Preprint: arXiv:2405.05048 (May 8th), HepData: ins2784422 (May 29th), Rivet: In Validation

Strangeness of the Underlying Event with ATLAS

Tim Martin (STFC) 30th May 2024 *Non-Perturbative and Topological Aspects of QCD*

Analysis Outline

- Use Underlying Event style measurements to probe hadronisation with strange particles (Kaon and Λ^0), making use of their displaced decay vertices.
 - Near $\Lambda_{_{QCD}}$, sensitive to hadronisation.
 - \circ Λ baryon production probes three-way colour reconnection.
- Leading charged-particle jet reconstructed from prompt charged particles defines the event axis in the azimuth.
- Single-interaction 13 TeV pp data from "special runs" in 2025 with $<\mu>$ ~ 0.03
 - 110M events recorded with minimum-bias trigger.
 - 67M events passing analysis' event selection.
- Look beyond the *mean* activity levels in the underlying event...

Prior Work Eur. Phys. J. C (2016) 76 T. Martin, P. Skands, S. Farrington Warwick-Monash Alliance

- Measure sensitive quantities as a function of the per-event number of multi-particle interactions.
 - \circ \quad Except this is not an observable, but there are proxy variables
 - We use the number of prompt charged particles in the transverse region, for events with leading anti-k_t charged-particle jet p_T > 10 GeV as a proxy to the amount of MPI.
 - Measure the strange yield in the different underlying event regions with respect to this.

Event-by-event, N may be far from this mean....

The per-event number of particles correlates with the number of soft / semi-hard scatters (at least, it does in Pythia...).

Prior Work Eur. Phys. J. C (2016) 76 T. Martin, P. Skands, S. Farrington Warwick-Monash Alliance

- Ratio of Λ^0 to K_s^0 in the Transverse region as a function of this proxy
- Discrimination between models.

Analysis Cuts - Event Selection

- Two event selections, events failing either of these are **vetoed**
- Must have Prompt $N_{ch} > 0$, with $p_T > 1$ GeV and $|\eta| < 2.5$
- Make R=0.4 ak, charged-particle jets with prompt { $p_{T} > 500$ MeV, $|\eta| < 2.5$ }
- The leading jet within |η| < 2.1 must be p_T > 1 GeV

Analysis Cuts - Prompt and Strange Selection

- Prompt selection of all stable charged with { $p_{\tau} > 500$ MeV, $|\eta| < 2.1$ }
- K_s^0 and Λ^0 selection at reco. from two-particle V⁰ vertices. Special "low pT (~100 MeV, large d0
 - 0 K_s, Λ: |η| < **1.0**
 - K_c: p_τ > **400 MeV**, Λ⁰: p_τ > **750 MeV** 0
 - $K_s: \cos(\Theta) > 0.9990$, $\Lambda^0: \cos(\Theta) > 0.9998$ (3D pointing angle of V⁰ momentum vector from primary vertex) 0
 - K_s: Decay radius $4 < R_{xy} < 300 \text{ mm}$, Λ^0 : Decay radius $17 < R_{xy} < 300 \text{ mm}$ 0
 - K_s: Decay mode $\pi^+\pi^-$, Λ^0 : Decay mode $p\pi^-$ or **pbar** π^+ 0
 - K_c: Mass window **20 MeV** and max mass error **15 MeV**. Λ^0 : Mass win. **7 MeV**, max mass err **5 MeV** 0
 - K_{c} , Λ^{0} : Decay children $|\eta| < 2.5$ 0
 - **Veto**: Any pair of K or pair of Λ at $\Delta R < 0.1$ (motivated on the reconstruction side of things) 0

tracking pass.

Strange Selection

 Strange particle reconstruction in ATLAS here is similar to <u>Phys.</u> <u>Rev. D 85 (2012) 012001</u>

Efficiencies and Fakes

- Reconstructed selected K_s^{0} and Λ^0 are corrected up for detector inefficiencies and down for fakes (combinatorial background) via per-V⁰ weight.
- MC-driven, with a data-driven check on fakes.

- Fake Fraction

K_e⁰ Efficiency

⊼ Efficienc\

300

Λ Efficiency

-Fake Fraction

1-Fake Fraction

0

0.5

Analysis Strategy

- Distributions of observables are built up from all 67M events in the data sample.
 - Example of observable: "Number" of "K⁰_s" in the "towards" region vs. lead-jet p_T
 - Example of observable: "Sum- p_T " of " Λ^0 " in the "away" region vs. lead-jet p_T
 - Note: sum-p_T in HepData
 - Example of observable: "Number" of "Events" vs. lead-jet p_T
- Each of these distributions is **unfolded** via an iterative method with four iterations.
- All final figures are formed by taking the **ratio between a pair** of the distributions.
- Statistical error propagated via a **bootstrap** technique.

MC Models

- **EPOS-LHC**: Primary correction MC.
 - \circ $\,$ $\,$ Used to compute correction factors for V^0
 - Used as the nominal MC when unfolding the data.
 - Full ATLAS simulation, including material variation systematics.
 - Used at particle level to compare against the unfolded data.
- Pythia8-A2: Secondary correction MC.
 - \circ ~ Used as cross-check of V^0 efficiency measurement.
 - \circ Not used for V⁰ fake estimation, data-driven lineshape method
 - Used to unfold the data as a source of systematic uncertainty.
 - Full ATLAS simulation, including material variation systematics.
 - Used at particle level to compare against the unfolded data.
- Pythia8-Monash + New CR
 - JHEP 08 (2015) 003, J. Christiansen & P. Skands
 - String formation beyond leading colour
 - Particle level only.
 - Used at particle level to compare against the unfolded data.

Will aim to compare against more models with the public HepData

Results - Event Normalised

Results - Prompt-Charged Normalised

Results vs. N_{ch,trans}

- Only considering the subset of events where the leading charged-particle jet lies in the range 10 < p_T < 40 GeV. Where 1.4M events in data pass this selection.
- Use the number of prompt charged particles in the transverse region as an alternate event quantity to use on the x-axis, instead of jet p_τ.

Additional Datapoints

- Additional ratios are available in HepData ins2784422.
- 72 ratios, including per-particle mean-p₋
- With bin-bin statistical covariance, uncertainty breakdowns.

Kaon / Event - Lead pT

- kaon towards_leadpt_n / leadpt_event - kaon_towards_leadpt_sumpt / leadpt_event

- kaon_transverse_leadpt_n / leadpt_event
- kaon_transverse_leadpt_sumpt / leadpt_event - kaon away leadpt n / leadpt event
- kaon_away_leadpt_sumpt / leadpt_event

Kaon / Event - N Ch Trans

 kaon_towards_nchtrans_n / nchtrans_event - kaon_towards_nchtrans_sumpt / nchtrans_event - kaon_transverse_nchtrans_n / nchtrans_event - kaon_transverse_nchtrans_sumpt / nchtrans_event - kaon away nchtrans n / nchtrans event - kaon_away_nchtrans_sumpt / nchtrans_event

Lambda / Event - Lead pT

- lambda towards leadpt n / leadpt event - lambda_towards_leadpt_sumpt / leadpt_event - lambda_transverse_leadpt_n / leadpt_event - lambda_transverse_leadpt_sumpt / leadpt_event lambda_away_leadpt_n / leadpt_event - lambda away leadpt sumpt / leadpt event

Lambda / Event - N Ch Trans

- lambda towards nchtrans n / nchtrans event lambda_towards_nchtrans_sumpt / nchtrans_event lambda_transverse_nchtrans_n / nchtrans_event

- lambda_away_nchtrans_n / nchtrans_event
- lambda away nchtrans sumpt / nchtrans event

Kaon / Prompt - Lead pT

- kaon_towards_leadpt_n / prompt_towards_leadpt_n

- kaon_towards_leadpt_sumpt / prompt_towards_leadpt_sumpt
- kaon_transverse_leadpt_n / prompt_transverse_leadpt_n
- kaon_transverse_leadpt_sumpt / prompt_transverse_leadpt_sumpt -kaon away leadpt n/prompt away leadpt n

- kaon_away_leadpt_sumpt / prompt_away_leadpt_sumpt

Kaon / Prompt - N Ch Trans

- kaon_towards_nchtrans_n / prompt_towards_nchtrans_n
- kaon_towards_nchtrans_sumpt / prompt_towards_nchtrans_sumpt
- kaon_transverse_nchtrans_n / prompt_transverse_nchtrans_n
- kaon_transverse_nchtrans_sumpt / prompt_transverse_nchtrans_sumpt - kaon away nchtrans n / prompt away nchtrans n
- kaon_away_nchtrans_sumpt / prompt_away_nchtrans_sumpt

Lambda / Prompt - Lead pT

- lambda towards leadpt n / prompt towards leadpt n
- lambda_towards_leadpt_sumpt / prompt_towards_leadpt_sumpt
- lambda_transverse_leadpt_n / prompt_transverse_leadpt_n
- lambda_transverse_leadpt_sumpt / prompt_transverse_leadpt_sumpt - lambda_away_leadpt_n / prompt_away_leadpt_n
- lambda away leadpt sumpt / prompt away leadpt sumpt

Lambda / Prompt - N Ch Trans

- lambda towards nchtrans n / prompt towards nchtrans n
- lambda_towards_nchtrans_sumpt / prompt_towards_nchtrans_sumpt
- lambda_transverse_nchtrans_n / prompt_transverse_nchtrans_n
- lambda_away_nchtrans_n / prompt_away_nchtrans_n
- lambda away nchtrans sumpt / prompt away nchtrans sumpt

Table 5

https://www.hepdata.net/re

Mean scalar sum- p_T of K_c^0 per unit (η, ϕ) in the towards region vs. leading-jet p_T

REGION	toward
NUMERATOR_SPECIES	kaon
DENOMINATOR_SPECIES	events
NUMERATOR_VARIABLE	sumpt
DENOMINATOR_VARIABLE	
SQRT(S)	13000 GEV
Leading-jet p_T [GEV]	$\langle\Sigmap_T(K^0_S)\rangle/\delta\eta\delta\phi{\rm [GEV]}$
1 - 1.5	0.0105716 ±0.413169% stat 43.13466% sys,nonclosure ±1.71007% sys,unfmodel +3 more errors 51.00v all
1.5-2	0.0184603 +0.36487295 stat IB.8131695 we performer +1.3753195 we unfeeded +3 more

Kaon / Kaon - Lead pT

- kaon_towards_leadpt_sumpt / kaon_towards_leadpt_n - kaon_transverse_leadpt_sumpt / kaon_transverse_leadpt_n - kaon_away_leadpt_sumpt / kaon_away_leadpt_n

Kaon / Kaon - N Ch Trans

- kaon_towards_nchtrans_sumpt / kaon_towards_nchtrans_n - kaon_transverse_nchtrans_sumpt / kaon_transverse_nchtrans_n kaon_away_nchtrans_sumpt / kaon_away_nchtrans_n # Lambda / Lambda - Lead pT

- lambda_towards_leadpt_sumpt / lambda_towards_leadpt_n - lambda_transverse_leadpt_sumpt / lambda_transverse_leadpt_n - lambda_away_leadpt_sumpt / lambda_away_leadpt_n

Lambda / Lambda - N Ch Trans

- lambda_transverse_nchtrans_sumpt / nchtrans_event+ lambda_transverse_nchtrans_sumpt / prompt_transverse_nchtrans_sumpt - lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_nchtrans_sumpt / lambda_towards_nchtrans_sumpt / lambda_ - lambda_transverse_nchtrans_sumpt / lambda_transverse_nchtrans_n - lambda_away_nchtrans_sumpt / lambda_away_nchtrans_n

Lambda / Kaon - Lead pT

- lambda towards leadpt n / kaon towards leadpt n
- lambda towards leadpt sumpt / kaon towards leadpt sumpt -lambda transverse leadpt n/kaon transverse leadpt n
- lambda transverse leadpt sumpt / kaon transverse leadpt sumpt
- lambda_away_leadpt_n / kaon_away_leadpt_n
- lambda away leadpt sumpt / kaon away leadpt sumpt

Lambda / Kaon N Ch Trans

- lambda towards nchtrans n / kaon towards nchtrans n
- lambda_towards_nchtrans_sumpt / kaon_towards_nchtrans_sumpt - lambda transverse nchtrans n / kaon transverse nchtrans n
- lambda transverse nchtrans sumpt / kaon transverse nchtrans sumpt
- lambda away nchtrans n / kaon away nchtrans n
- lambda_away_nchtrans_sumpt / kaon_away_nchtrans_sumpt

Conclusion

- Underlying Event style analysis using ATLAS data with long-lives strange particles as the primary probes.
- Significantly better modelling agreement observed with EPOS or Pythia's SU(3) based colour reconnection scheme vs.Pythia's default colour reconnection model.
 - \circ \quad But still some areas where the models are falling short.
- Data points in HepData, Rivet to follow shortly.

BACKUP - Systematics

