

1

Event Shape Measurement with CMS

K. Cormier on behalf of CMS

Motivation (1): Soft QCD is not well modelled

Existing observations of **unexpected effects in event-shapes** and strangeness production **in pp collisions —** Improve understanding of hadronic collisions

Ankle Bung

 $n^{(n)}$ = 550 GeV

 $| \eta^{tot} | < 1.6$

 $\frac{a}{6}$ $\frac{b}{3}$ 1.8

 $\frac{1}{2}$

Mechanism of increase in strange particles as a function of particle multiplicity?

13 Te $n \text{ is } = 7 \text{ TeV}$

 $p-Pb.$ 1 s... = 5.02 TeV Pb-Pb, $1S_{\text{max}} = 2.76 \text{ TeV}$ PYTHIA8 + color ropes PYTHIA8 Monash PYTHIA8 Monash, NoCE

 10^{2}

10

 $10³$

 $\left\langle \text{d}N_{\text{ch}}/\text{d}\eta \right\rangle_{|\eta|\leq 0.5}$

Mismodelling of event shapes in 7 TeV data

Anti- Dung

 $p^{\text{int}} > 550 \text{ GeV}$

 $10^{10} - 1.8$

 $|\Delta\eta^*| > 2.$

्
इंडि

Unexpected particle production across η, but with $\Delta\phi \sim 0$.

> Similar correlations recently observed in high-multiplicity jets

Not predicted by simulation

```
https://arxiv.org/abs/2312.17103
```
Antik Bund

 $p^{\text{int}} > 550 \text{ GeV}$

Which A

0.25

Motivation: Step towards instanton search

QCD Instantons – non-perturbative effect [<https://arxiv.org/abs/1911.09726>]

May be directly observable at the LHC

Signature: Soft, Isotropic, "fireball" with 2N_f quarks + O(10) gluons

Measurement Overview

Consider only **charged particles** using tracking information → precise reconstruction Use **low-pileup data** (64 μb-1 collected in 2018)

Measure event-shape observables as a function of particle multiplicity and energy

Minimum Bias Modelling

Primary Samples:

Additional Samples:

Unfolding [[https://arxiv.org/abs/1911.09107\]](https://arxiv.org/abs/1911.09107)

We use an **unbinned unfolding** technique

→ **outputs re-weighted Monte Carlo events** estimating the data distribution

"Multifold" variant of Omnifold, which simultaneously unfolds a number of observables

Input: all 8 observable values for every event in simulation and data

Output: reweighted simulated events approximating data

Uncertainties

Detector-related uncertainties largely mitigated by use of tracks

We do include an explicit tracking efficiency uncertainty based on randomly dropping a small % of tracks

No obvious prescription for Modelling uncertainties Our Approach:

Consider 4 samples (nominal + 3 systematic variations) For **each sample** consider **two categories** of effects:

- 1. Effect of changes in observables used directly in unfolding
	- a. N_{tracks} , Sphericity, Thrust,
- 2. Effect of changes in other observables which may change detector response
	- a. Track pseudorapidity, particle composition, …

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024

"Generator distribution uncertainties"

"Migration function uncertainties"

Uncertainty Estimation

Uncertainties **propagated via "toys"** through unfolding

- 1. Generate Resampled Data
- 2. Generate Resampled Model
- 3. Perform unfolding

Repeat this N times, then: use distribution over N toys to calculate uncertainties + covariance

Systematic effects also assigned continuous parameter weights:

● Sampling done with full statistical + systematic effects, preserving correlations

Correlations preserved across all event information (8 observables)

Multiplicity and Mass – "Event Activity"

Common trend: Data above all predictions at medium activity values (N_{ch} ~20, $\sqrt{s_{ch}}$ ~ 45 GeV), Predictions above data for very low ($N_{ch} \leq 5$, $\sqrt{s_{ch}} \leq 10$ GeV).

Spread of behaviour in tails, depending on Model + Tune

 0.45 T_{ch}

Common Trend: Data tends to be more isotropic than predictions for all observables and models (though to varying degrees)

CMS Preliminary

dN/dB

 $\check{\le}$

PYTHIA CP1

PYTHIA A3

EPOS-LHC

PYTHIA A14

PYTHIA CP5

Event Shapes (Transverse)

Trend of more isotropic data somewhat more clear in transverse-only observables

64.2 ub⁻¹ 2018 (13 TeV)

stat. unc

stat. @sys. unc.

 0.15 0.20 0.25 0.30 0.35 0.40 T_T^{ch}

Event Shapes as a function of Event Activity

Strong trends of more isotropic data within multiplicity slices Trends more clear than inclusive event shapes Most striking in "mid" activity region

(Full) Event shapes as a function of activity

Trend for data to be more istoropic more visible for S than S_T^{\prime} at high N_{ch}^{\prime} Related to ridge effects?

Further Comparisons

Checks and Comparisons

These trends were checked against a number of samples, and seem consistent other investigated effects include:

- Colour Reconnection Model
- PDF
- PDF order
- \bullet α_{s} (FSR)

No significant deviations from these trends were found in any of the checks

Checks and Comparisons

Trend in "Event Activity" Consistent with other measurements

Other Event Shapes

Shapes from LEP

Same CMS pythia tunes

Very different trends

<http://www.arxiv.org/abs/1807.02810>**CMS** 35.9 fb⁻¹ (13 TeV) $PW + PYR$ Theory/Data ISR up $1.5 \pm \sqrt{2}$ ISB down FSR up **XXX GELE OF A OF A GRAF** FSR down UE up UE down no MPI Theory/Data $-$ no CR • QCD based Gluon move m ERD on m Rope Ψ Rope (no CR) Theory/Data Sherpa MG5 aMC $PW+HW++$ 0.1 0.6 0.8 PW+HW7 0.2 0.3 0.4 0.5 0.7

 $p_T^{\text{-deweighted event}}$ shape (spher**o**city, not spher**i**city)

Different behaviour

Similar Trend ? (less clear) in UE from ttbar

Event Shapes Lower Energy

Perhaps also at TeVatron? (but hard to compare and interpret …)

Leading Jet $E_m \geq 200$ GeV

Some observables previously measured at **7 TeV**, Show **qualitatively similar** results for transverse event shapes

Future Directions

- Tuning of event-shape distributions?
	- New results provide better flexibility and correlation information as well as updated centre of mass energy
	- Do any of the current knobs impact this much?
	- Which knobs might?
- Low- $p_T Z$ measurements?
	- As per recent paper and Luca's talk: <https://arxiv.org/abs/2307.05693> <https://indico.cern.ch/event/1383721/timetable/?view=standard#33-overview-of-multi-parton-in>
	- Look at event shape **removing 1 pair or parton-interactions?** 2 with leading back-to-back jet pair?
	- Compare cumulative jet count delta-phi in minimum bias?

Observables that could particularly benefit from high-dimensional correlations or exploratory analysis?

Event Shape measurement from CMS

- Unbinned unfolding \rightarrow simultaneous unfolding across 8 observables
- Event shape distributions are consistently more isotropic in data than available models
- Models consistently under predict fraction of events with moderate "event activity"
- Some intersection of these two effects?
- Several Candidates for future directions

Motivation (3)

Topological Effects are a generic prediction of Non-Abelian Gauge theories \rightarrow Come from non-trivial winding of the field in space-time

Important physical consequences

- Major role in hadron masses (QCD)
- Chirality Violation
- Baryon Number Violation (EW)

Role in the Early universe?

- Important for QGP
- Source of Baryogenesis?

Connections to BSM theories

- Source of QCD theta-vacuum term, motivation for axions
- o Should appear in any new non-abelian gauge group
- Topological Monopoles, Strings, …

Topological effects predict terms which are 0 to all orders in pertrubative expansions at $\alpha = 0$.

$$
f(\alpha_s) \sim \exp\left(-\frac{\text{const}}{\alpha_s}\right) \left(\sum_{n=0}^{\infty} (\alpha_s)^n B_n\right)
$$

https://arxiv.org/abs/1812.01509

We have an opportunity to try to study these experimentally

Measurement Goals

Measure event shapes as a function of track multiplicity + mass Focus on charged particles \rightarrow Precise reconstruction

Data: 2018 low-pileup data-taking + Zerobias trigger (15 μb-1)

Simulation

Nominal Samples and Uncertainties

Pythia: **CP1 (CMS)**, A3 (ATLAS) EPOS-LHC Herwig7: CH3 **Different tunes, same MC model Regge-Gribov Model, collective flow Separate shower/hadronization models**

Validation and Comparisons not used in the Analysis

Pythia: CP5 (CMS), CUETP8M1 (CMS), CUETP8M2T4 (CMS), A14 (ATLAS), A14 Variations,

Uncertainties

Detector-related uncertainties largely mitigated by use of tracks

We do include an explicit tracking efficiency uncertainty based on randomly dropping a small % of tracks

No obvious prescription for Modelling uncertainties Our Approach:

Consider 4 samples (nominal + 3 systematic variations) For **each sample** consider **two categories** of effects:

3 alternative samples x 2 uncertainties per sample

6 independent modelling uncertainties

"Generator distribution uncertainties"

"Migration function uncertainties"

Unfolding (1)

We perform a **simultaneous unbinned unfolding** of all our observables.

Unfolding is done using an iterative machine-learning based approach \rightarrow multiple steps of unbinned reweighting

Results of unfolding are (re)weighted simulated events

→ Binning is performed only for visualization and studying specific distributions *after* unfolding

Unbinned Reweighting

1. Train a classifier to distinguish two samples: **A** and **B** a. The classifier should 'learn the likelihood ratio'

→ outputs the estimated probability **p** that an event is from sample **A**

- 2. Reweight events from sample **B** by **p/(1-p)**
	- → Reweighted sample **B** now approximates sample **A**

Unfolding [\[https://arxiv.org/abs/1911.09107\]](https://arxiv.org/abs/1911.09107)

- 1) Reweight simulation to data at detector-level
- 2) Reweight original simulation to reweighted simulation at gen-level
- 3) Repeat

Input: all 8 observable values for every event in simulation and data

Output: reweighted simulated events approximating data

Increasing the number of iterations should decrease the bias towards the original simulation

Covariance Construction (2)

Toy example: 3 events, 2 systematic uncertainties (statistical unc. not shown here)

New Simulated sample →Use it for unfolding

 $W_1 = (0.9) (1.15)$ $W_2 = (0.95) \cdot (1.3)$ **W3 = (1.05)**ᐧ**(0.85)**

Syst. 1 Syst. 2 Nuisance PDF

Nuisance value Muisance value

Covariance Construction (2)

Toy example: 3 events, 2 systematic uncertainties (statistical unc. not shown here)

Kyle Cormier, Non-Perturbative and Topological aspects of QCD, May 2024 **(Co)variances constructed from (Co)variances of unfolded sample population**

Detector-level:

At least 1 well-reconstructed vertex At least 3 well-reconstructed tracks

Generator-level:

At least 2 charged particles

Event Shape Observables

• Sphericity: measures how spherical (i.e. isotropically) the momenta are distributed in an event. First the tensor S is defined with components

$$
S^{\alpha\beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} |\overrightarrow{p}_i|^2}
$$
 (2)

and α , $\beta = x$, y , z. The sphericity is constructed from the two smallest eigenvalues λ_2 and λ_3 : $S = \frac{3}{2}(\lambda_2 + \lambda_3)$.

• Thrust: measures how highly collimated the momenta in an event is along one particular axis. It is defined as

$$
\mathcal{T} = 1 - \max_{\vec{n}} \frac{\sum_{i} \overrightarrow{p}_i \cdot \overrightarrow{n}}{\sum_{i} |\overrightarrow{p}_i|}
$$
 (3)

where \overrightarrow{n} is a unit vector. In the maximization step [49], the thrust axis is defined as the \overrightarrow{n} at the maximum.

• Broadening: measures the fraction of energy which is perpindicular to the thrust axis. The thrust axis defines the left $\mathcal L$ and right $\mathcal R$ hemisphere of the event. The left and right broadening is defined as

$$
\mathcal{B}_{\mathcal{L}} = \sum_{i \in \mathcal{L}} \frac{|\overrightarrow{p}_i \times \overrightarrow{n}|}{\sum_i |\overrightarrow{p}_i|}, \ \mathcal{B}_{\mathcal{R}} = \sum_{i \in \mathcal{R}} \frac{|\overrightarrow{p}_i \times \overrightarrow{n}|}{\sum_i |\overrightarrow{p}_i|}.
$$
 (4)

The total broadening is defined as $\mathcal{B} = \mathcal{B}_C + \mathcal{B}_{\mathcal{R}}$.