

Characterization of wakes and impedances in non-ultrarelativistic regime

Elena Macchia, Carlo Zannini, Chiara Antuono

Acknowledgements: Giovanni Rumolo, Elena de la Fuente García

16.05.2024 | CEI Section Meeting

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Outline

- Introduction
- Electromagnetic simulations for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
 - Examples of application
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Beam coupling impedance

- The beam coupling impedance describes the interaction of a particle beam with the surrounding environment.
- For a device of length l, the beam coupling impedance is defined as

$$Z_{\parallel} = -\frac{1}{q_0} \int_0^l E_s \, e^{jks} \, ds$$

$$Z_{x,y} = \frac{j}{q_0} \int_0^l [E_{x,y} - \beta Z_0 H_{y,x}] e^{jks} ds$$

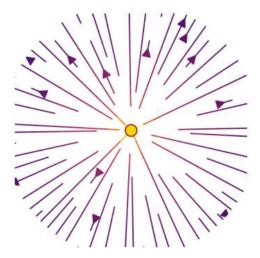
with $E_{s,x,y}$ and $H_{x,y}$ electric and magnetic induced fields in the frequency domain.

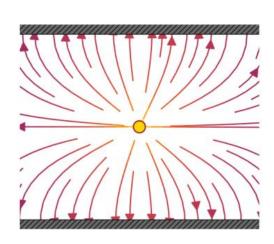
• When β < 1, the induced fields **also** include the **indirect space charge** field, which is related to the interaction of the particles among each other due to the external environment:

$$Z_{tot}(\beta) = Z(\beta) + Z^{ISC}(\beta)$$

Space charge

- When β < 1, the charged particles of a beam also create self-fields, that lead to the direct space charge effect.
- Direct space charge is related only to the interaction of the particles among each other in open space.
- While indirect space charge is typically directly taken into account in the impedance model, the direct space charge impedance has to be removed.





<u>Kevin Li, Collective effects –</u> an introduction

Direct space charge in open space.

Indirect space charge with material boundaries.

Outline

- Introduction
- Electromagnetic simulations for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
 - Examples of application
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Electromagnetic simulations for non-ultrarelativistic beams

- For ultrarelativistic beams, the reliability of CST electromagnetic simulations has been extensively proved.
- But CST can't discriminate between the fields induced by the beam, so the simulated beam coupling impedance of a device under test (DUT) is

$$Z_{DUT}^{tot}(\beta) = Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) + Z^{SC}(\beta)$$

where $Z_{DUT}^{ISC}(\beta)$ is the indirect space charge impedance due to the DUT and $Z^{SC}(\beta)$ is the direct space charge impedance.

- For $\beta = 1$ it results $Z^{SC}(\beta) = 0$ and $Z^{ISC}_{DUT}(\beta) = 0$.
- For non-ultrarelativistic beams, the main complication consists in removing the contribution of the direct space charge of the source bunch.

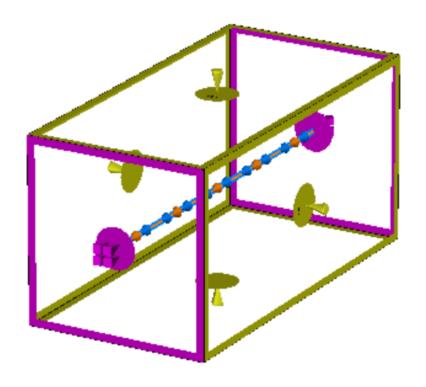
Simulations of the bounding box

- CST simulations take place within a delimited domain called bounding box.
 - Since CST is a numerical solver, it discretizes the domain with a mesh grid.

- The **bounding box** (bb) can be **simulated without changing its discretization**, by excluding all the elements of the DUT from the simulation.
- The resulting beam coupling impedance can be written as

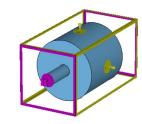
$$Z_{bb}^{tot}(\beta) = Z^{SC}(\beta) + Z_{bb}^{ISC}(\beta)$$

where $Z_{bb}^{ISC}(\beta)$ is the indirect space charge impedance of the bounding box.

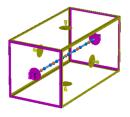


Numerical cancellation of $Z^{SC}(\beta)$

- Two simulations are run with the same mesh:
 - 1. Simulation of the device under test: $Z_{DUT}^{tot}(\beta) = Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) + Z^{SC}(\beta)$



2. Simulation of the bounding box: $Z_{bb}^{tot}(\beta) = Z^{SC}(\beta) + Z_{bb}^{ISC}(\beta)$



to remove $Z^{SC}(\beta)$ directly from simulations:

$$Z_{DUT}^{tot}(\beta) - Z_{bb}^{tot}(\beta) = Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) - Z_{bb}^{ISC}(\beta)$$

- $Z_{bb}^{ISC}(\beta)$ and $Z_{DUT}^{ISC}(\beta)$ can be analytically calculated and removed.
- This technique can also be applied directly to the wake potential.

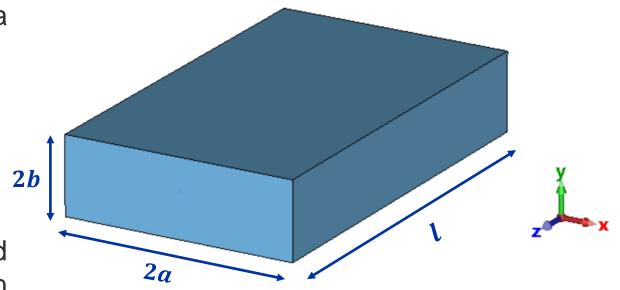
[1] C. Zannini et al., "Electromagnetic simulations for non-ultrarelativistic beams and applications to the CERN low energy machines"

Resistive chamber

 The first device that was considered is a resistive chamber of dimensions

$$a = 30 mm$$
 $b = 10 mm$
 $l = 100 mm$

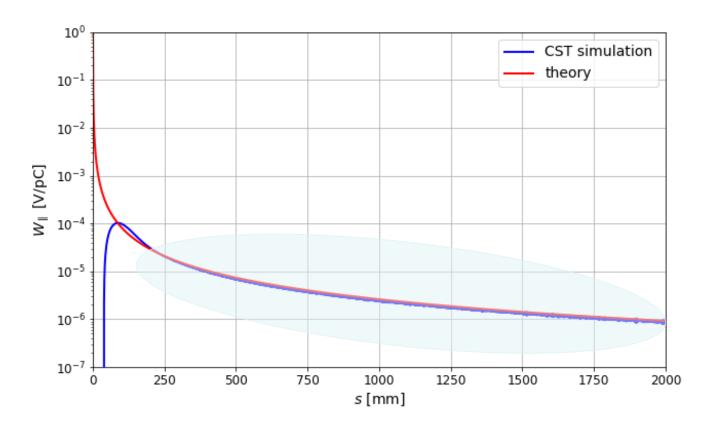
 The infinitely thick walls are simulated directly through the boundary condition "conducting wall".



• For the wakefield calculation, the direct integration method had to be used, because it is the only one that can also be employed for non-ultrarelativistic beams.

Longitudinal wake potential for $\beta = 1$: comparison between CST simulation and theory

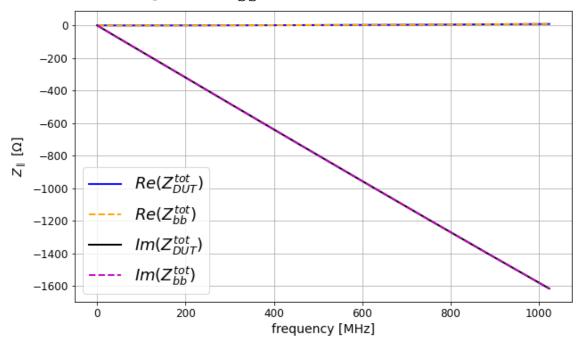
- The accuracy of the simulation in the ultrarelativistic case had to be checked due to the use of the direct integration method.
- In the long range there is a good agreement between the theoretical and simulated longitudinal wake potentials.



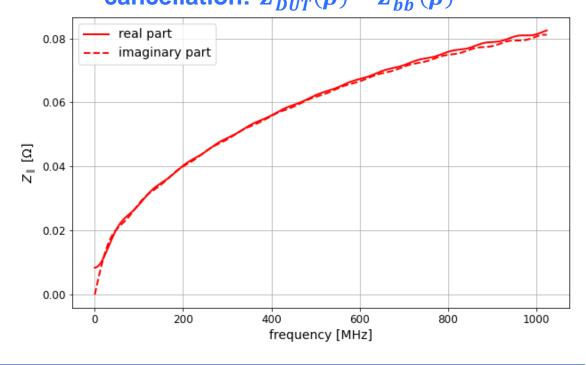
Example of application: longitudinal impedance of a resistive chamber, in the case $\beta = 0.5$

In the case of a resistive chamber with infinitely thick walls, the bounding box is the chamber itself, so $Z_{DUT}^{ISC}(\beta) = Z_{bb}^{ISC}(\beta)$ and we directly obtain $Z_{DUT}^{tot}(\beta) - Z_{bb}^{tot}(\beta) = Z_{DUT}(\beta)$:

Simulations of the resistive chamber (Z_{DUT}^{tot}) and bounding box (Z_{hh}^{tot})



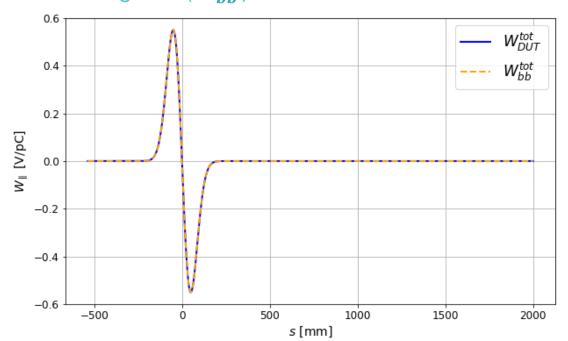
Longitudinal impedance after numerical cancellation: $Z_{DIIT}^{tot}(\beta) - Z_{bb}^{tot}(\beta)$



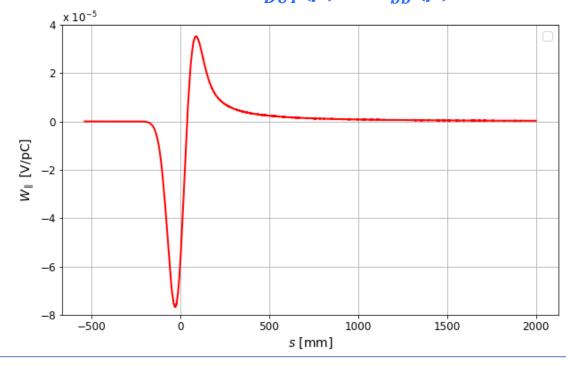
Example of application: longitudinal wake potential of a resistive chamber, in the case $\beta = 0.5$

The **technique** can also be applied **directly to the wake potential**:

Simulations of the resistive chamber (W_{DUT}^{tot}) and bounding box (W_{hh}^{tot})



Longitudinal wake potential **after numerical** cancellation: $W_{DUT}^{tot}(\beta) - W_{hh}^{tot}(\beta)$

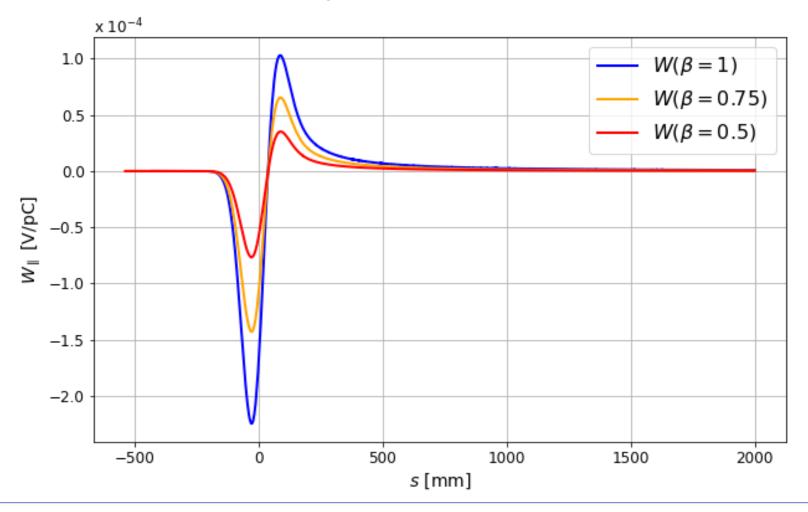


Outline

- Introduction
- Electromagnetic simulations for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
 - Examples of application
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

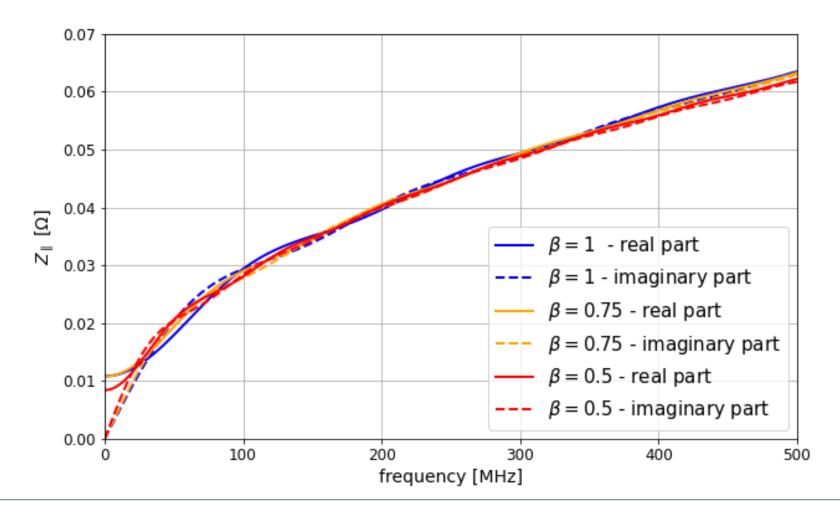
Longitudinal wake potential varying \(\beta \)

It can be observed that the longitudinal wake potential scales with $\beta^{\frac{3}{2}}$.



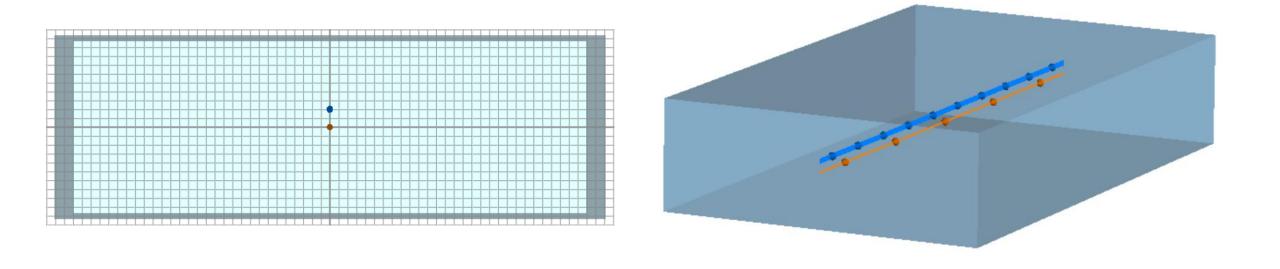
Longitudinal impedance varying β

As expected, the longitudinal impedance doesn't change with β .



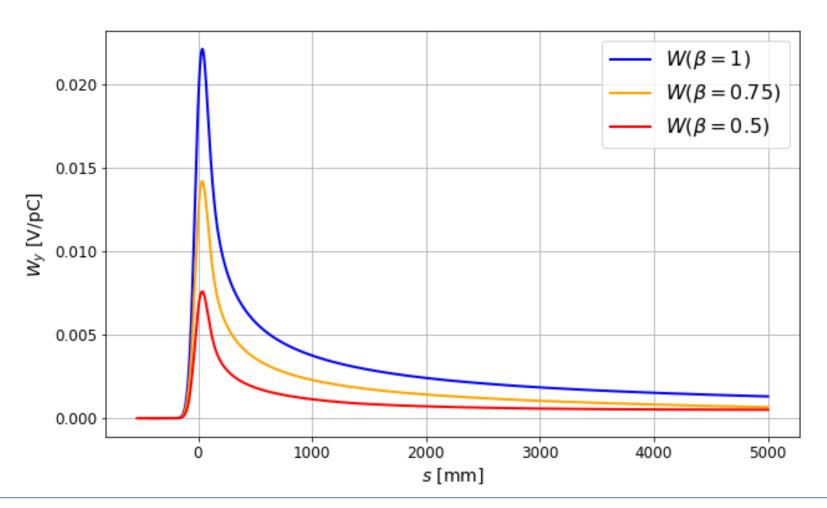
Settings for transverse simulations

The **dipolar vertical transverse impedance** was simulated: the integration path stays on axis while the beam is displaced vertically with an offset of 20% of the vertical half-aperture.



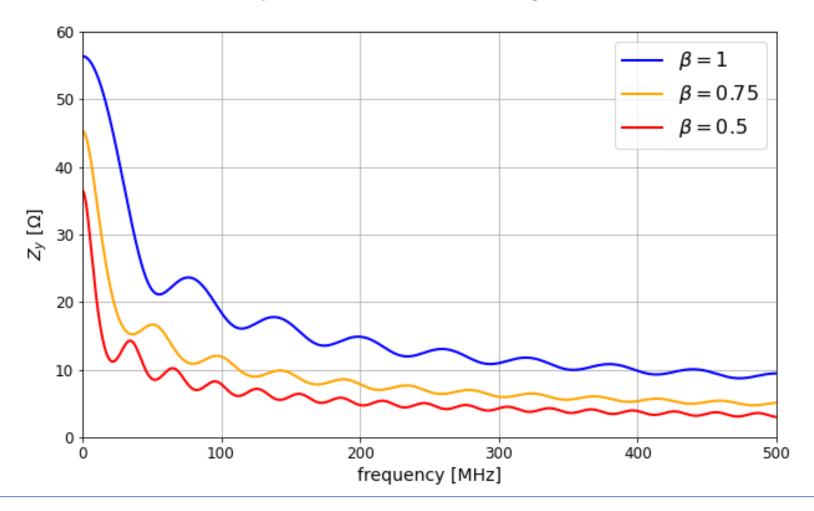
Transverse wake potential varying β

It can be observed that the longitudinal wake potential scales with $\beta^{\frac{3}{2}}$.



Transverse impedance varying β

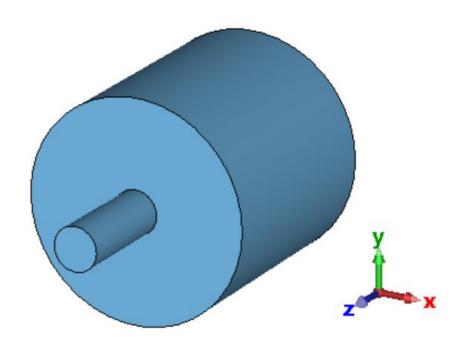
Even though the use of the direct integration method leads to numerical issues, it looks like the transverse impedance scales with β^{-1} .



Outline

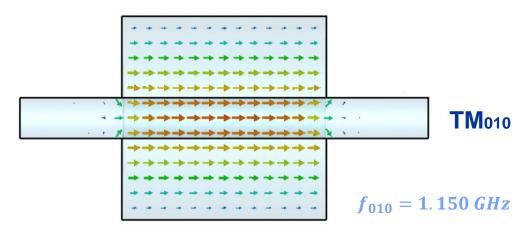
- Introduction
- Electromagnetic simulations for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
 - Examples of application
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

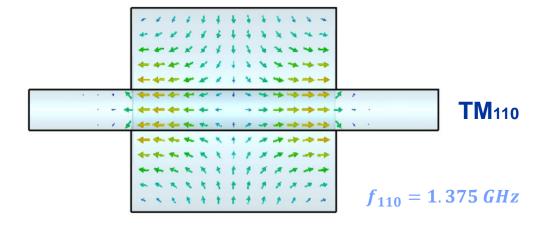
Pillbox cavity



Radius of the pipe	2 cm
Radius of the pillbox	10 cm
Length of the pipe	20 cm
Length of the pillbox	40 cm

Study of the first two resonant modes:



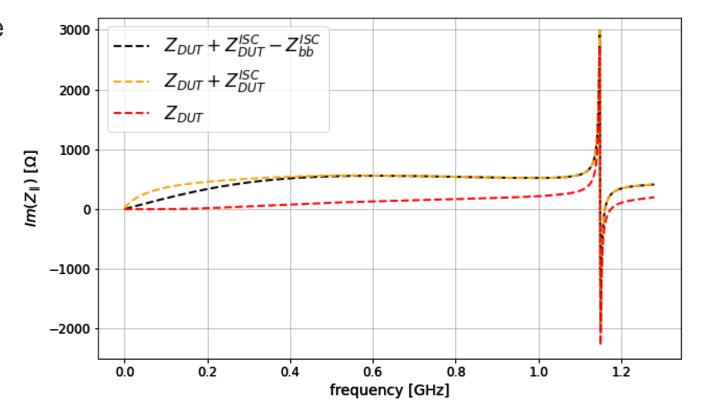


Example of application: longitudinal impedance of a pillbox, in the case $\beta = 0.5$

- Im(Z) is the one affected by space charge.
- For a pillbox we get:

$$Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) - Z_{bb}^{ISC}(\beta)$$

• $Z_{bb}^{ISC}(\beta)$ and $Z_{DUT}^{ISC}(\beta)$ can be analytically calculated and removed.

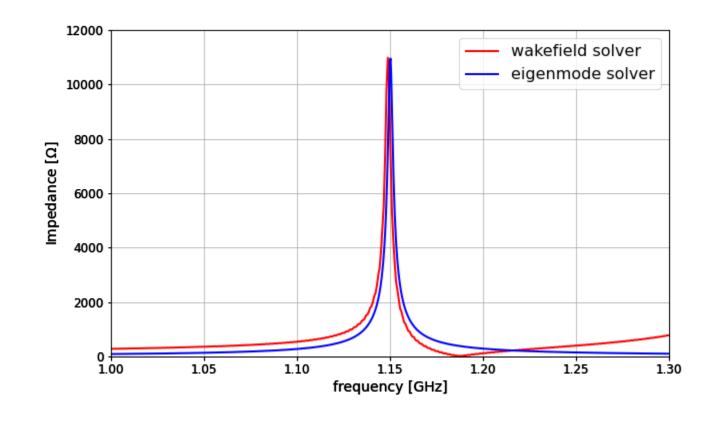


Eigenmode Solver vs Wakefield Solver

- Wakefield Solver (WF): directly provides the impedance spectrum.
- Eigenmode Solver (EM): provides three parameters.
 - impedance spectrum reconstructed based on the broad-band resonator model.

Eigenmode solver results	
Resonant frequency ω_r	1.15 GHz
Quality factor Q	450
Shunt impedance Rs	21954 Ω

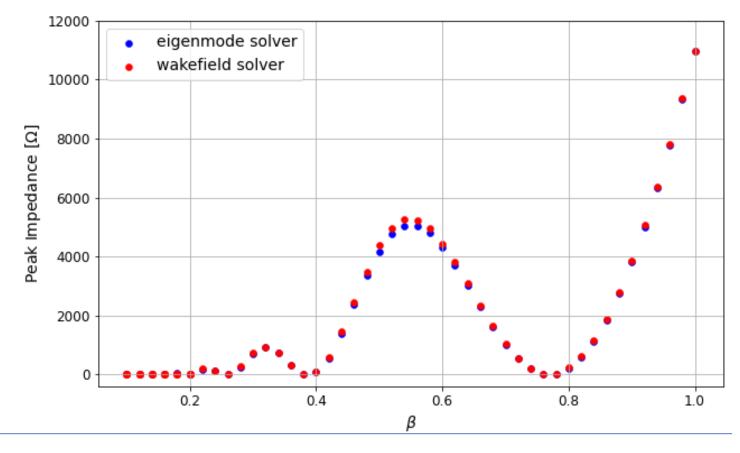
$$\mathbf{Z}(oldsymbol{\omega}) = rac{oldsymbol{R}_{S}}{1 + jQ\left(rac{oldsymbol{\omega}}{oldsymbol{\omega}_{r}} - rac{oldsymbol{\omega}_{r}}{oldsymbol{\omega}}
ight)}$$
 broad-band resonator model



Beam coupling impedance varying β

• Parametric study of the real part of the impedance at f_{010} varying β .

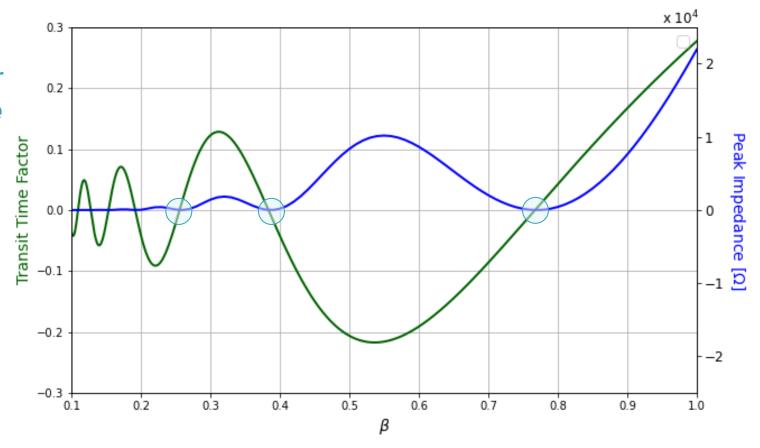
- Good agreement between the two solvers:
 - Relative error < 5%
- This agreement is not obvious bc in EM the particle velocity is taken into account in post processing



Beam coupling impedance varying β: relationship with the Transit Time Factor

- Study to understand the shape of the curve
 - in particular values of β for which the peak impedance goes to 0.
- It can be explained analytically looking at the transit time factor for the fundamental mode

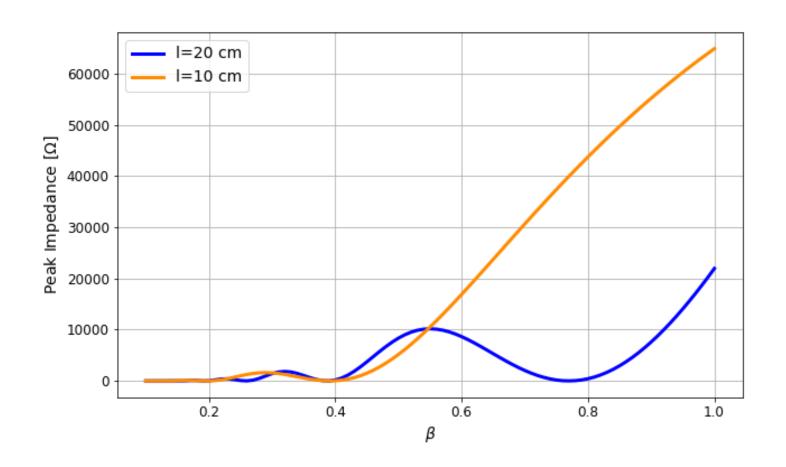
$$T = \frac{\sin\left(\frac{\pi l}{\beta \lambda}\right)}{\frac{\pi l}{\beta \lambda}}$$



Beam impedance varying the pillbox's length

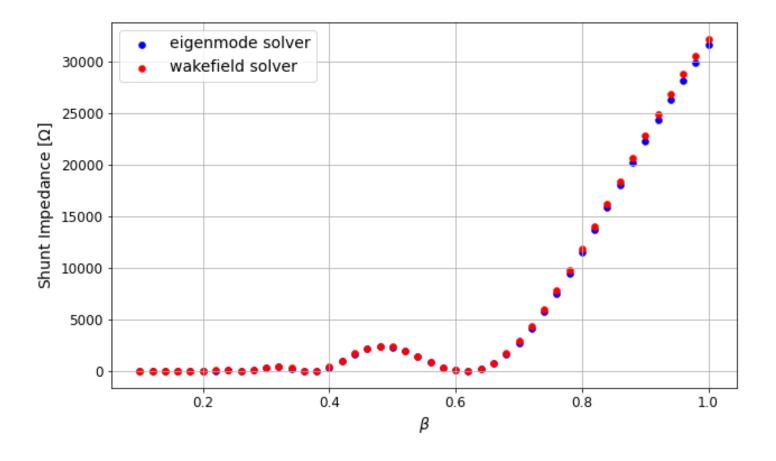
$$T = rac{\sin\left(rac{\pi l}{eta\lambda}
ight)}{rac{\pi l}{eta\lambda}}$$

When $l \ll \lambda$, we have $T \to 1$, so if we reduce the length of the pillbox the last minimum is reached for a lower β .



Peak impedance for the second resonant mode

- Also, for the second mode there is good agreement between the two solvers.
 - Relative error < 5%

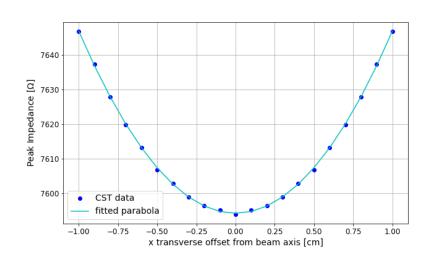


Settings for transverse simulations

The **generalized transverse impedance** was simulated with an offset of 10% of the radius of the pillbox.

- WF Solver: beam and integration path are directly displaced.
- EM Solver: the longitudinal impedance at f_r is calculated at different transverse offsets, with the expectation of obtaining a parabola:

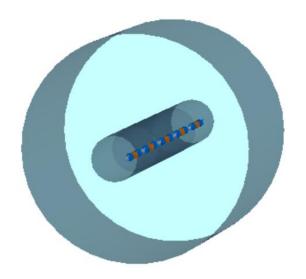
$$Z_{\parallel} = Z_{\parallel,0} + Z_{\parallel,1x} \cdot x_0^2 + Z_{\parallel,1y} \cdot y_0^2$$

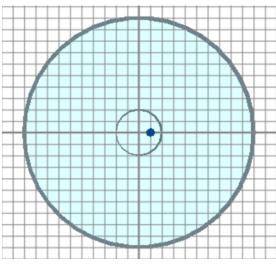


The transverse impedance is computed through to the Panofsky-Wenzel theorem:

$$Z_x^{gen} = \frac{Z_{\parallel,1x}(f_r) \cdot c}{2\pi f_r}$$

with $Z_{\parallel,1x}(f_r)$ from the fit.





Generalized transverse beam impedance varying β and role of the quadrupolar component

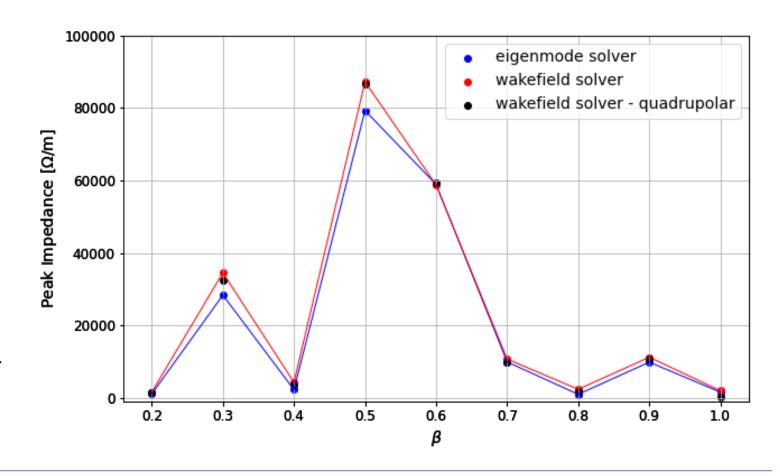
Good agreement between the two solvers.

The **mode** is mainly **quadrupolar**:

• $\beta = 1$: no radial field dependence

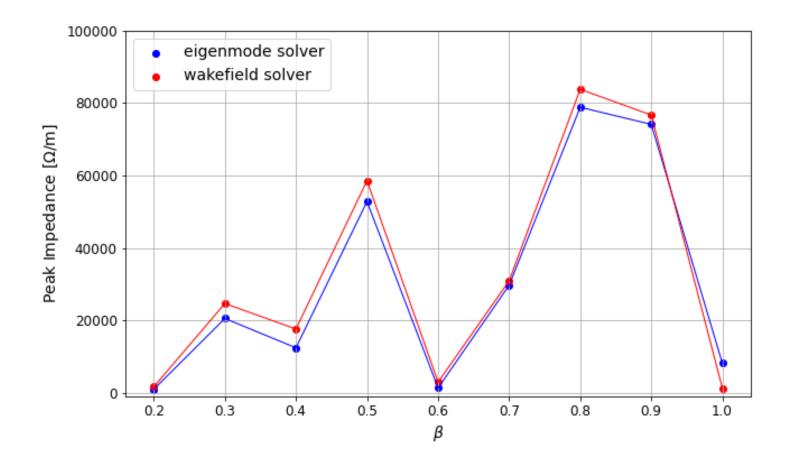
•
$$Z_{x,y}^{quad} = \mathbf{0} \rightarrow Z_{x,y}^{gen}$$
 small

- β < 1: radial field dependance
 - $Z_{x,y}^{quad} \neq 0 \rightarrow Z_{x,y}^{gen}$ higher



Generalized transverse beam impedance varying β for the second mode

Also, in the second mode there is **good agreement** between the two solvers.



Outline

- Introduction
- Electromagnetic simulations for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
 - Examples of application
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Conclusions

- Low-beta simulations are extremely challenging due to a series of factors (mesh convergence, direct integration method, removal of direct space charge).
- The numerical cancellation technique for the removal from the simulation of the direct space charge contribution was benchmarked with a resistive wall beam chamber:
 - the wake potential, both longitudinal and transverse, scales with $\beta^{\frac{3}{2}}$;
 - the longitudinal impedance doesn't change with β, as expected;
 - the transverse impedance scales with β , as expected.
- Simulations of a pillbox cavity:
 - Numerical cancellation has been applied successfully.
 - Good agreement between the Eigenmode Solver and the Wakefield Solver
 - The non-ultrarelativistic Wakefield simulations are accurate.
 - The **Eigenmode Solver approximation** of adding particle velocity only in post-processing with the transit time factor has been found to be accurate.

Outline

- Introduction
- Electromagnetic simulations for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
 - Examples of application
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Next steps

- Since the way that CST runs its simulations and the reason behind the numerical issues are not known, using an electromagnetic solver whose implementation is know would be useful: low-beta simulations are going to be run with wakis
 - First user of wakis
- The presented **study** will be applied to the **PSB FINEMET cavities**, whose impedance model can be improved because it currently doesn't account for non-ultrarelativistic beams.

Low-beta simulations with wakis

```
from wakis import GridFIT3D, SolverFIT3D, WakeSolver
import pyvista as pv
# ----- Domain and Grid setup -----
# Number of mesh cells
Nx = 57
N_V = 57
Nz = 109
#dt = 5.707829241e-12
# Geometry Import
stl cavity = 'cavity.stl'
stl pipe = 'beampipe.stl'
stl solids = {'cavity': stl cavity, 'pipe': stl pipe}
# Materials
stl materials = {'cavity': 'vacuum', 'pipe': 'vacuum'}
background = [1.0, 1.0, 100] # lossy metal [\epsilon r, \mu r, \sigma]
# Domain bounds (from stl)
surf = pv.read(stl cavity) + pv.read(stl pipe)
xmin, xmax, ymin, ymax, zmin, zmax = surf.bounds
# Set grid and geometry
grid = GridFIT3D(xmin, xmax, ymin, ymax, zmin, zmax, Nx, Ny, Nz,
                stl solids=stl solids,
                stl materials=stl materials)
#grid.inspect()
```

```
# ----- Beam source -----
# Beam parameters and wake obj.
beta = 0.8
          # beam relativistic beta
sigmaz = beta*6e-2 # [m] -> multiplied by beta to have f max cte
q = 1e-9
                 # [C]
                # x source position [m]
xs = 0.
ys = 0. # y source position [m]
xt = 0.
                # x test position [m]
vt = 0.
                 # y test position [m]
# tinj = 8.53*sigmaz/(beta*c) # injection time offset [s]
wake = WakeSolver(q=q, sigmaz=sigmaz, beta=beta,
          xsource=xs, ysource=ys, xtest=xt, ytest=yt,
          save=True, logfile=True)
```


https://github.com/ImpedanCEI/FITwakis

benchmarks/betacavity/

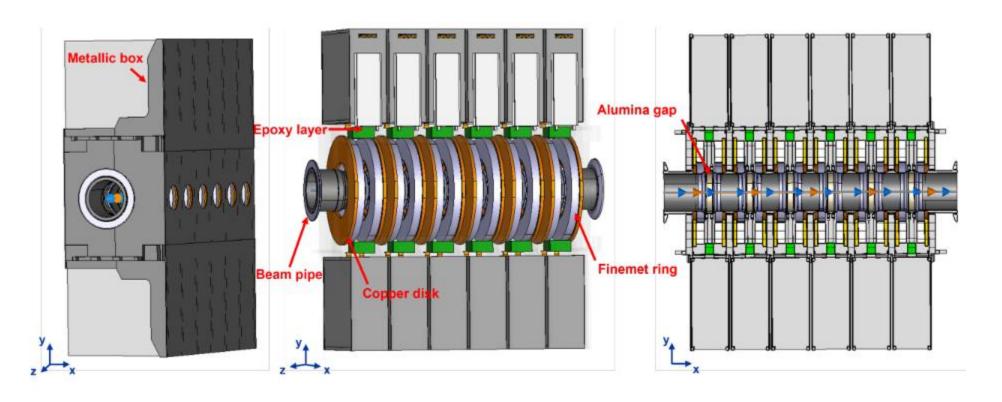
Simulation of a cylindrical pillbox below cut-off for different relativistic β values.

Next steps

- Since the way that CST runs its simulations and the reason behind the numerical issues are not known, using an electromagnetic solver whose implementation is know would be useful: low-beta simulations are going to be run with wakis
 - First user of wakis
- The presented **study** will be applied to the **PSB FINEMET cavities**, whose impedance model can be improved because it currently doesn't account for non-ultrarelativistic beams.

Beam coupling impedance simulations of the PSB FINEMET cavities

Study on the FINEMET cavities' realistic 3D model, simplified for electromagnetic simulations:

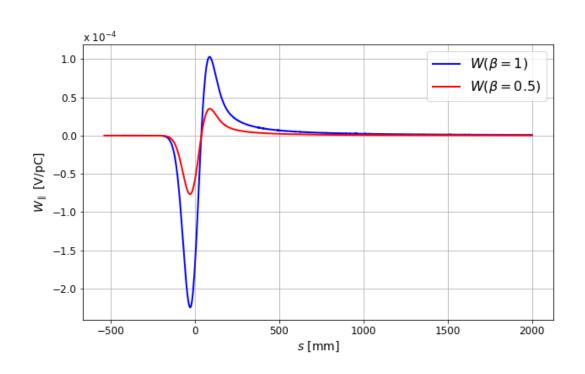


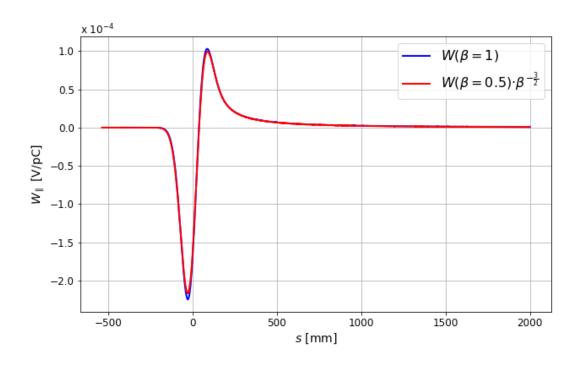
Thank you for your attention

Backup slides

Longitudinal wake potential: comparison between $\beta = 1$ and $\beta = 0.5$

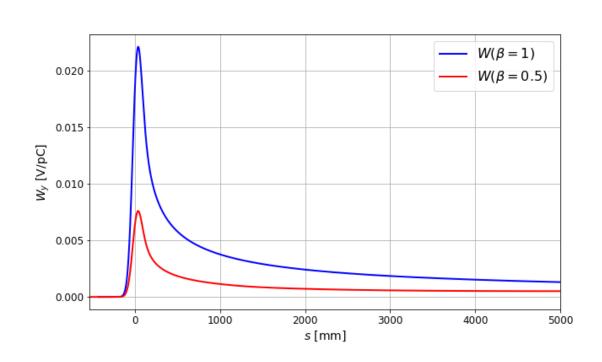
It can be observed that the longitudinal wake potential scales with $\beta^{-\frac{3}{2}}$.

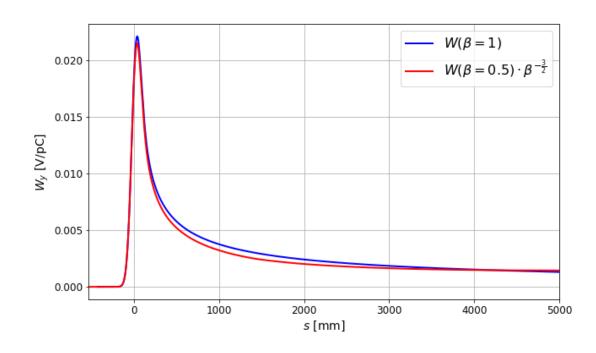




Transverse wake potential: comparison between $\beta = 1$ and $\beta = 0.5$

It can be observed that the longitudinal wake potential scales with $\beta^{-\frac{3}{2}}$.



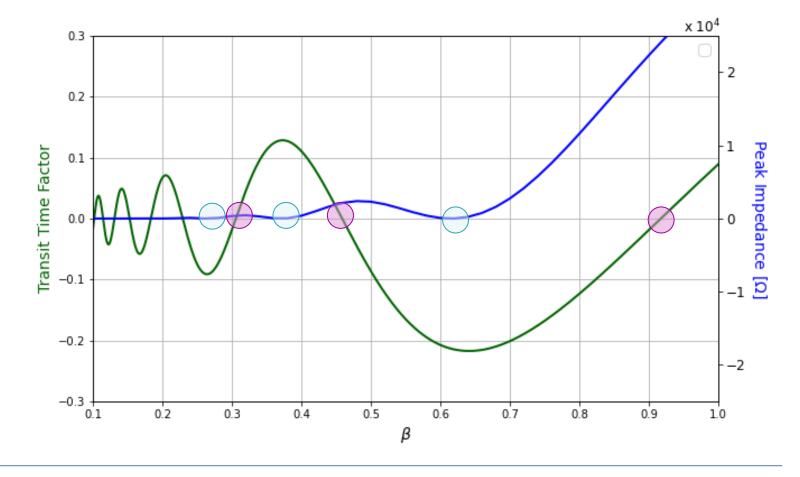


Peak impedance of the second mode varying β: relationship with the Transit Time Factor

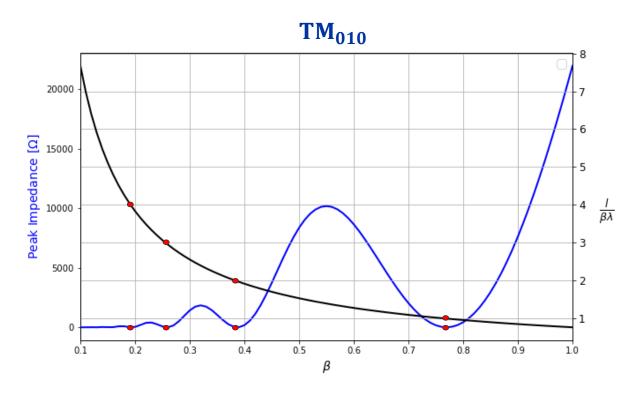
 The impedance in CST is multiplied by the transit time factor T, that for the fundamental mode is:

$$T = \frac{\sin(\frac{\pi l}{\beta \lambda})}{\frac{\pi l}{\beta \lambda}}$$

- This formula doesn't work for higher order modes.
- Changes in the formula for the other modes are being studied.



Peak impedance and $\frac{l}{\beta\lambda}$ varying β for TM₀₁₀ mode



Peak impedance and $\frac{l}{\beta\lambda}$ varying β for TM₁₁₀ mode

