flow: response to geometry

Anisotropic flow: response to geometry

Non-Perturbative and Topological aspects of QCD | 28.05.2024

6

Creation of quark-gluon plasma in large systems

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements: anisotropic flow

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Thermalised medium

Signatures:

modification of hadronisation thermal photon radiation

Measurements:

particle yields particle spectra

100

LHCb

1015

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

t (fm/c)

Collective anisotropic medium expansion Thermal isotropic medium expansion → constituents flow with similar velocity

Interplay of these effects results in **mass-dependent** momentum distributions

Non-Perturbative and Topological aspects of QCD | 28.05.2024

QGP expansion and hadronisation

Modified hadron formation mechanism ➡ near-by partons coalesce into hadrons

Mass dependence of momentum distributions

Non-Perturbative and Topological aspects of QCD | 28.05.2024

• Interplay of radial and anisotropic expansion \rightarrow mass ordering • Intermediate-p_T: coalescence → particle-type grouping

→ Partonic collectivity: deconfined medium where partons flow

Mass dependence of momentum distributions

Creation of quark-gluon plasma in large systems

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

Non-Perturbative and Topological aspects of QCD | 28.05.2024

100

Thermalised medium

modification of hadronisation thermal photon radiation

particle spectra

1015

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

t (fm/c)

Parton energy loss in the QGP

Parton energy loss in the QGP

Non-Perturbative and Topological aspects of QCD | 28.05.2024

p, (GeV) CMS, JHEP 04 (2017) 039

Creation of quark-gluon plasma in large systems

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

Non-Perturbative and Topological aspects of QCD | 28.05.2024

100

1015

Thermalised medium

thermal photon radiation

particle spectra

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

t (fm/c)

Creation of quark-gluon plasma in large systems

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

all these effects-are-(were) understood as unique signatures of the QGP

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements: anisotropic flow

Signatures: modification of hadronisation thermal photon radiation

Measurements: particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

w.r.t

baseline represented by vacuum processes in small collision systems

Thermalised medium

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

Example: ridge is not unique to Pb-Pb

ATLAS, EPJC (2018) 78:997

LHCb, PLB 762 (2016) 473

Ridge observed universally across collision systems

Non-Perturbative and Topological aspects of QCD | 28.05.2024

CMS, PLB 765 (2017) 193

What else is universal?

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements: anisotropic flow

Thermalised medium

Signatures: modification of hadronisation thermal photon radiation

Measurements: particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Dense & deconfined medium

Signatures: parton energy loss

quarkonia dissociation

Measurements:

nuclear modification factor

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements: anisotropic flow

Signatures: modification of hadronisation thermal photon radiation

Measurements: particle yields

particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Thermalised medium

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

high multiplicity

Collectively expanding

Signatures:

modification of momentum and angular distributions

Measurements: anisotropic flow

Signatures: modification of hadronisation

Measurements: particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Thermalised medium

Dense & deconfined medium

Signatures:

parton energy loss

Measurements:

nuclear modification factor

high multiplicity

Anisotropic flow in small systems

No sharp turn-off as a function of multiplicity

We do not "switch-off" collectivity ?

Anisotropic flow in small systems

No sharp turn-off as a function of multiplicity

We do not "switch-off" collectivity ?

Response to initial geometry

Subnucleon fluctuations important in small systems

Sensitivity to the presence of jets

Long-range correlations not affected by the presence of hard process

No significant change in v_2 when:

- Removing particles associated with jets
- Selecting events with jets (while removing particles associated with jets)

< <

Signatures:

modification of momentum and angular distributions

Signatures:

modification of hadronisation

Measurements: anisotropic flow

Can we ever switch it off?

particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Thermalised medium

Dense & deconfined medium

Signatures:

parton energy loss

Measurements: nuclear modification factor

high multiplicity

Measurements at the extremes

Ultraperipheral collisions to probe the IS effects?

UPC investigate saturation effects in the incoming nucleus ➡ very early collision times

ATLAS, PRC 104, 014903 (2021)

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Finite v₂, but with smaller magnitude than in hadron collisions

Effects of the initial state (CGC-like)?

"Standard flow model": response to geometry?

or

VM 🔾 🔶 🗲 🖉 Pb

Pb

CGC model: Shi et al., PRD 103, 054017 (2021) Hydro model: Zhao et al., PRL 129 (2022) 252302

Enhanced azimuthal anisotropies in jets?

Collectively expanding

Signatures:

 \checkmark

modification of momentum and angular distributions

Measurements: anisotropic flow

Thermalised medium

Signatures:

modification of hadronisation thermal photon radiation

Measurements:

particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Dense & deconfined medium

Signatures:

parton energy loss

Measurements: nuclear modification factor

high multiplicity

Hadron species dependence of flow in p-Pb/pp

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Collectively expanding medium

➡ constituents flow with similar velocity, and coalesce into hadrons

Mass ordering

Particle-type grouping

One of the most prominent **signatures of** partonic (deconfined) medium

28

Again: how low in N_{ch} do we observe this?

PID flow down to low multiplicity in pPb

Features of partonic collectivity remain at smaller multiplicities

ALI-PREL-543476

Even charm flows in small systems ?

created in vacuum during early hard scatterings (partially) equilibrated with the medium via interactions

if heavy quark participates in the collective expansion of the medium

Even charm flows in small systems ?

created in vacuum during early hard scatterings

(partially) equilibrated with the medium via interactions

if heavy quark participates in the collective expansion of the medium

Nonzero v₂ of charm hadrons in pp and p-Pb

Sign of thermalisation with (some) medium ? Left-over from initial state effects ?

What about charm baryons? Grouping effect? Measurements at low N_{ch}?

CMS, PLB 813 (2021) 136036

Collectively expanding

Signatures:

 \checkmark

modification of momentum and angular distributions

Measurements: anisotropic flow

Signatures: modification of hadronisation thermal photon radiation

Measurements: particle yields

particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

high multiplicity

Thermalised medium

Dense & deconfined medium

Signatures: parton energy loss

More about this topic its: cation factor in the next talk

Collectively expanding

Signatures:

 \checkmark

modification of momentum and angular distributions

Measurements: anisotropic flow

Thermalised medium

Signatures: modification of hadronisation thermal photon radiation

Measurements: particle yields

particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Dense & deconfined medium

Signatures:

parton energy loss quarkonia dissociation

Measurements:

nuclear modification factor

high multiplicity

Parton energy loss in p-Pb collisions?

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Absence of suppression in p—Pb collisions

Does it mean absence of parton energy loss in small systems?

Note: both ALICE and ATLAS observe non-zero v₂ of (mini)-jets and high-p⊤ hadrons

ALICE, arXiv: 2212.12609 ATLAS, EPJC (2020) 80:73

Other way to address parton energy loss

hadron - jet acoplanarity

looking at broadening/suppression of the recoiling jet w.r.t. trigger high-p⊤ hadron

$$\Delta_{\text{recoil}}(p_{\text{T}},\Delta\varphi) = \frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{jet}}}{\mathrm{d}p_{\text{T,jet}}^{\text{ch}} \mathrm{d}\Delta\varphi} \bigg|_{p_{\text{T,trig}}\in\text{TT}_{\text{Sig}}} - c_{\text{Ref}} \times \frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{jet}}}{\mathrm{d}p_{\text{T,jet}}^{\text{ch}} \mathrm{d}\Delta\varphi} \bigg|_{p_{\text{T,trig}}\in\text{TT}_{\text{Ref}}}$$

No confirmation of parton energy loss yet

The effect is reproduced with PYTHIA Monash

Collectively expanding

Signatures:

 \checkmark

modification of momentum and angular distributions

Measurements: anisotropic flow

 \checkmark

Thermalised medium

Signatures: modification of hadronisation thermal photon radiation

Measurements: particle yields particle spectra

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Dense & deconfined medium

Signatures: parton energy loss

quarkonia dissociation

Measurements:

nuclear modification factor

high multiplicity

How sure are we about the QGP hypothesis?

Standard heavy-ion paradigm of flow:

initial geometry

(fluctuating nucleon/subnucleon distributions)

final state interactions (strings, partons, hadrons, ...)

Is the underlying physics of *small & dilute* in essence the same as in *large & dense?*

Non-Perturbative and Topological aspects of QCD | 28.05.2024

collective correlations (flow)

37

How sure are we about the QGP hypothesis?

Standard heavy-ion paradigm of flow:

initial geometry

(fluctuating nucleon/subnucleon distributions)

final state interactions (strings, partons, hadrons, ...)

Is the underlying physics of *small & dilute* in essence the same as in *large & dense?*

ruled out / not dominant \rightarrow Such correlations may vanish very quickly, or are excluded from measurements by applying $\Delta \eta$ gaps

seems to be the preferrable option (?) YES

 \rightarrow But, does this mean that we accept hydro-like picture down to minimum bias pp collisions?

 \rightarrow Hydrodynamics has its limitations

collective correlations (flow)

Alternative explanations (initial gluon momentum correlations - CGC)

Schenke, Schlichting, Singh, PRD 105, 094023 (2022)

Flow built as a **response to initial geometry**

The big picture of small systems

How do other phenomena fit into the picture?

Non-Perturbative and Topological aspects of QCD | 28.05.2024

- ... should we expect jet quenching?
 - ... should we expect to see any thermal radiation?
 - ... should we expect to see any quarkonia dissociation?

Can we reach a unified picture of QCD collectivity across system size?

39

Mass dependence of momentum distributions

Anisotropic flow in small systems

Anisotropic flow in heavy-ion collisions

number of particles used to quantify v_n :

V₂{2}

various processes can give two-particle correlation signal

we focus on multiparticle correlations

genuine collectivity

Collectivity observed across systems

ATLAS, PRC 97, 024904 (2018) ALICE, PRL 123, 142301 (2019)

Small systems exhibit collective behavior

What is the origin of collectivity?

Anisotropic flow in small systems

No sharp turn-off as a function of multiplicity

We do not "switch-off" collectivity ?

Response to initial geometry

Subnucleon fluctuations important in small systems

Non-Perturbative and Topological aspects of QCD | 28.05.2024

CMS, PRC 101, 014912 (2020)

Ratios of multi-particle cumulants consistent with geometry-driven assumption

Do heavy quarks flow in small systems?

Quantitative description of charm flow with the **initial state model** (though charm and bottom flow predicted to be the same)

Non-Perturbative and Topological aspects of QCD | 28.05.2024

vs.

Zhang et al., PRD 102, 034010 (2020)

Parton energy loss in p-Pb collisions?

ALICE, JHEP 09 (2015) 170

ALICE, PLB 783 (2018) 95

ALICE-PUBLIC-2019-001

Non-Perturbative and Topological aspects of QCD | 28.05.2024

- If there is parton energy loss in small systems, how big should we expect the signal?
- Are there other observables with good enough precision to reveal a small signal of parton energy loss?
- Limits for pp collisions could be set in Run 3

47

Parton energy loss in peripheral Pb-Pb

Other way to address parton energy loss

Theory: this magnitude of flow at high pt should come with a significant jet quenching

EXPERIMENT	THEORY
$v_2(p_T) > 0$	$v_2(p_T) > 0$
$R_{pPb} \approx 1$	$R_{pPb} < 1$

IS effects may be important for flow

Non-Perturbative and Topological aspects of QCD | 28.05.2024

- Flow = initial geometry + final state interactions
- Flow = initial (gluon) momentum correlations

$$\frac{Re\langle \overrightarrow{\epsilon_{2}} \cdot \overrightarrow{V_{2}^{*}} \rangle}{\langle |\overrightarrow{\epsilon_{2}}|^{2} \rangle \langle |\overrightarrow{V_{2}}|^{2} \rangle}$$

correlation of flow with initial spatial anisotropy

$$\frac{Re\langle \overrightarrow{\epsilon_p} \cdot \overrightarrow{V_2^*} \rangle}{\langle |\overrightarrow{\epsilon_p}|^2 \rangle \langle |\overrightarrow{V_2}|^2 \rangle}$$

correlation of flow with initial momentum anisotropy

Effects of the initial state may become significant below some multiplicity region

50

Inconclusive results?

Correlation between flow and mean-pt

$$\rho(v_2^2, [p_T]) = \frac{\text{Cov}(v_2^2, [p_T])}{\sqrt{\text{Var}(v_2^2)}\sqrt{\text{Var}([p_T])}}$$

Non-Perturbative and Topological aspects of QCD | 28.05.2024

Sign change dissapears when large rapidity gap between

the desired effects of the initial state

51