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• introduction to topology

• semi-classical analysis

• phenomenology



INTRODUCTION TO TOPOLOGY



THE STANDARD MODEL

 gauge theory coupled to fundamental 
fermions and a Higgs
SU(3) × SU(2) × U(1)

 matterS = −
1

2g2 ∫ d4x tr F2 + Fμν = [Dμ, Dν]
= ∂μAν − ∂νAμ + [Aμ, Aν]

Dμ = ∂μ + Aμ

Gauge fields arise from demanding invariance of a system of free fermions under local (= 
gauge) transformations

ψ(x) → g(x) ψ(x) , g ∈ SU(3), SU(2), U(1) , g(x) = eiαa(x) Ta

group generator

Gauge fields transform non-trivially under gauge transformations

Aμ → gAμ g−1 + g∂μ g−1



GLUON FIELD CONFIGURATIONS
Ignore matter for now and consider a pure gauge theory

S = −
1

2g2 ∫ d4x tr F2

• go to Euclidean space: path integral  partition function,→

∫ 𝒟A eiS[A] → ∫ 𝒟A e−SE[A]

[D. B. Leinweber]

A "classical" physicist may ask:
what is the "classical" ground state of the system in equilibrium? 

Anyone may ask:
what do gluons look like?
where to begin...

• largest individual contribution from fields with minimal Euclidean action



GLUON FIELD CONFIGURATIONS

consider the more general case of field configurations with finite Euclidean action:

• for the action to be finite,  has to fall-off faster than  for 

• "pure gauge" field :  

A r−1 |xE | = r → ∞

A(g)
μ = g∂μ g−1 F(A(g)) = 0

Aμ(r, φi) = g(φi) ∂μ g−1(φi) + 𝒪(1/r2)

Desired field configs are defined by gauge trafos  that only depend on the angles of g(φi) ℝ4

polar coordinates 
 of (r, φ1,2,3) ℝ4

defines map from 3-sphere to gauge group:   S3 → SU(N )

allows for a topological classification

SE = −
1

2g2 ∫ d4xE tr F2



TOPOLOGY

TOPOLOGIST



TOPOLOGY
Properties of geometric objects that are preserved under continuous deformations of this 
object

• Example: string winding around a hole in a plane

• described by a topological invariant, the winding number w

w = − 2 w = − 1 w = 0

w = 1 w = 2 w = 3

…

…

• can be characterized by all possible ways to map circles onto circles,  S1 → S1

winding number ~ element of the homotopy group π1(S1) = ℤ

In general, topological invariants for objects living in a space  are given by elements of the 
homotopy group , characterizing maps  

X
πn(X) Sn → X

[Wikipedia]



GAUGE FIELDS & TOPOLOGY
Finite action gauge fields can be classified by homotopy group π3(SU(N ))

• :  photons are topologically trivial

• :  non-Abelian gauge fields wind! 

π3(U(1)) = π3(S1) = 0

π3(SU(N )) = π3(SU(2)) = π3(S3) = ℤ

How to define the winding number , also called topological charge?Q

• illustration: , defined via map π1(S1) g(φ) = eiQφ

Q∞ =
i

2π ∫
2π

0
dφ g(φ) ∂φ g−1(φ)



GAUGE FIELDS & TOPOLOGY
Finite action gauge fields can be classified by homotopy group π3(SU(N ))

• :  photons are topologically trivial

• :  non-Abelian gauge fields wind! 

π3(U(1)) = π3(S1) = 0

π3(SU(N )) = π3(SU(2)) = π3(S3) = ℤ

How to define the winding number , also called topological charge?Q

• for  this is (use, e.g., )π3(SU(2)) g = [(x0 − i ⃗σ ⃗x)/r]Q

Q∞ = −
1

24π2 ∫ dφ1 dφ2 dφ3 ϵijk tr[(g ∂φi
g−1)(g ∂φj

g−1)(g ∂φk
g−1)]

In terms of gauge fields, this can be expressed as:

Q = −
1

16π2 ∫ d4x tr FF̃ ≡ ∫ d4x q(x) ∈ ℤ F̃μν =
1
2

ϵμνρσFρσ

topological charge density

Note:  is the winding for , while Q (the 2nd Chern number) works for all .Q∞ r → ∞ x

dual field strength



LARGE GAUGE TRANSFORMATIONS
Since  is a Lie group, we are tempted to think that gauge transformations are 
continuously connected to the identity

SU(N )

•  for sufficiently small  and 

• such trafos can only have  (  actually...): small gauge trafos

h(x) = eiαa(x) Ta ∼ 1 α r → ∞

Q = 0 Q∞ = 0

Gauge trafos with  cannot be connected to the identity for :Q ≠ 0 r → ∞

large gauge transformations

 is a field configuration with top. charge , and  and  are large and small trafos, thenA(Q)
μ Q gQ h

A(Q)
μ

r→∞ gQ ∂μ gQ

•  also has topological charge 

•  has topological charge 

Ã(Q)
μ = hA(Q)

μ h−1 + h∂μ h−1 Q

Ã(Q1+Q2)
μ = gQ2

A(Q1)
μ g−1

Q2
+ gQ2

∂μ g−1
Q2

Q1 + Q2

 describes equivalence classes of gauge fields with different π3(SU(N )) Q



MANY VACUA
This has dramatic consequences for the vacuum of the gauge theory!

• suppose the vacuum of our system consists only of field configurations with : 
 (this is the vacuum state of ordinary perturbation theory)

• do a large gauge trafo: 

• physical vacuum must be superposition of all possible -vacua:

Q = 0
|Q = 0⟩ = |0⟩

|0⟩
gQ |Q⟩

Q |Ω⟩ = ∑
Q∈ℤ

cQ |Q⟩

-vacuum: θ |Ω⟩ = ∑
Q∈ℤ

eiθQ |Q⟩

Q

E

0 1 2 3−3 −2 −1

a true free parameter in the SM!

[Callan, Dashen, Gross (1976)]
[Jackiw, Rebbi (1976)]

• Vacuum must be stable under gauge trafos, including large ones (it can only change by a 
phase, ) |Ω⟩ → eiΘ |Ω⟩



VACUUM TRANSITIONS
Many vacua + topological field configurations = transitions!

Q0 1 2 3−3 −2 −1

• : transitions through tunnelingE < Emax

Esph

• : transitions through hoppingE ≳ Esph

• need to overcome energy barrier, e.g. through sufficiently large 

• transition probability determined by Boltzmann factor 

T
∼ e−Esph/T

• "imaginary time phenomenon" (QM: )

• transition probability  (as we will see shortly)

ψ(x) ∼ exp(it E − Emax)
∼ e−8π2|Q|/g2



SO WHAT?
Non-Abelian gauge theories have topological features, but what are the physical 
consequences?

consider their coupling to matter

Fundamentally, gauge fields couple to fermions. Topology leads to two important effects:

• fermions acquire zero modes on a topological background

   with   ℳ(Q) ψ (Q) = λQ ψ (Q) λQ = 0

Nf Q = nL − nR
# of left- and right-handed 
fermion zero modes

these have net chirality, and their number is fixed by  (index theorem)Q

• axial  symmetry is anomalous: axial anomalyU(1)A

[Atiyah, Singer (1963)]
['t Hooft (1976)]

ℳ(Q) = iγμ(∂μ + A(Q)
μ )

Dirac operator



AXIAL ANOMALY

jμ5

jμ jμ

∂μ jμ5 =
iNf

8π2
tr FF̃

 anomaly from topological field configurationsU(1)A

[Adler, Bell & Jackiw (1969)]

 massless (Dirac-) fermions have chiral symmetryNf

U(Nf )L × U(Nf )R ∼ SU(Nf )V × SU(Nf )A × U(1)V × U(1)A U(N )A : eiγ5αaTa
axial trafo

Axial current  of  is classically conserved, but anomalously broken due 
to quantum effects:

jμ5 = ψ̄γμγ5ψ U(1)A

ΔQ5 = Q5(t = + ∞) − Q5(t = − ∞) = 2Nf Q

Axial charge  changes in the presence of topological field configurations:Q5 = i∫ d3x j05

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q



FERMION ZERO MODES
Fermion contribution to the path integral:

⟨Ω |Ω⟩ ∼ ∫ 𝒟A𝒟ψ𝒟ψ̄ eiS[A,ψ,ψ̄] = ∫ 𝒟AeiS[A] det ℳ

functional determinant  in the presence of zero-modesdet ℳ = ∏
n

λn = 0

So topology always drops out and ?⟨Ω |Ω⟩ = ⟨0 |0⟩

No, because :⟨Ω |Ω⟩ ⊃ ⟨Q + ΔQ |Q⟩

top. charges changes by ΔQ anomaly
axial charge changes by ΔQ5 = 2NfΔQ

To account for this change, we have to introduce a source:
annihilate  R-fermions and create  L-fermions (and vice versa): NfQ NfQ

⟨Q + ΔQ | |Q⟩ ≠ 0

ψ1,L

ψNf Q,L

ψ1,R

ψNf Q,R

… …

anomalous -quark 
correlation functions

(arise from fermion zero modes)

2NfQ

['t Hooft (1976)]
[Pisarski, FR (2019)], [FR (2020)]



SEMI-CLASSICAL ANALYSIS



SADDLE-POINT APPROXIMATION
Now we want to compute topological effects. Try weak coupling!

Consider the path integral,

Z = ∫ 𝒟Φ eiS[Φ]

Expand about a "background" field Φ̄

Φ = Φ̄ + δΦ

• if  solves classical EoM : classical field

• if corrections are small, one can do a systematic expansion in 

Φ̄ S′￼[Φ̄] = 0
δΦ

semi-classical analysis

Z = ∫ 𝒟δΦ eiS[Φ̄+δΦ]

For , this is essentially what we do in perturbation theory:
a semi-classical analysis is perturbation theory on an arbitrary background! 

Φ̄ = 0

• leading corrections to  functional determinantsZ :

S[Φ̄ + δΦ] = S[Φ̄] +
1
2

S′￼′￼[Φ̄] δΦ2 + …



INSTANTONS AND SPHALERONS

Q0 1 2 3−3 −2 −1

Esph

Two ways to change :  hopping and tunnelingQ



INSTANTONS AND SPHALERONS

Q0 1 2 3−3 −2 −1

Esph

Hopping is described by fluctuations around field configuration that sits on top of barrier

sphaleron

Two ways to change :  hopping and tunnelingQ

It's a static, unstable solution of the EoM with finite energy  at real time.

First solution found in -Higgs theory [Klinkhamer, Manton (1984)]:

E = Esph
SU(2)

Greek: slippery

ℒ = −
1

2g2
tr F2 + |Dμϕ |2 + V( |ϕ |2 )

⃗A = ν
f(ξ)

ξ
̂r × ⃗σ

ϕ =
ν

2
h(ξ) ̂r⋅σ ϕ0

    :  Higgs-VEV
 :  numeric functions

  

ν
f, h

ξ = rgν

The sphaleron has energy  and topological charge Esph ∼ 4πν/g Q = n + 1/2



INSTANTONS AND SPHALERONS

Q0 1 2 3−3 −2 −1

Esph

Tunneling is described by fluctuations around field configuration that sits between minima

instanton

Two ways to change :  hopping and tunnelingQ

It is a minimum of the Euclidean action of  Yang-Mills theory.
First solution for  with : BPST instanton [Belavin, Polyakov, Schwartz, Tyupkin (1975)]SU(2) Q = 1

 

A(1)
μ (x) = U1 σ̄ μν U†

1
ρ2

1

(x − z1)2

(x − z1)ν

(x − z1)2 + ρ2
1

=

σμ = (−i, ⃗σ)μ

σ̄μν =
1
2 (σ̄μσν − σ̄νσμ)

σ̄μ = (i, ⃗σ)μ

global  matrix:
orientation in the gauge group

SU(Nc) positive real number:
instanton size

four-vector:
instanton location

This can be generalized to arbitrary topological charges Q ∈ ℤ



using , writetr F2 = tr F̃2

INSTANTONS

Minimize the classical action of Euclidean Yang-Mills theory,

S = −
1

2g2 ∫ d4x tr F2 ,

S = −
1

4g2 ∫ d4x[tr(Fμν ∓ F̃μν)2

≥0

± 2 tr FF̃] ≥ −
1

2g2 ∫ d4x tr FF̃

• action minimized by (anti) selfdual gauge fields with :  instantons 

• solutions of the classical EoM  (Bianchi identity )

F(Q) = ± F̃(Q) A(Q)
μ

DμF(Q)
μν = 0 DμF̃(Q)

μν = 0

instantons are classical fields that minimize the YM action

assume finite action!

Classical action of these solutions:

S(Q) = −
1

2g2 ∫ d4x tr F(Q)F̃(Q) = −
8π2

g2
|Q |

self-dual solutions are topological



CONSTRUCTION OF INSTANTONS
For a semi-classical analysis, we need to know general -instantons  and the corresponding 
fermion zero modes .

Q A(Q)
μ

ψ (Q)

ADHM construction
[Atiyah, Drinfeld, Hitchin, Manin],
[Corrigan, Fairlie,Templeton, Goddard],
[Osborn] (1987)

• reduces classical self-dual YM equations to a set of nonlinear algebraic equations

• still, exact solutions for  are unknownQ > 2

The gist: -instanton can be viewed as composition of constituent-instantons with :Q Q = 1

⏟
location zi

orientation in the gauge group Ui

size ρi

collective coordinates:

•  collective coordinates describe a -instanton

• arise from symmetries that yield inequivalent instanton solutions

• ADHM can be done systematically for any  in the 'small constituent-instanton limit', 

4Nc |Q | Q

Q
|zi − zj | ≫ ρi [Christ, Weinberg, Stanton (1978)]

[Pisarski, FR (2019)], [FR (2020)]



PARTITION FUNCTION

ZQ[J] = ∫ 𝒟δΦ exp{− S[Φ̄(Q) + δΦ] + ∫x
ψ̄ J ψ}

Φ = (A, c, c̄, ψ, ψ̄) Φ̄(Q) = (A(Q), 0, 0, 0, 0) source for quark-antiquark pairs 
(to account for )ΔQ5

• consider small fluctuations around topological background 

• collective coordinates correspond to symmetries: resulting gauge field zero modes 
need to be treated exactly. The same is true for fermion zero modes.

• replace integral over zero modes by integral over collective coordinates:

A(Q)
μ

ZQ[J] = ∫ [N
Q

∏
i=1

d4zi dρi dUi]nQ({zi, ρi, Ui}) det 0 (J)

-instanton densityQ fermion zero mode determinant

det ∫ d4x ψ̄ (Q)†(x) J(x) ψ (Q)(x)
• gluon and ghost fluctuations
• fermion determinant over nonzero modes
• Jacobian of coordinate change from zero 

modes to collective coordinates

Partition function in a -instanton backgroundQ



DILUTE GAS & CORRECTIONS

• If separation large against instanton size: dilute gas

Z[J] = ∑
n1

1
n1!

Z1[J]n1 = eZ1[J]

• multi-instanton corrections for smaller separation

Z[J] = ∏
Q

∑
nQ

1
nQ!

ZQ[J]nQ = e ∑Q ZQ[J]

Dilute approximation reasonable at large  due to thermal screening of the instanton 
density

T

ρ̄ ≪
1

πT
[Pisarski, Yaffe (1980)]
[Gross, Pisarski, Yaffe (1981)]

average size of (constituent) instanton

[FR (2020)]

['t Hooft (1976)]

 is partition function in the background of one instanton, but all possible field 
configurations contribute to the path integral
ZQ



THETA VACUUM FROM THE DILUTE GAS
Sum over all -sectors should also include the phase from the -vacuumQ θ

ZQ → ZQ eiQθ

The resulting free energy density in the dilute gas then is

V(θ) = −
1
𝒱

ln Z(θ) = −
2
𝒱 ∑

Q

ZQ cos(Qθ)

describes the distribution of topological charge

Approximation based on small-instanton limit:

-π  π




θ

(
)/
(
π
)

[FR (2020)]

from darkest to lightest red: 
increasing instanton density



PHENOMENOLOGY



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

• 'classical' chiral symmetry breaking should 
lead to 9 Goldstone bosons: 

• but  too heavy to be a Goldstone

π, K, η, η′￼

η′￼

Chiral symmetry in QCD:

U(3)L × U(3)R ∼ SU(3)V × SU(3)A × U(1)V × U(1)A
⏟

π K η η´

1 GeV ⏟

(pseudo)
Goldstone 

bosons

other 
hadrons

mass

…

anomaly makes  heavy
(adds explicit mass contribution)

η′￼

['t Hooft (1976)]



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

Anomalous effects in QCD semi-classically from instanton-induced interactions:

det f (ψ̄R ψL)|Q| + det f (ψ̄L ψR)|Q|fluctuations around A(Q)
μ

|Q|=1: ['t Hooft (1976)]
|Q|=2: [Pisarski, FR (2019)]
|Q|>2: [FR (2020)]

• sources to account for  in -instanton background give rise to nonzero 
determinant over quark zero modes

• turns out to be a -quark correlation function that explicitly breaks 

ΔQ5 ≠ 0 Q

2NfQ U(1)A

mu,d

ms

crossover

2nd order

1st order mu,d

ms

mu,d

ms

Give mass to , affect the order of the chiral phase transition, ...η′￼
[Pisarski, Wilczek (1983)]
[Pisarski, FR (2024)]

?



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

Chiral Magnetic Effect 
(and its cousins)

talks by Adrien & Zhiwan



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

instanton/sphaleron processes at colliders

talks by Valentin & Ynyr



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

strong CP problem

Phase of the -vacuum enters the QCD Lagrangian:θ

 ℒ = ψ̄ γμDμ ψ +
1
2

tr FF +
iθ

16π2
tr FF̃

dn ∼ eθ
mumd

f 2
π(mu + md)strong CP violation for θ ≠ 0, π

neutron electric dipole moment

[Crewther, Di Vecchia, Veneziano, Witten (1979)]

Most recent measurements yield |dn | < 1.8 × 10−26 ecm θ ≲ 10−10

[Abel et al. (nEDM) (2020)]

why is ? θ ≈ 0



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

• augment SM with global axial  + charged scalar that couples to quarks

•  is spontaneously broken at scale , resulting Goldstone boson: axion

• the axial anomaly in  dictates non-derivative couplings of the axion:

U(1)PQ

U(1)PQ fa
U(1)PQ

  ℒ = ψ̄ γμDμ ψ +
1
2

tr FF +
iθ

16π2
tr FF̃ +

a(x)
fa

i
16π2

tr FF̃ +…

'dynamical' θ-angle  
solves the strong CP problem

θ̄(x) = faθ + a(x)

-π  π




θ

(
)/
(
π
)



PHENOMENOLOGY

Most effects arise from the coupling to 
fermions and the axial anomaly

ψ1,L

ψNfQ,L

ψ1,R

ψNfQ,R

… …Q

Baryogenesis

Matter-antimatter imbalance requires baryon-number violation (+  and  violation and 
non-equilibrium: Sakharov conditions)

C CP

• electroweak SM inherently chiral (only L-fermions couple to )

• baryon and lepton number conservation related to a  symmetry

SU(2)

U(1)A

Δ(B + L) ∼ ΔQ
[Kuzmin, Rubakov, Shaposhnikov (1985)]

Must occur through sphaleron transitions , since instanton process  
are highly unlikely for the weak interactions!

∼ e−Esph/T ∼ e− 8π2
g2 |Q|



SUMMARY

Aμ ∼ =

Disclaimer:

• there are many more semi-classical objects I didn't mention; they can be periodic 
(finite T), have non-trivial holonomy (confinement), fractional topological charge, 
magnetic charge, ...

• they can also interact, which I didn't cover either

• interactions/correlations become strong, the semi-classical picture breaks down



BACKUP



Q=1 QUARK ZERO MODE

Zero mode of BPST instanton with :Q = 1 ['t Hooft (1976)]

RH spinor free quark propagator!

  ψ (1)(x) = ν
Ui ρi

[(x − zi)2 + ρ2
i ]3/2

γμ (x − zi)μ

|x − zi |
φR

|x−zi| ≫ ρi ∼ ρi Ui Δ(x − zi) φR =

x



Q-INSTANTONS & QUARK ZERO MODES

[Christ, Weinberg, Stanton (1978)]

Results to order  ( : separation of constituent-instantons):ρ4/ |R |4 R

A(Q)
μ (x) =

1
ξ0(x, {zi, ρi})

Q

∑
i=1

A(1)
μ (x; zi, ρi, Ui) + 𝒪( ρ4

|R |4 )
• -instanton:Q

•  quark zero modes: (  ,   )Nf Q f = 1,…, Nf i = 1,…, Q

ψ (Q)
fi (x) = ψ (1)

fi (x, zi , ρi, Ui) − ∑
j≠i

𝕏ij (x, zi , ρi, ρj) ψ (1)
fj (x, zj , ρj, Ui) + 𝒪( ρ4

|R |4 )
[Pisarski, FR; 1910.14052]
[FR; 2003.13876] x x

+

 illustration:Q = 2



CORRELATION FROM QUARK ZERO MODES

Use the large-distance form of the quark zero modes: 

det 0 (J) ∼ ∏
i

∏
f

∫ d4xfi Δ(zi − xfi) J(xfi) Δ(xfi − zi)

 is identical to an effective partition function
(details in [Pisarski, FR, 1910.14052])
Z[J]

Z eff[J̄] = ∫ 𝒟Φ e−S[Φ]+∑Q ΔS eff
Q + ∫x ψ̄ J̄ ψ

no instanton background!

ΔS eff
Q

singlet
∼ ∫ d4z κQ det

fg [ψ̄f(z) ℙR ψg(z)]Q

• local -quark correlation function

• for anti-instantons ( ): 

2Nf Q

Q < 0 ℙR → ℙL

( , )Nf = 3 Q = 2

store "instanton stuff" 
in coupling κQ

κQ


