

EMWSD / Wakis

Electromagnetic and Wake Solver Development

Meeting #19

Elena de la Fuente, Carlo Zannini, Lorenzo Giacomel, Giovanni Iadarola

- 1. Where are we?
- 2. Main improvements in the code
- 3. Beam injection & Absorbing boundary conditions (ABC)
- 4. 1st Benchmark with CST: PEC pillbox
- 5. Conclusions & Next steps

- 1. Where are we?
- 2. Main improvements in the code
- 3. Beam injection & Absorbing boundary conditions (ABC)
- 4. 1st Benchmark with CST: PEC pillbox
- 5. Conclusions & Next steps

Wake solver milestones:

4

- 1. Where are we?
- 2. Main improvements in the code
- 3. Beam injection & Absorbing boundary conditions (ABC)
- 4. 1st Benchmark with CST: PEC pillbox
- 5. Conclusions & Next steps

PyFIT GitHub overview

💼 elenafuengar new benchmark with a bigger cav	ity above cutoff	8c6a436 · 14 hours ago	🕚 182 Commits	
benchmarks	new benchmark with a bigger	r cavity above cutoff	14 hours ago	Benchmarks vs CST, WarpX
examples	gaussian wave packet exampl	e	last week	Examples & university tests:
🗋 .gitignore	include cst		last week	Plane wave propagation
C conductors.py	Added implicit function cond	uctor	3 years ago	 Gaussian wavepacket propagation
C conductors3d.py	fixing a bug in sphere conduc	tor	4 years ago	Cubic Resonator
🗋 field.py	updatedadd to sum two	Field objects	4 months ago	Field class to manage matrix formulation
🗋 grid2D.py	fixing a small bug		3 years ago	$E, H, J, \varepsilon, \mu$ are instances of this class
🗋 grid3D.py	add conductors functions to f	ït	4 months ago	
gridFIT3D.py	small bug fix for stl_scale		2 months ago	GridFIT3D class in charge of STL importer
🗋 materials.py	typo	FIT EIVI SOIVER	3 months ago	and grid definition
pmlBlock2D.py	fixing a small bug		4 years ago	Pre-defined materials library (vacuum,
pmlBlock3D.py FDTD EM solver	3D PMLs now working		4 years ago	dielectric, PEC)
solver2D.py by Lorenzo	Modified 2d em soolver		3 years ago	
solver3D.py	change CFL to defaul 0.5		last month	SolverFIT3D class that solves Maxwell
solverFIT3D.py	add dt as parameter		14 hours ago	equations
wakeSolver.py	add wakelength to init	Wake Solver	2 days ago	Wakis code is refactored into
Cha			1.2	class WakeSolver

Should we turn this into a package already?

Merging wakis with PyFIT

Should PyFIT become the wakis package instead?

class Wake \sim func __ini func solve func calc lambdas analytic

func read Ez

func read txt

func log

func params_to_log

Feb 21st. 2024

func read cst 3d

Solver	10		1
501101	11		
t	12		
	13		
5	14		
long_WP	15	\sim	
	16		
long_WP_3d	17		
trans WP	18		
	19		
long_Z	20		
trans 7	21		
_uans_z	22		
lambdas	23		
	24		

25

26

10 🗸 class WakeSolver(): ''' Class for wake potential and impedance calculation from 3D time domain E fields

1.1.1

def __init__(self, q=1e-9, sigmaz=1e-3, beta=1.0, xsource=0., ysource=0., xtest=0., ytest=0., chargedist=None, ti=None, Ez file='Ez.h5', save=True, results_folder='results/', verbose=0, logfile=True): 111 Parameters --------a : float Beam total charge in [C] sigmaz : float

Beam sigma in the longitudinal direction [m]

class SolverETT3D:

def init (self, grid, wake=None, cfln=0.5, dt=None, bc_low=['Periodic', 'Periodic', 'Periodic'], bc_high=['Periodic', 'Periodic', 'Periodic'], use_conductors=False, use_stl=False, bg=[1.0, 1.0]): 1 1 1

TODO Docstring

1.1.1

Moved all the relevant functions from wakis to the WakeSolver class

> WakeSolver instance is passed as a parameter to SolverFIT3D to perform Wakefield simulations

> It's kept optional since it is not needed to perform just EM time domain simulations

SolverFIT3D development (I): memory optimization

632 🗸	<pre>def attrcleanup(self):</pre>
633	
634	# Fields
635	<pre>del self.L, self.tL, self.iA, self.itA</pre>
636	<pre>if hasattr(self, 'BC'):</pre>
637	del self.BC
638	del self.Dbc
639	
640	# Matrices
641	<pre>del self.Px, self.Py, self.Pz</pre>
642	<pre>del self.Ds, self.iDa, self.tDs, self.itDa</pre>
643	del self.C

Errores	Asignaci 2.043.8 331.040 171.736 130.380 68.044 102.520 245.372 53.024	Espacio de trab 1.978.388 276.436 194.064 186.992 150.860 135.244 115.508 114.860	Se pue 0 53.276 69.344 65.448 105.724 50.836 115.404	Priv ^ 1.9: 22: 12: 12: 4! 8:	Memoria física usada	1(
Image: Second	Asignact. 2.043.8 331.040 171.736 130.380 68.044 102.520 245.372 53.024	1.978.388 276.436 194.064 186.992 150.860 135.244 115.508 114.860	0 53.276 69.344 65.448 105.724 50.836 115.404	1.9 22: 12 12 4! 8	60 segundos	
12 0 76 0 892 0 20 0 72 0 632 0 152 0 584 0	2.043.8 331.040 171.736 130.380 68.044 102.520 245.372 53.024	1.978.388 276.436 194.064 186.992 150.860 135.244 115.508 114.860	0 53.276 69.344 65.448 105.724 50.836 115.404	1.9. 22: 12 ⁴ 12 4! 8 ⁴	60 segundos	
76 0 892 0 20 0 72 0 632 0 152 0 584 0	331.040 171.736 130.380 68.044 102.520 245.372 53.024	276,436 194.064 186.992 150.860 135.244 115.508 114.860	53.276 69.344 65.448 105.724 50.836 115.404	22: 12: 12: 4: 8:	60 segundos	
892 0 20 0 72 0 632 0 152 0 584 0 20 0	171.736 130.380 68.044 102.520 245.372 53.024	194.064 186.992 150.860 135.244 115.508 114.860	69.344 65.448 105.724 50.836 115.404	12 12 4! 8	60 segundos	
20 0 72 0 632 0 152 0 584 0	130.380 68.044 102.520 245.372 53.024	186.992 150.860 135.244 115.508 114.860	65.448 105.724 50.836 115.404	12 4! 84	60 segundos	
72 0 632 0 152 0 584 0	68.044 102.520 245.372 53.024	150.860 135.244 115.508 114.860	105.724 50.836 115.404	4! 84	60 segundos	
632 0 152 0 584 0	102.520 245.372 53.024	135.244 115.508 114.860	115.404	84	60 segundos	
152 0 584 0	245.372 53.024	115.508	115.404		60 segundos	
584 U	12 200	114.860				
		405 500	00.536	4	Carga de asignación	10
				>		
40		1000 MD 5 11				
vib en uso	_	1996 IVIE disponibi	55	0		
Modificada	En En	espera 🔲 Li	ore			
36 MBB	18	54 MB 14	14 MB		Errores graves/s	
Disponible 19	OR MR					
En cachá 19	90 MB					
	Modificada 36 MBB Disponible 19 En caché 18	Modificada En 36 MBB 18 Disponible 1998 MB En caché 1890 MB	Modificada En espera Lui 36 MBB 1854 MB 14 Disponible 1998 MB	Modificada En espera Libre 36 MBB 1854 MB 144 MB Disponible 1998 MB En caché 1890 MB	Modificada En espera Libre 36 MBB 1854 MB 144 MB Disponible 1998 MB	Modificada 36 MBB 1854 MB 144 MB Disponible 1998 MB En cache 1890 MB

Deletes from memory the matrices that will not be used for the timestepping routine:

- Improves memory allocation by 60%
- Increases speed performance by 5%

🔕 Monitor de recursos								_	
Archivo Monitor Ayuda									
Información general CPU	Memoria	Disco R	ed						
Procesos	79% de mer	noria física usa	da		_	\odot		Vi	istas 🛛 🖛
Proceso	PID	Errores	Asignaci	Espacio de trab	Se pue	Priv ^	Memo	ria física usada	100% -
vmmem	1512	0	2.056.1	2.052.116	0	2.0!			
SearchApp.exe	16152	0	255.856	346.076	115.500	23(
MsMpEng.exe	5276	0	332.792	256.924	49.348	20			
dwm.exe	1320	0	170.256	225.488	64.384	16		` . /	
Code.exe	12892	0	168.128	191.048	69.392	12			
explorer.exe	8472	1	68.032	152.812	105.500	4			
Code.exe	13632	0	94.644	127.548	50.960	7(60 seg	undos	0% -
WindowsTerminal.exe	11584	0	53.420	115.660	66.496	4!	Carga	de asignación	100% -
< M	2100	^	222	100.016	^	>			
Memoria física 🗖	6452 MB en	USO	-	1655 MB disponible	25	۲			
Reservada para	uso	Modificada	En Fr	espera 🚺 Li	ore				0% -
hardware 64 83 MB	52 MB	2 MB	80	6 MB 84	19 MB		Errores	s graves/s	100 -
	Di Er To In	sponible 16 i caché 8i otal 81 stalada 81	55 MB 08 MB 09 MB 92 MB						
									- 0

SolverFIT3D development (II): 1D, 2D, 3D plotting

~	class	SolverFIT3D
	func	init
	func	one_step
	func	emsolve
~	func	wakesolve
	fun	c beam
	func	apply_bc_to_C
	func	update_abc
	func	set_ghosts_to_0
	func	apply_conductors
	func	set_field_in_conductors_to_0
	func	apply_stl
	func	attrcleanup
	func	plot3D
	func	plot2D
	func	plot1D

<u>Plot3D example:</u>

examples/script_planewave_fit.py

A planewave interacting with a dielectric sphere (University test)

Using PyVista (vtk based) functions.

Plots can also be interactive:

 clip_volume or clip_normal flags when off_screen =True

SolverFIT3D development (II): 1D, 2D, 3D plotting

SolverFIT3D development (IV): EM solve

source: func

EM solve example:

examples/script wavepacket fit.py

A gaussian wavepacket

domain (University test)

propagating through vacuum

def emsolve(self, Nt, source=None, save=False, fields=['E'], components=['Abs'],
 every=1, subdomain=None, plot=False, plot_every=1, **kwargs):
 '''
 Run the simulation and save the selected field components in HDF5 files
 for every timestep. Each field will be saved in a separate HDF5 file 'Xy.h5'
 where X is the field and y the component.
 Parameters:

 Nt: int
 Number of timesteps to run

Function defining the time-dependednt source.

It should be in the form `func(solver, t)`

Runs Electromagnetic time domain simulation given an initial condition or source

H_y field, timestep=0

SolverFIT3D development (V): Wake solve

-0.04

-0.02

0.00

z

0.02

0.0

-0.02

-0.04

0.00

z

0.02

0.04

0

0.04

12

-100000

- 1. Where are we?
- 2. Main improvements in the code
- 3. Beam injection & Absorbing boundary conditions (ABC)
- 4. 1st Benchmark with CST: PEC pillbox
- 5. Conclusions & Next steps

Beam injection

The particle beam is injected as a linear current with a gaussian profile defined by the beam size σ_z and charge q

• Every timestep, the field J_z is updated at x_{source} , y_{source} for all the cells in z

220	dof have (colf +),
330	v det deam(seit, c):
331	
332	Update the current J every timestep
333	to introduce a gaussian <mark>beam</mark>
334	moving in +z direction
335	•••
336	<pre>s0 = self.z.min() - c_light*self.ti</pre>
337	s = self.z - c_light*t
338	
339	# gaussian
340	<pre>profile = 1/np.sqrt(2*np.pi*self.sigmaz**2)*np.exp(-(s-s0)**2/(2*self.sigmaz**2))</pre>
341	
342	# update
343	<pre>self.J[self.ixs,self.iys,:,'z'] = self.q*c_light*profile/self.dx/self.dy</pre>

The beam injection produces a big E_z field perturbation at z- and z+, due to violation of the continuity equation (Gauss law)

$$\oint_{\partial V} \boldsymbol{D} \cdot d\boldsymbol{A} = \iiint_{V} \boldsymbol{\rho} \ d\boldsymbol{V} \xrightarrow{\text{FIT}} \widetilde{\boldsymbol{S}} \widetilde{\boldsymbol{D}}_{\boldsymbol{A}} \left(\frac{\partial \boldsymbol{d}}{\partial t} + \boldsymbol{j} \right) = \boldsymbol{0}$$

Not included in update equations... Should we correct it / enforce it?

Absorbing boundaries

A first attempt to reduce the perturbation of the E_z field when the beam current enters/exits it to use absorbing boundary conditions (ABC)

• Since PML formulation is complex, the simplest ABC, the FOEXTRAP, was tested first. This is a first order extrapolation that mimics a continuous field at the boundary cells

•••120	<pre> def one_step(self): </pre>
121	
122	<pre>if self.step_0:</pre>
123	<pre>self.set_ghosts_to_0()</pre>
124	<pre>self.step_0 = False</pre>
125	
126	<pre>#if self.use_conductors:</pre>
127	<pre>#self.set_field_in_conductors_to_0()</pre>
128	
129	<pre>self.H.fromarray(self.H.toarray() -</pre>
130	<pre>self.dt*self.tDsiDmuiDaC*self.E.toarray()</pre>
131)
132	
133	<pre>self.E.fromarray(self.E.toarray() +</pre>
134	<pre>self.dt*(self.itDaiDepsDstC * self.H.toarray() - self.iDeps*self.J.to</pre>
135)
136	
137	#update ABC
138	if self.activate_abc: It has to be updated every timestep
139	<pre>self.update_abc()</pre>

401	<pre>def apply_bc_to_C(self):</pre>
505	
506	# Absorbing boundary conditions ABC
507	<pre>if any(True for x in self.bc_low if x.lower() == 'abc'):</pre>
508	<pre>self.activate_abc = True</pre>
509	
510 V	<pre>def update_abc(self):</pre>
511	
512	Apply ABC algo to the selected BC,
513	to be applied after each timestep
514	
515	
516	<pre>if self.bc_low[0].lower() == 'abc':</pre>
517	for d in ['x', 'y', 'z']:
518	self.E[0, :, :, d] = self.E[1, :, :, d]
519	self.H[0, :, :, d] = self.H[1, :, :, d]
500	·····
	Same for all 6 houndaries (low and high x y z)

Absorbing boundaries (II)

The effect of this simple ABC is clearly visible at the edges of the domain:

• ABC gives a smaller perturbation amplitude but it oscillates from negative to positive

100000

75000

50000

25000

-25000

-50000

-75000

-100000

100000

75000

50000

25000

-25000

-50000

-75000

-100000

0

0.04

0.04

0

Absorbing boundaries (III)

Order of magnitude reduction of the amplitude of the perturbation, specially at z+.

- 1. Where are we?
- 2. Main improvements in the code
- 3. Beam injection & Absorbing boundary conditions (ABC)
- 4. 1st Benchmark with CST: PEC pillbox
- 5. Conclusions & Next steps

Pillbox Cavity (bellow cutoff): FIT vs WarpX vs CST

z [m]

Pillbox Cavity (bellow cutoff): FIT vs WarpX vs CST

Pillbox Cavity (above cutoff): FIT vs CST

Pillbox Cavity (above cutoff): FIT vs CST

- 1. Where are we?
- 2. Main improvements in the code
- 3. Beam injection & Absorbing boundary conditions (ABC)
- 4. 1st Benchmark with CST: PEC pillbox
- 5. Conclusions & Next steps

Conclusions

✓ Progress on the code:

- Built-in plotting 1D, 2D, (matlab based) and 3D (pyvista/vtk based): Fast, flexible (**kwargs), proven not memory consuming, possibility of offscreen plotting to create animations.
- o Attribute cleanup: reduces memory consumption 60% and slightly improves performance
- Solving routines:

Feb 21st, 2024

- emsolve() for pure Electromagnetic time domain, source can be any user function: func(solver, t).
- wakesolve() for Wakefield time domain, source is a particle beam, computes wake potential and impedance W, Z.

Beam injection and Absorbing boundaries:

- Beam injection as in CST using line current: barely affects performance >0.1%. Produces perturbation at the boundaries due to breaking continuity equation + reflections
- Absorbing boundaries ABC FOEXTRAP implemented. Small impact on computation time <1%. Helps reducing perturbations, specially at boundary z+. Not comparable to PML.

✓ <u>1st Benchmark vs CST and WarpX:</u>

- Simulated 2 cubic pillbox cavities: below and above cutoff.
 - Agreement satisfactory below cutoff, while above cutoff the need of PML becomes relevant to get the right amplitude and frequency of the modes.
- Performance vs WarpX: FIT is 88% faster*, and ABC gives smaller reflections** than WarpX's PML.

Safe to say we are in a better position with FITWakis Feb 2024 compared to July 2023 WarpX+Wakis? 🙂

*comparison on lxplus (same node). Workload variability may impact WarpX's time

**probably due to beam injection with 10^6 macroparticles perturbations not being absorbed by PML

24

Next steps / Questions

- i. GitHub strategy: moving to a package? what to do with wakis? (I would like to keep the name ⁽ⁱ⁾)
- ii. Beam injection perturbation correction: enforce continuity equation?
- iii. Working on implementing conductivity M_{σ} :
 - It can be fairly easy: Just add update equation for the current $J \rightarrow j^{n+1} = M_{\sigma}e^{n+0.5}$
 - Or it can be quite convoluted: <u>Weiland</u> formulation & <u>Berenguer</u> formulation (backup)
 - To be benchmarked with a lossy pillbox ?
- iv. Completing tests for university: probably trip around end of April
 - Using the planewave and gaussian wave packet tests, we can perform tests in symmetry of the solver, dispersion, speed of light conservation, refraction angle when interacting with dielectric, energy conservation.. Etc. The idea is to use pytest
- v. Try to make the code faster with cython?
- vi. <u>CERN School of Computing</u>?

Thank you 🙂 !!!

Electromagnetic and Wake Solver Development meeting #19

Elena de la Fuente García (BE-ABP-CEI)

Berenguer PML vs Weiland update equations

$$E_{y}^{n+1}(i, j+1/2) = e^{-\sigma_{x}(i) \Delta t/\epsilon_{0}} E_{y}^{n}(i, j+1/2) - \frac{(1-e^{-\sigma_{x}(i) \Delta t/\epsilon_{0}})}{\sigma_{x}(i) \Delta x} \times [H_{zx}^{n+1/2}(i+1/2, j+1/2) + H_{zy}^{n+1/2}(i+1/2, j+1/2) - H_{zx}^{n+1/2}(i-1/2, j+1/2) - H_{zy}^{n+1/2}(i-1/2, j+1/2)]$$

$$(37)$$

$$H_{zx}^{n+1/2}(i+1/2, j+1/2) = e^{-\sigma_{x}^{*}(i+1/2) \Delta t/\mu_{0}} H^{n-1/2}(i+1/2, j+1/2)$$

$$-\frac{e^{-\sigma_{x}^{*}(i+1/2)} dt}{\sigma_{x}^{*}(i+1/2)} - \frac{(1 - e^{-\sigma_{x}^{*}(i+1/2)} dt/\mu_{0})}{\sigma_{x}^{*}(i+1/2)} dx} \times [E_{y}^{n}(i+1, j+1/2) - E_{y}^{n}(i, j+1/2)], \qquad (38)$$

$$e^{n+1.5} = exp(-\widetilde{D}_{\varepsilon}^{-1}\widetilde{D}_{\kappa}\Delta t)e^{n+0.5} + (1 - exp(-\widetilde{D}_{\varepsilon}^{-1}\widetilde{D}_{\kappa}\Delta t)\widetilde{D}_{\kappa}^{-1}D_{A}^{-1}CD_{s}D_{\mu}^{-1}b^{n+1} - (1 - exp(-\widetilde{D}_{\varepsilon}^{-1}\widetilde{D}_{\kappa}\Delta t)\widetilde{D}_{\kappa}^{-1}j^{n+1})$$

$$h^{n+1} = h^n - \Delta t \ \widetilde{\boldsymbol{D}}_s \boldsymbol{D}_{\mu}^{-1} \boldsymbol{D}_A^{-1} \boldsymbol{C} e^{n+0.5}$$

FIT theory: Grid Maxwell Equations

What we care about: **Update equations**

$$h^{n+1} = h^n - \Delta t \, \widetilde{D}_s D_{\mu}^{-1} D_A^{-1} C e^{n+0.5}$$
$$e^{n+1.5} = e^{n+0.5} + \Delta t D_s \widetilde{D}_{\varepsilon} \widetilde{D}_A^{-1} \widetilde{C} h^n - \widetilde{D}_{\varepsilon} j^n$$

We need to build all these matrices and then apply these equations every timestep !

