QCD dynamics: some theory developments

Adrien Florio

Non-perturbative and Topological Aspects of QCD Workshop, CERN

Plan

Frontiers of hydro

1) "Critical" hydro and soft pions

PRD 2022 , PRD 2024 with E. Grossi, D.Teaney, A. Soloviev + wip A. Mazeliauksas

2) Chiral magnetic effect and progress on chiral MHD arXiv:2309.14438 with A. Das, N. Iqbal, N. Poovutikul

Emergence of hydro

3) Entanglement generation and equilibration in $1+1{\rm D}$ PRL 2023, arXiv:2404.00087 with D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, K. Yu

My memories of hydro

Euler,

Navier-Stokes, ...

 $\partial_t(\rho \mathbf{v}_i) + \partial_j(\cdots?) = 0$

My memories of hydro

Euler,

Navier-Stokes, ...

$$\partial_t(\rho \mathbf{v}_i) + \partial_j(\cdots?) = 0$$

Poiseuille

My memories of hydro

Euler,

Navier-Stokes, . . .

 $\partial_t(\rho \mathbf{v}_i) + \partial_j(\cdots?) = 0$

Poiseuille

Hydro from symmetries

Equilibrium (static) state $\hat{\rho}$

Hydro: Systematic expansion of cons. laws around $\hat{\rho}$

[Kovtun, 12], [Gloriosio, Liu, 18] for reviews

Hydro from symmetries

Conservation Symmetries \longleftrightarrow laws Equilibrium (static) state $\hat{\rho}$ Hydro: Systematic expansion of cons. laws around $\hat{\rho}$ [Kovtun, 12], [Gloriosio, Liu, 18] for reviews

Energy + mom. cons.: $\partial_{\mu}T^{\mu\nu} = 0$

Charge cons.: $\partial_t n = \vec{\nabla} \cdot \vec{j}$

Hydro from symmetries

Symmetries \longleftrightarrow Conservation laws

Equilibrium (static) state $\hat{\rho}$

Hydro: Systematic expansion of cons. laws around $\hat{\rho}$

[Kovtun, 12], [Gloriosio, Liu, 18] for reviews

Energy + mom. cons.: $\partial_{\mu}T^{\mu\nu} = 0$

Charge cons.: $\partial_t n = \vec{\nabla} \cdot \vec{j}$

Hydro variables: energy density ϵ pressure density pcharge density n

What if...

1) Non-conserved but very slow variable?

What if...

1) Non-conserved but very slow variable?

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

1) Non-conserved but very slow variable?

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

3) But wait, how does that really comes about?

What if...

1) Non-conserved but very slow variable?

1) "Critical" hydro and soft pions

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

3) But wait, how does that really comes about?

Critical slowing down

In time: critical slowing down

Critical slowing down

2nd order phase transition In space: diverging correlation length Il Fluctuations correlated all over

In time: critical slowing down

Example: 2D Ising at T_c

mattbierbaum.github.io

Example: 2D Ising at T_c

mattbierbaum.github.io

Critical hydro

Relevant to QCD:

• Close to putative (*T*, *µ*) crtical point "Model H":

[Chattopadhyay, Ott, Schaefer, Skokov, 24]

 \bullet Close to $(\mathbf{T}, \mu=0)$ crossover

"Model G": [Schlichting, Smith, von Smekal, 19] [AF, Grossi, Teaney, Soloviev, 21-]

Critical hydro

Frozen order parameter Lextra slow variable Changes hydro near criticality!

Relevant to QCD:

• Close to putative (T, μ) crtical point "Model H":

[Chattopadhyay, Ott, Schaefer, Skokov, 24]

• Close to $(T, \mu = 0)$ crossover "Model G": [Schlichting, Smith, von Smekal, 19] [AF, Grossi, Teaney, Soloviev, 21-]

"Model G" story

Fact from lattice: $m_{up} = m_{down} = 0$ deconfinement phase trans. 2^{nd} order

Fact from life: *mup*, *mdown* are small

Remnant of critical behavior?

"Model G" story

Fact from lattice: $m_{up} = m_{down} = 0$ deconfinement phase trans. 2nd order

Fact from life: m_{up} , m_{down} are small

Remnant of critical behavior?

Fact from ALICE

A recent ordinary hydro fit from Devetak et al 1909.10485

A glimpse at results

Detailed numerical simulations of Model G: \checkmark PRD 2022 , PRD 2024

Pheno. prediction of excess pion yield: work in progress

Trailer: emergence of pions below T_c

What if...

1) Non-conserved but very slow variable?

1) "Critical" hydro and soft pions

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

3) But wait, how does that really comes about?

1) Non-conserved but very slow variable?

1) "Critical" hydro and soft pions

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

2) Chiral magnetic effect and progress on chiral MHD

3) But wait, how does that really comes about?

Chiral Magnetic Effect

Chiral Magnetic Effect (CME):

Constant \vec{B} background

+

Chiral imbalance μ_5

Magnetic current

 $\vec{j} = \sigma \vec{E} + \frac{1}{4\pi^2} \mu_5 \vec{B}$

Credit: Kharzeev, Liao, Voloshin, Wang, arXiv: 1511.04050

Credit: Kharzeev, Liao, Voloshin, Wang, arXiv: 1511.04050

But wait...

$$\begin{array}{c} \mu_5 \longleftrightarrow \text{ axial charge} \sim n_5 = n_L - n_R \\ & \downarrow \\ \text{Not conserved: } \frac{\partial n_5}{\partial t} \propto \vec{E} \cdot \vec{B} \end{array}$$

?!

• Derivation as an hydro theory [Landry, Liu, 22] [Das, Iqbal, Poovutikul, 22]

```
• Relevant transport coeff. \Gamma_5 is now properly understood resistivity (r) \neq 1/conductivity (\sigma) in general
```

[Grozdanov, Hofman, Iqbal, 16]

• Extreme example $\sigma = 0, r \sim 1$ in scalar ED at strong coupling [AF, Das, Iqbal, Poovutikul, 23]

Affects microscopic computation
 of chiral transport
 [Figueroa, AF, Shaposhnikov, 19]
 [AF, Das, Iqbal, Poovutikul, 23]

• Derivation as an hydro theory [Landry, Liu, 22] [Das, Iqbal, Poovutikul, 22]

```
• Relevant transport coeff. \Gamma_5 is now properly understood resistivity (r) \neq 1/conductivity (\sigma) in general
```

[Grozdanov, Hofman, Iqbal, 16]

• Extreme example $\sigma = 0, r \sim 1$ in scalar ED at strong coupling [AF, Das, Iqbal, Poovutikul, 23]

 Affects microscopic computation of chiral transport
 [Figueroa, AF, Shaposhnikov, 19]
 [AF, Das, Iqbal, Poovutikul, 23]

• Derivation as an hydro theory [Landry, Liu, 22] [Das, Iqbal, Poovutikul, 22]

• Relevant transport coeff. Γ_5 is now properly understood resistivity (r) \neq 1/conductivity (σ) in general

[Grozdanov, Hofman, Iqbal, 16]

• Extreme example $\sigma = 0, r \sim 1$ in scalar ED at strong coupling [AF, Das, Iqbal, Poovutikul, 23]

 Affects microscopic computation of chiral transport [Figueroa, AF, Shaposhnikov, 19] [AF, Das, Iqbal, Poovutikul, 23]

Adrien Florio, CERN, 30.05.24

14 - 15

• Derivation as an hydro theory [Landry, Liu, 22] [Das, Iqbal, Poovutikul, 22]

• Relevant transport coeff. Γ_5 is now properly understood resistivity (r) \neq 1/conductivity (σ) in general

[Grozdanov, Hofman, Iqbal, 16]

• Extreme example $\sigma = 0, r \sim 1$ in scalar ED at strong coupling [AF, Das, Iqbal, Poovutikul, 23]

 Affects microscopic computation of chiral transport
 [Figueroa, AF, Shaposhnikov, 19]
 [AF, Das, Iqbal, Poovutikul, 23]

What if...

1) Non-conserved but very slow variable?

1) "Critical" hydro and soft pions

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

2) Chiral magnetic effect and progress on chiral MHD

3) But wait, how does that really comes about?

What if...

1) Non-conserved but very slow variable?

1) "Critical" hydro and soft pions

2) A charge that should be conserved but is not but you know how so it does not count ? (= anomaly)

2) Chiral magnetic effect and progress on chiral MHD

3) But wait, how does that really comes about?

3) Entanglement generation and equilibration in 1 + 1D

Emergence of hydro in real-time

Thermalization from unitary evolution?

TODO: see hydro emerge from micro for an interacting relativistic system

Opportunity: quantum simulations

Quantum simulations

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

 \bullet Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

• Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Setup: fly hard particles $(\bar{q}q)$ on the light cone, in opposite direction

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

 \bullet Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Setup: fly hard particles $(\bar{q}q)$ on the light cone, in opposite direction

Method: tensor networks ("classical")

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting
- \bullet Simple enough to solve the quantum dynamics: $|\psi(t)
 angle=e^{-iHt}|\psi_0
 angle$

Setup: fly hard particles $(\bar{q}q)$ on the light cone, in opposite direction

Method: tensor networks ("classical")

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

 \bullet Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Setup: fly hard particles ($\bar{q}q$) on the light cone, in opposite direction

Method: tensor networks ("classical")

Electric field screening

• •

En.~ $m + m + \alpha l_1$

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

• Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Setup: fly hard particles ($\bar{q}q$) on the light cone, in opposite direction

Method: tensor networks ("classical")

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

• Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Setup: fly hard particles ($\bar{q}q$) on the light cone, in opposite direction

Method: tensor networks ("classical")

Schwinger model: QED in 1 + 1D

- Confines
- Chiral condensate and anomaly
- Interacting

 \bullet Simple enough to solve the quantum dynamics: $|\psi(t)
angle=e^{-iHt}|\psi_0
angle$

Setup: fly hard particles ($\bar{q}q$) on the light cone, in opposite direction

Method: tensor networks ("classical")

Electric field screening

Relaxation

Relaxation

And more!

- More: Inspiration for new observables
 - Entanglement generation
- Next: Thermal?
 - Hydro?

• Theory is progressing on QCD dynamics

• Hydro is modified by criticality

• Hydro is modified by anomalous transport

• First principle quantum simulations start to tackle the emergence of hydro

 Theory is progressing on QCD dynamics

- Hydro is modified by criticality
- Hydro is modified by anomalous transport

• First principle quantum simulations start to tackle the emergence of hydro

- Theory is progressing on QCD dynamics
- Hydro is modified by criticality
- Hydro is modified by anomalous transport
- First principle quantum simulations start to tackle the emergence of hydro

Credit: Kharzeev, Liao, Voloshin, Wang, arXiv: 1511.04050

• Theory is progressing on QCD dynamics

• Hydro is modified by criticality

• Hydro is modified by anomalous transport

• First principle quantum simulations start to tackle the emergence of hydro

Area versus volume law

Gapped ground states: area law

Thermal states: volume law

Ent. entropy: $S = -\text{Tr} \left(\rho_A \ln \rho_A \right)$ \checkmark

Renyi entropy: $S = -\ln \left(\operatorname{Tr} \left(\rho_A^2 \right) \right)$

Area versus volume law

