

QGP Signals in Small Systems: Identified Particle Spectra and Multiplicity Dependence

Jan Fiete Grosse-Oetringhaus (CERN)

Non-perturbative and Topological Aspects of QCD 29.05.2024

Content

- Particle identification methods in ALICE
- Multiplicity estimators and biases
- Assessing MPIs in measurements
- Baryon/meson ratios
- Strangeness enhancement
- Charm sector

Methods of Particle Identification

(in ALICE)

PID in TPC: Specific Energy Loss

- Particles passing through matter lose energy mainly by ionization
- Average energy loss can be calculated with the Bethe-Bloch formula

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

- Identify particle by measuring energy deposition and momentum
 - Not necessarily unique in all regions
- Single energy loss by (primary) ionization depends on E⁻²
 - Most of the times the energy loss is small, but small probability exists to have a large energy loss
 - Landau tail of the energy loss distribution
 - \rightarrow Truncated mean used

signal

lonization

PID in TOF: Time Of Flight

- Although particles have practically speed of light, particles with same momentum have slightly different speed due to their different mass
- Precise measurement of flight time between interaction and arrival in detector allows to determine mass, and thus particle type
- Needed precision, e.g. for a particle with p = 3 GeV/c, flying length 3.5 m
 t(π) ~ 12 ns | t(K) t(π) ~ 140 ps
- Detector without drift volume needed, dispersion usually spoils time resolution
 → MRPCs (multigap resistive plate chambers)

Combine PID Methods

Invariant Mass Topological Reconstruction

- Invariant mass of pairs of identified particles
 - Fit with Gaussian and background function
 - If needed: assess background shape with MC
 - \rightarrow statistical only, not per-particle identification

- E.g. weak decays: K_0^{S} , Λ (called V0)
- Exploit large DCA to primary vertex
- Create secondary vertices
- Check consistency with pointing back to primary

Reconstruction of a Cascade

Strangeness Tracking

- Detectors closer to collision + more computing → MHz bubble chamber
- Track mother and daughter of decay
 - Cascades, hypertriton, ...
 - Background significantly reduced

Counts / 0.001 GeV/c²

3.0

25

2.0

0.5

ALI-SIMUL-567197

2.9

Small Systems: Identified Particle Spectra and Multiplicity Dependence – Jan Fiete Grosse-Oetringhaus

ALICE Simulation

pp, $\sqrt{s} = 13.6 \text{ TeV}$

All ${}^{3}_{\Lambda}H + {}^{3}_{\overline{\Lambda}}\overline{H}$

Background

3.01

 $M(^{3}\text{He} + \pi^{-} \text{ and c.c.}) (\text{GeV/c}^{2})$

2.99

3.00

S/B (3 σ) = 1.2 ± 0.1

Signal + Background

3.02

Multiplicity Estimators

Multiplicity Estimators

- Results studied as function of multiplicity (percentile) ullet
 - Often as self-normalized quantities
- Inherent rapidity dependence ullet
- Inherent p_{T} dependence ullet
 - Auto-correlation bias: multiplicity $\uparrow \rightarrow$ parton $p_{\uparrow} \uparrow$

Small Systems: Identified Particle Spectra and Multiplicity Dependence – Jan Fiete Grosse-Oetringhaus

Eur.

 $dN_{\rm p}/d\eta$

 6.46 ± 0.19

6.87

6.85

SPD tracklets mult. estimator < 4 GeV/*c* < 6 GeV/*c*

ALICE pp $\sqrt{s} = 13 \text{ TeV}$

Data PYTHIA 8

- EPOS LHC

ď

Biases

• Event slicing causes biases... in pp, p-Pb and Pb-Pb

In comparisons: Biases need to be reproduced in model / Monte Carlo under study

Phys. Rev. C 91 (2015) 064905

Phys. Lett. B793 (2019) 420-432

 dN_{AA}/dp_T

 R_{AA}

Parton Interactions

• Multiplicity selects on MPIs, but depending on rapidity of estimator

arXiv:2211.04384

Measuring MPIs

Counting Parton Interactions with Uncorrelated Seeds

 Identify sets of particles stemming from same parton interactions (= seed)

At high Q^2 , traditional jet finding \rightarrow identify each jet At low Q^2 , 1-2 particles \rightarrow statistical approach If we want to get a handle on the overall number of MPI, low Q² processes crucial

Uncorrelated Seeds

- Uncorrelated seeds (~ MPI) increase linearly with N_{ch}
- At large N_{ch}, limit of MPI? (i.e., larger multiplicity by fluctuation, not by additional MPI)

Identified Particles

Light-flavour sector

Baryon Production

- Baryon production (e.g. Λ) not described by e⁺e⁻ inspired models
 - E.g. in Pythia, need for more than basic color reconnections (e.g. junctions, JHEP 08(2015)003)
- Baryon enhancement not visible for jet constituents
 - Fragmentation remains independent of other activity in the event

Strangeness Enhancement

- Hadronization for strange particles density-dependent ullet
- Strange particle production increases with multiplicity
 - K/ π , Λ/π , Ξ/π , Ω/π
 - from pp, over p-Pb, to Pb-Pb

Strange/π vs. dN_{ch}/dη

(Strange = K, Λ , Ξ , Ω)

Nature

Phys.

 $\hat{\omega}$

 $2K_{o}^{0}$

 $\Lambda + \overline{\Lambda}$ (×2)

- Colour ropes ${}^{\bullet}$
 - Strings close in phase space hadronize together
 - Outwards pressure gradient
 - \rightarrow momentum perpendicular to the strings

ALICE

20

21

Statistical Hadronization Model (SHM)

ത

- Relativistic ideal quantum gas of hadrons ulletin thermal and chemical equilibrium
- 3 free parameters: V, T, $\mu_{\rm B}$ ullet
 - Particle ratios \rightarrow V cancels
 - Baryochemical potential $\mu_{\rm B}$ fixed by pbar/p ratio
 - \rightarrow one remaining parameter T
- **Central Pb-Pb** ullet
 - $T = 156 \pm 2 MeV$
 - V ~ 5000 ± 500 fm³
- Particle production without history ullet

SHM in pp and p-Pb

Multiple Strange Production

- Multiple strange particle production in the same collision
 - Measured for K_0 , Λ , Ξ , Ω , see e.g. <u>QM talk</u>
- Increase with multiplicity stronger for double or triple production
 - Strangeness-related increase and baryonrelated increase?
 - Ropes are successful in description

Species and p_T Dependence

- Low p_T and integrated yields: strangeness content dependence
- High p_T : species independent. Auto-correlation bias?

Identified Particles

Charm sector

Charm Sector

- Charm and beauty produced in hard scattering, rarely in string fragmentation
- Baryon enhancement also in charm sector (includi
 - Λ_c/D significantly larger than e⁺e⁻ expectation
- Pythia with reconnections beyond leading colour works well
- Significant effect on fragmentation fractions
 - Less D^0 in pp than in e^+e^- and ep
 - More $\Lambda_{\rm c}$ in pp than e^+e^- and ep

Low-Multiplicity pp and e⁺e⁻

- Λ_c/D ratio does not approach e⁺e⁻ at low multiplicity
- Λ_b/B ratio approaches e⁺e⁻, depends on uncertainties at lowest point

A Beautiful Summary

Phys. Rev. D 108, 112003 (2023)

Outlook on Multi-Charm

- States with multiple charm ideal test bed for hadronization models
 - Largely enhanced in heavy ions (e.g. 100 for $\Xi_{\rm cc})$
 - Measurement of $\Xi_{cc},\,\Omega_{cc},$ possibly Ω_{ccc}

 $\Xi_{CC}^{++} \to \Xi_{C}^{+} \pi^{+} \to \Xi^{-} \pi^{+} \pi^{+} \pi^{+} \qquad \Omega_{CC}^{+} \to \Omega_{C}^{0} \pi^{+} \to \Omega^{-} \pi^{+} \pi^{+}$

- Testing coalescence picture on quark level
- Detector proposal for LHC Run 5 (2035): ALICE 3
 - Retractable vertex detector 5 mm from beam
 - Pointing resolution 3-4 μm @ 1 GeV
 - $X/X_0 \sim 0.1\%$ per layer
 - All-silicon tracker (p_T resolution 1% @ 1 GeV)
 - Continues readout and online processing Pb-Pb: 35 nb⁻¹ | pp 18 fb⁻¹

Summary

- ALICE unique for particle identification and low p_T tracking
- Mind the biases in all comparisons
- Evolution from e⁺e⁻ over pp and p-Pb to Pb-Pb allows new insights
 - Baryon/meson ratios, fragmentation fractions, strange & charm, multi-particle correlations
- Different hadronization concepts describe different observations
 - From colour reconnection over coalescence to statistical hadronization
 - Various mechanisms "active" in the same collision
- Challenge to find *universal* hadronization model for these complex phenomena

Thank you for your attention!

Thanks for input & discussions to: Katarina Gajdosova, Alexander Kalweit and Andreas Morsch

• Monash 2013 tune + ropes

TABLE I. The parameter values of the rope hadronization model used with color reconnection mechanism.

Rope Hadronization	Values
Ropewalk:RopeHadronization	On
Ropewalk:doShoving	On
Ropewalk:r0	0.5
Ropewalk:m0	0.2
Ropewalk:beta	1.0
Ropewalk:tInit	1.0
Ropewalk:deltat	0.05
Ropewalk:tShove	10.0

