

Event Shape Measurement with CMS

K. Cormier on behalf of CMS

Motivation (1): Soft QCD is not well modelled

ATLAS

0.3 0.4 0.5 0.6

Existing observations of **unexpected effects in event-shapes** and strangeness production in pp collisions — Improve understanding of hadronic collisions

1.8

Eur. Phys. J. C 80, 693 (2020)

Mismodelling of event shapes in 7 TeV data

Data 2010

---- PYTHIA 6 AMBT2B

PYTHIA 8 A2

Unexpected particle production across n, but with $\Delta \phi \sim 0$.

https://arxiv.org/abs/2312.17103

Similar correlations recently observed in high-multiplicity jets

Not predicted by simulation

Mechanism of increase in strange particles as a function of particle multiplicity?

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

Motivation: Step towards instanton search

[<u>https://arxiv.org/abs/1911.09726</u>] QCD Instantons – non-perturbative effect

May be directly observable at the LHC

Signature: Soft, Isotropic, "fireball" with $2N_f$ quarks + O(10) gluons

Measurement Overview

Consider only **charged particles** using tracking information \rightarrow precise reconstruction Use **low-pileup data** (64 µb⁻¹ collected in 2018)

Measure event-shape observables as a function of particle multiplicity and energy

Minimum Bias Modelling

Primary Samples:

Additional Samples:

	Generator	PDF $(\alpha_s(m_Z))$	
Pseudodata samples	РҮТНІА8 (СР5) [32]	NNPDF3.1 QCD+LUXQED NNLO (0.118)	
	РҮТНІА8 (CUETP8M1) [60]	NNPDF2.3 QCD+QED LO (0.130)	
Other validation	PYTHIA8 (CP5) PYTHIA8 (CP5) α_{S}^{ESR} Variations [32] PYTHIA8 CUETP8M2T4 [61, 62] PYTHIA8 (CP5) color-reconnection tunes [63] PYTHIA8 (CP2) PYTHIA8 (A14) [64] PYTHIA8 (A14) eigenvariations PYTHIA8 (A14) CTEQL1 PYTHIA8 (A14) MSTW2008LO PYTHIA8 (A14) HERAPDF1.5LO	NNPDF3.1 QCD+LUXQED NNLO (0.118) NNPDF3.1 QCD+LUXQED NNLO (0.118) NNPDF3.0 QCD LO (0.130) NNPDF3.1 QCD+LUXQED NNLO (0.118) NNPDF3.1 QCD LO (0.130) NNPDF3.1 QCD LO (0.130) NNPDF3.1 QCD LO (0.130) CTEQL1 (0.1298) MSTW2008LO (0.13939) HERAPDF1.5LO (0.130)	Tunes and Variations used by ATLAS + CMS
	TTTTTA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	111100 (0.150)	F

Unfolding [https://arxiv.org/abs/1911.09107]

We use an **unbinned unfolding** technique

"Multifold" variant of Omnifold, which simultaneously unfolds a number of observables

Input: all 8 observable values for every event in simulation and data

Output: reweighted simulated events approximating data

Uncertainties

Detector-related uncertainties largely mitigated by use of tracks

We do include an explicit tracking efficiency uncertainty based on randomly dropping a small % of tracks

No obvious prescription for Modelling uncertainties Our Approach:

Consider 4 samples (nominal + 3 systematic variations) For **each sample** consider **two categories** of effects:

- 1. Effect of changes in observables used directly in unfolding
 - a. N_{tracks}, Sphericity, Thrust,
- 2. Effect of changes in other observables which may change detector response
 - a. Track pseudorapidity, particle composition, ...

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

"Generator distribution uncertainties"

"Migration function uncertainties"

Uncertainty Estimation

Uncertainties propagated via "toys" through unfolding

- 1. Generate Resampled Data
- 2. Generate Resampled Model
- 3. Perform unfolding

Repeat this N times, then: use distribution over N toys to calculate uncertainties + covariance

Systematic effects also assigned continuous parameter weights:

• Sampling done with full statistical + systematic effects, preserving correlations

Correlations preserved across all event information (8 observables)

Multiplicity and Mass – "Event Activity"

Common trend: Data above all predictions at medium activity values (N_{ch}~20, $\sqrt{s_{ch}}$ ~45 GeV), Predictions above data for very low (N_{ch} \lesssim 5, $\sqrt{s_{ch}} \lesssim$ 10 GeV).

Spread of behaviour in tails, depending on Model + Tune

0.35 0.40 0.45 T_{ch}

Common Trend: Data tends to be more isotropic than predictions for all observables and models (though to varying degrees)

CMS Preliminarv

/N dN/dB

PYTHIA CP

PYTHIA A3

EPOS-LHC

PYTHIA A14

PYTHIA CP5

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

Event Shapes (Transverse)

64.2 µb⁻¹ 2018 (13 TeV)

Trend of more isotropic data somewhat more clear in transverse-only observables

Event Shapes as a function of Event Activity

Strong trends of more isotropic data within multiplicity slices Trends more clear than inclusive event shapes Most striking in "mid" activity region

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

(Full) Event shapes as a function of activity

Trend for data to be more istoropic more visible for S than $\rm S_T$ at high $\rm N_{ch}$ Related to ridge effects?

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

Further Comparisons

Checks and Comparisons

These trends were checked against a number of samples, and seem consistent other investigated effects include:

- Colour Reconnection Model
- PDF
- PDF order
- α_s(FSR)

No significant deviations from these trends were found in any of the checks

Checks and Comparisons

Trend in "Event Activity" Consistent with other measurements

Other Event Shapes

Shapes from LEP

Same CMS pythia tunes

Very different trends

http://www.arxiv.org/abs/1807.02810 CMS 35.9 fb⁻¹ (13 TeV) PW+PY8 Fheory/Data ISR up ISR dowr FSR up FSR down UE up UE down no MPI Theory/Data - no CR QCD based . Gluon move nin. ERD on Ð Rope W Rope (no CR) Theory/Data Sherpa MG5 aMC PW+HW++ PW+HW7 0.5 0.7 0.8 0.1 0.2 0.4 0.6

p_T-deweighted event shape (spher**o**city, not spher**i**city)

Different behaviour

Similar Trend ? (less clear) in UE from ttbar

Event Shapes Lower Energy

Perhaps also at TeVatron? (but hard to compare and interpret ...)

> Leading Jet $E_T \ge 200$ GeV — NLO+NLL — Tune A Hadron — Tune A + CDF Sim.

> > - Data

1 dg

10 Anisotropi 10 0.2 0 1 dTmin Leading Jet $E_{\pi} \ge 200 \text{ GeV}$ NLO+NLL Hb ······ Tune A Hadron Tune A + CDF Sim. Data 10-1 10-2 0.2 0.4 https://arxiv.org/abs/1103.5143

Some observables previously measured at **7 TeV**, Show **qualitatively similar** results for transverse event shapes

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

Future Directions

- Tuning of event-shape distributions?
 - New results provide better flexibility and correlation information as well as updated centre of mass energy
 - Do any of the current knobs impact this much?
 - Which knobs might?
- Low- p_{T} Z measurements?
 - As per recent paper and Luca's talk: <u>https://arxiv.org/abs/2307.05693</u> <u>https://indico.cern.ch/event/1383721/timetable/?view-standard#33-overview-of-multi-parton-in</u>
 - Look at event shape removing 1 pair or parton-interactions?
 2 with leading back-to-back jet pair?
 - Compare cumulative jet count delta-phi in minimum bias?

• Observables that could particularly benefit from high-dimensional correlations or exploratory analysis?

Event Shape measurement from CMS

- Unbinned unfolding \rightarrow simultaneous unfolding across 8 observables
- Event shape distributions are consistently more isotropic in data than available models
- Models consistently under predict fraction of events with moderate "event activity"
- Some intersection of these two effects?
- Several Candidates for future directions

Motivation (3)

Topological Effects are a generic prediction of Non-Abelian Gauge theories \rightarrow Come from non-trivial winding of the field in space-time

Important physical consequences

- Major role in hadron masses (QCD)
- Chirality Violation
- Baryon Number Violation (EW)

• Role in the Early universe?

- Important for QGP
- Source of Baryogenesis?

• Connections to BSM theories

- Source of QCD theta-vacuum term, motivation for axions
- Should appear in any new non-abelian gauge group
- Topological Monopoles, Strings, ...

Topological effects predict terms which are 0 to all orders in pertrubative expansions at $\alpha = 0$.

$$f(\alpha_s) \sim \exp\left(-\frac{const}{\alpha_s}\right) \left(\sum_{n=0}^{\infty} (\alpha_s)^n B_n\right)$$

https://arxiv.org/abs/1812.01509

We have an opportunity to try to study these experimentally

Measurement Goals

Measure event shapes as a function of track multiplicity + mass Focus on charged particles \rightarrow Precise reconstruction

Data: 2018 low-pileup data-taking + Zerobias trigger (15 µb⁻¹)

Simulation

Nominal Samples and Uncertainties

Pythia: CP1 (CMS), A3 (ATLAS)Different tunes, same MC modelEPOS-LHCRegge-Gribov Model, collective flowHerwig7: CH3Separate shower/hadronization models

Validation and Comparisons not used in the Analysis

Pythia: CP5 (CMS), CUETP8M1 (CMS), CUETP8M2T4 (CMS), A14 (ATLAS), A14 Variations,

Uncertainties

Detector-related uncertainties largely mitigated by use of tracks

We do include an explicit tracking efficiency uncertainty based on randomly dropping a small % of tracks

No obvious prescription for Modelling uncertainties Our Approach:

Consider 4 samples (nominal + 3 systematic variations) For **each sample** consider **two categories** of effects:

3 alternative samples x 2 uncertainties per sample

6 independent modelling uncertainties

"Generator distribution uncertainties"

"Migration function uncertainties"

Unfolding (1)

We perform a **simultaneous unbinned unfolding** of all our observables.

Unfolding is done using an iterative machine-learning based approach→ multiple steps of unbinned reweighting

Results of unfolding are (re)weighted simulated events

 Binning is performed only for visualization and studying specific distributions *after* unfolding

Unbinned Reweighting

Train a classifier to distinguish two samples: A and B

 The classifier should 'learn the likelihood ratio'

 \rightarrow outputs the estimated probability ${\bf p}$ that an event is from sample ${\bf A}$

- 2. Reweight events from sample **B** by **p/(1-p)**
 - \rightarrow Reweighted sample **B** now approximates sample **A**

Unfolding [https://arxiv.org/abs/1911.09107]

- 1) Reweight simulation to data at detector-level
- 2) Reweight original simulation to reweighted simulation at gen-level
- 3) Repeat

Input: all 8 observable values for every event in simulation and data

Output: reweighted simulated events approximating data

Increasing the number of iterations should decrease the bias towards the original simulation

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

Covariance Construction (2)

Toy example: 3 events, 2 systematic uncertainties (statistical unc. not shown here)

Syst. 1

New Simulated sample \rightarrow Use it for unfolding

 $W_1 = (0.9) \cdot (1.15)$ $W_2 = (0.95) \cdot (1.3)$ $W_3 = (1.05) \cdot (0.85)$

Syst. 2 Nuisance PDF

Nuisance value

Covariance Construction (2)

Toy example: 3 events, 2 systematic uncertainties (statistical unc. not shown here)

(Co)variances constructed from (Co)variances of unfolded sample Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024 population

Detector-level:

At least 1 well-reconstructed vertex At least 3 well-reconstructed tracks

Generator-level:

At least 2 charged particles

Event Shape Observables

• **Sphericity:** measures how spherical (i.e. isotropically) the momenta are distributed in an event. First the tensor *S* is defined with components

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\overrightarrow{p}_{i}|^{2}}$$
(2)

and α , $\beta = x, y, z$. The sphericity is constructed from the two smallest eigenvalues λ_2 and λ_3 : $S = \frac{3}{2}(\lambda_2 + \lambda_3)$.

• **Thrust:** measures how highly collimated the momenta in an event is along one particular axis. It is defined as

$$\mathcal{T} = 1 - \max_{\overrightarrow{n}} \frac{\sum_{i} \overrightarrow{p}_{i} \cdot \overrightarrow{n}}{\sum_{i} |\overrightarrow{p}_{i}|}$$
(3)

where \overrightarrow{n} is a unit vector. In the maximization step [49], the thrust axis is defined as the \overrightarrow{n} at the maximum.

• **Broadening:** measures the fraction of energy which is perpindicular to the thrust axis. The thrust axis defines the left \mathcal{L} and right \mathcal{R} hemisphere of the event. The left and right broadening is defined as

$$\mathcal{B}_{\mathcal{L}} = \sum_{i \in \mathcal{L}} \frac{|\overrightarrow{p}_i \times \overrightarrow{n}|}{\sum_i |\overrightarrow{p}_i|}, \ \mathcal{B}_{\mathcal{R}} = \sum_{i \in \mathcal{R}} \frac{|\overrightarrow{p}_i \times \overrightarrow{n}|}{\sum_i |\overrightarrow{p}_i|}.$$
(4)

The total broadening is defined as $\mathcal{B} = \mathcal{B}_{\mathcal{L}} + \mathcal{B}_{\mathcal{R}}$.